
Estimation-Based Verification of Cyber-Physical
Systems via Statistical Model Checking
Marco Esposito, Leonardo Picchiami*

Computer Science Dept., Sapienza University of Rome, via Salaria 113, 00198, Italy

Abstract
In this paper, we focus on verifying Cyber-Physical System via Statistical Model Checking and
numerical simulation. Our verification problem is to establish whether the expected value of a
given Key Performance Indicator exceeds the desired threshold. We propose to use an optimal
approximation algorithm to get an (𝜖, 𝛿)-approximation of a desired expected value through
Monte Carlo experiments.

We prove the feasibility of our approach on the Pumping System, an example derived from
the Modelica Standard Library. We were able to verify the system in a reasonable time, taking
advantage of a parallel implementation of the approximation algorithm.

Keywords
Statistical Model Checking, Verification, Cyber-Physical Systems, Numerical Simulation.

1. Introduction
Many mission/safety-critical Cyber-Physical Systems (CPSs) [3], such as, for example,
smart grids [24, 33, 46, 37], automotive systems [20, 11, 62] and biological systems
[25, 27, 28, 41, 53, 54, 18, 17, 19, 57, 2, 5], must be provably correct. There are several
limitations to overcome to formally verify CPSs. For example, the huge number of
operational scenarios (scenario explosion, e.g., [34, 39, 40, 45]) to be considered or
the ever-increasing complexity of the systems. They make the problem intractable for
approaches such as numerical techniques, logics or automata (such as,e.g., those discussed
in [15, 16, 10, 9, 30, 21, 29, 7, 43, 12, 42]).

Statistical Model Checking (SMC) holds the promise to reduce time and cost needed for
the verification. SMC is a Monte Carlo-based approach that aims at sampling scenarios
until the desired statistical assurance over a certain property is reached. Mainly, it takes
advantage of Hypothesis Testing [22, 35, 58], Estimation [33, 44, 47, 13] and Bayesian
analysis [63, 8] to evaluate qualitative as well as quantitative properties of interest. The
verification of qualitative properties consists in choosing between two mutually exclusive

HYDRA - RCRA 2022: 1st International Workshop on HYbrid Models for Coupling Deductive and
Inductive ReAsoning and 29th RCRA workshop on Experimental evaluation of algorithms for solving
problems with combinatorial explosion
*Corresponding author.
email: esposito@di.uniroma1.it (M. Esposito); picchiami@di.uniroma1.it (L. Picchiami)
orcid: 0000-0003-4543-8818 (M. Esposito); 0000-0001-5477-6419 (L. Picchiami)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 Interna-
tional (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:esposito@di.uniroma1.it
mailto:picchiami@di.uniroma1.it
https://orcid.org/0000-0003-4543-8818
https://orcid.org/0000-0001-5477-6419
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

hypotheses with a given statistical confidence, whereas quantitative properties provide a
measurable interpretation of some stochastic behaviour.

The literature (see, e.g., [1, 49]) shows a plethora of tools (e.g., MultiVeSta [50], PRISM
[26], UPPAAL-SMC [14], COSMOS [6], Ymer [60]) that enable SMC via numerical
simulation. Many SMC approaches, even based on such tools, require the system
modelling through some kind of structure (e.g., Discrete Time Markov Chain, Continuous
Time Markov Chain [61, 4], Probabilistic Timed Automata [48]), and a specification
through a class of logic (e.g., Probabilistic Computational Tree Logic [23], Continuous
Stochastic Logic [52]) to carry out the verification. We note that specific modelling of
the system is needed to generate trajectories on demand.

In this paper, instead, we focus on verifying CPSs by relying on a purely black-box
approach where the System Under Verification (SUV) is available only via a simulator
(e.g., OpenModelica, Dymola, Simulink). Our setting requires establishing if the expected
value of a given Key Performance Indicator (KPI) does not exceed a given threshold. We
propose to estimate such an expected value using an optimal approximation algorithm
(namely, the Approximation Algorithm, 𝒜𝒜 [13]) that interfaces in a black-box fashion
[55] with the SUV. Mainly, the approximation algorithm asks for a new sample when
needed and outputs the estimate when enough samples have been collected. So, our
approach aims to be compliant with any simulation driver and SUV model. Furthermore,
we prove the feasibility of such an approach on a Modelica model. Note that, to the best
of our knowledge, no other contributions exist that apply an estimation algorithm on a
Modelica system for purely verification purposes.

Black-box approaches distant from ours have been proposed in, e.g., [51, 59]; in those
works, the authors use hypothesis testing to verify qualitative properties when trajectories
can not be generated on demand.

The paper is organised as follows. We provide a formalisation of the verification
problem in Section 2 and a description of the tool in Section 3. In Section 4, we present
the case study used to prove the feasibility of our approach, whereas, in Section 5,
we summarise and discuss the results obtained. Finally, we draw our conclusions in
Section 6.

2. Background
We denote with R, R0+, and R+, respectively, the sets of all, non-negative and positive
reals. N and N+ are the sets of non-negative and strictly-positive integers.

2.1. Statistical model checking
The system verification via SMC consists of three components: the SUV, the specifications,
and the SUV environment. In our setting, a SUV is typically a simulable CPS model,
i.e., a system described by continuous as well as discrete variables. The continuous part
describes the physical component, whereas the discrete part models the dynamics of the
software component. We treat (see Definition 1) our SUV as a black-box input-output

deterministic causal dynamical system (see, e.g., [56, 32, 38]) that depends on its inputs
and outputs and can be evaluated only through simulation.

Definition 1. A black-box SUV 𝒮 is a tuple (𝒯 , 𝑈, 𝑌, 𝑆) where 𝒯 is the time-set, 𝑈 and
𝑌 are the input and output spaces and 𝑆 : 𝑈𝒯 → 𝑌 𝒯 is the output (simulation) function
that defines the time evolution of the system for each time point in 𝒯 .

A black-box SUV 𝒮 is strictly causal if, for any 𝑡 ∈ 𝒯 and for any u1, u2 ∈ 𝑈𝒯 such
that u1(𝑡′) = u2(𝑡′) for all 𝑡′ < 𝑡, it holds 𝑆(𝑡; u1) = 𝑆(𝑡; u2) where 𝑆(𝑡; u) denotes the
value 𝑆(u) at time 𝑡.

The SUV environment defines all operational scenarios the SUV must withstand (e.g.,
see [31, 36, 45]). Such inputs are uncontrollable, i.e., not under the system’s control (e.g.,
faults or disturbances). Since we need to sample the operational scenarios needed for the
verification, we focus of finitely parametrisable environments, and sample within such
parameter spaces.

Definition 2. A finitely parametrisable SUV environment is a function 𝐼 : 𝑊 → 𝑈𝒯

with 𝑊 ⊆ R𝑚, 𝑚 ∈ N.

Of course, not all scenarios have the same occurrence. We model this feature through
a probability density function 𝑝𝑊 (𝑤) on the set of environment parameters 𝑊 . This
seamlessly includes both discrete and continuous parameter spaces.

The SUV must satisfy several requirements for all possible scenarios. The specifications
of such requirements model KPIs on the safety properties of the system. Note that
in our framework, an output function y ∈ 𝑌 𝒯 of the SUV can be a system trajectory
(possibly needed to compute a KPI) and the KPI itself. In particular, we are interested in
quantitative specifications that give a metric interpretation of the properties of interest.

Definition 3. A quantitative KPI is a function 𝑓 : 𝑌 𝒯 → [0, 1].

2.2. Verification problem
We want to know whether the expected value of a given KPI over the set of operational
scenarios is less than or equal to a given threshold 𝑃 . We need to compute the expected
value 𝜇 of 𝑓(𝑆(u)) for any u = 𝐼(𝑤) for some 𝑤 ∈ 𝑊 , where 𝜇 ranges in [0, 1] with
probability density function 𝑝𝑊 (𝑤) on 𝑊 . Formally,

𝜇 =
∫︁

𝑊
𝑓(𝑆(𝐼(𝑤)))𝑝𝑊 (𝑤)𝑑𝑤 (1)

So we can define the verification problem as follows:∫︁
𝑊

𝑓(𝑆(𝐼(𝑤)))𝑝𝑊 (𝑤)𝑑𝑤 − 𝑃 ≤ 0 (2)

Unfortunately, 𝑊 may be, and usually is, infinite and computing all operational
scenarios is impossible and, even if they are a finite number, typically prohibitive. To
avoid such a scenario explosion, we can use Monte Carlo based approaches that provide

an (𝜖, 𝛿)-approximation �̂� of
∫︀

𝑊 𝑓(𝑆(𝐼(𝑤)))𝑝𝑊 (𝑤)𝑑𝑤, that is, with probability at least
1− 𝛿,

𝜇(1− 𝜖) ≤ �̂� ≤ 𝜇(1 + 𝜖) (3)

with 0 < 𝜖 ≤ 1 and 0 < 𝛿 ≤ 1.

3. CPSs Verification via Statistical Model Checking
We focus on verifying CPSs via Statistical Model Checking. Our goal is to perform Monte
Carlo experiments to estimate the expected value of a given KPI and establish whether it
exceeds the desired threshold. We may empirically compute the expected value through
a Monte Carlo approach that uses an arbitrary large number of samples. Unfortunately,
such an approach does not provide any formal guarantees, in terms of error bound and
statistical confidence, about the accuracy of the expected value estimate.

To overcome this obstacle, we adopt the optimal Approximation Algorithm (𝒜𝒜) [13]
as our estimator. 𝒜𝒜 computes an (𝜖, 𝛿)-approximation �̃�𝑍 of the expected value 𝜇𝑍 > 0
of a univariate non-negative random variable 𝑍, i.e., the computed estimate �̃�𝑍 of the
expected value 𝜇𝑍 of 𝑍 is guaranteed to be within 𝜇(1−𝜖) and 𝜇(1+𝜖) with probability at
least 1−𝛿. The algorithm optimally uses Monte Carlo experiments for the approximation,
that is, within a constant factor, it requires the minimum number of experiments to
output the estimate. Note that in our setting, we get samples via numerical simulation
and a non-optimal estimator could be very expensive. Note that in case an absolute (and
not relative) error is sought, other algorithms might seamlessly be used, e.g., based on
the Bernstein Inequality [13].

3.1. Univariate Approximation Algorithm AA
Below we briefly summarise the main concepts of the 𝒜𝒜. For a detailed explanation see
[13].
𝒜𝒜 is the three-phase algorithm illustrated in Algorithm 1. It computes an approxima-

tion �̃�𝑍 of the mean 𝜇𝑍 > 0 of a univariate non-negative random variable 𝑍 distributed
in [0, 1].

Given the user-defined input parameters 𝜖 ∈ (0, 1] and 𝛿 ∈ (0, 1], the following values
are defined: 𝜆 = (𝑒− 2) ≈ .72, ϒ = 4𝜆𝑙𝑛(2/𝛿)/𝜖2 and 𝜌𝑍 = 𝑚𝑎𝑥{𝜎2

𝑍 , 𝜖𝜇𝑍}. 𝒜𝒜 uses the
first two phases to decide the number of samples required to output �̃�𝑍 in the third phase.
In the first phase, it computes an initial (

√
𝜖, 𝛿/3)-approximation �̂�𝑍 of the mean 𝜇𝑍

using the Stopping Rule Algorithm (SRA). Note that in this phase the number of samples
cannot be determined in advance. The second phase (Estimate Variance, EV) provides
an initial estimate �̂�𝑍 of the variance 𝜎2

𝑍 using 2 ·𝑁2 samples where 𝑁2 = ϒ2 · 𝜖/�̂�. �̂�𝑍 is
within a constant factor 𝜌𝑍 with probability of at least 1− 𝛿.

Estimate Mean (EM) is the third phase of the 𝒜𝒜 algorithm. It outputs an (𝜖, 𝛿)-
approximation �̃�𝑍 of 𝜇𝑍 by taking advantage from �̂�𝑍 and �̂�𝑍 with 𝑁3 = ϒ2 · �̂�𝑍/�̂�2

𝑍

samples.

Algorithm 1: Approximation Algorithm
Input: error bound 𝜖, statistical confidence 𝛿
function: 𝒜𝒜(𝜖, 𝛿)

1: ϒ2 ← 2(1 +
√

𝜖)(1 + 2
√

𝜖)(1 +
𝑙𝑛(2

3)/𝑙𝑛(2
𝛿))ϒ

2: �̂�𝑍 ← SRA(𝑚𝑖𝑛(1/2,
√

𝜖), 𝛿/3)
3: �̂�𝑍 ← EV(�̂�𝑍 , 𝜖, ϒ2)
4: �̃�𝑍 ← EM(�̂�𝑍 , �̂�𝑍 , ϒ2)
5: return �̃�𝑍

function: SRA(𝜖, 𝛿)
1: ϒ1 ← 1 + (1 + 𝜖)ϒ
2: 𝑁 ← 0
3: 𝑆 ← 0
4: while 𝑆 < ϒ1 do
5: 𝑁 ← 𝑁 + 1
6: 𝑆 ← 𝑆 + 𝑍𝑁

7: return 𝑆/𝑁

function: EV(�̂�𝑍 , 𝜖, ϒ2)
1: 𝑁 ← ϒ2 · 𝜖/�̂�𝑍

2: 𝑆 ← 0
3: for i=1 to N do
4: 𝑆 ← 𝑆 + (𝑍 ′

2𝑖−1 − 𝑍 ′
2𝑖)2/2

5: �̂�𝑍 ← 𝑚𝑎𝑥{𝑆/𝑁, 𝜖�̂�𝑍}
6: return �̃�𝑍

function: EM(�̂�, �̂�, ϒ2)
1: 𝑁 ← ϒ2 · �̂�𝑍/�̂�2

𝑍

2: 𝑆 ← 0
3: for i=1 to N do
4: 𝑆 ← 𝑆 + 𝑍𝑖

5: �̃�𝑍 ← 𝑆/𝑁
6: return �̃�𝑍

3.2. Parallel implementation
We developed a parallel implementation of 𝒜𝒜 based on a message-passing paradigm.
The workflow of each 𝒜𝒜 phase is shown Figure 1. Our architecture envisions 1 master
(orchestrator) and 𝑛 slaves (workers). The orchestrator handles both the 𝒜𝒜 algorithm
and the input for all workers, whereas each worker waits for new input and simulates the
system to produce a new sample.

The orchestrator keeps the computation status of the 𝒜𝒜 algorithm and sends new
input to idle workers as long as new samples are required. Our implementation takes
into account whether too many samples have been produced at the end of the first phase
so that we can use them during the second phase. In such a way, we efficiently use the
computational power without wasting any model simulation. The dispatching of the
inputs is centralised to sort the obtained samples deterministically. Such a feature is not
strictly required, but ensures the full reproducibility of all experiments.

The 𝒜𝒜 is implemented as explained in the pseudocode of Section 3.1. The orchestrator
updates the approximation algorithm only if new samples have been produced; otherwise,
it freezes the algorithm. In such a context, the computational time required to produce
new samples via simulation of the SUV model is the main bottleneck of the addressed
problem, and the simulation time affects its performance.

Note that computing the expected value of multiple KPIs can be addressed seamlessly
by using the same random samples, where, for each sample, the SUV simulator computes
the value of all KPIs. Hence, the approximation algorithm terminates when enough
samples are simulated so that (𝜖, 𝛿)-approximations of all KPIs are computed.

Figure 1: Parallel 𝒜𝒜 phase workflow.

4. Case Study
We evaluated the effectiveness of our approach on the Pumping System (PS) model
provided by the Modelica Standard Library. PS represents a pumping control system
for drinking water. The water is pumped from a source by a pump, fitted with check
valves, into a reservoir. The reservoir is described by a (nominal) height 𝐻 of 3 𝑚 and
an area 𝐴 of 50 𝑚2 and it is connected to another valve that models the users, i.e., the
outgoing water sink. The source and water sink work at an environmental pressure 𝑝
(101 325 Pa) and temperature 𝑇 (20 ℃) to get the ingoing and outgoing water dynamics
where 𝑝 is the average value of atmospheric pressure in standard conditions. In addition,
𝐻 models a constraint on the system dynamics, that is, the water level must be within
[0, 𝐻] during the course of the whole simulation.

The control component outputs the rotational speed of the pump engine through a
first-order system. The component sends a small non-zero value to put the pump in a
standby state when other water is not required, whereas other values indicate that the
pump must inject the water into the reservoir.

Each experiment of our Monte Carlo-based approach simulates the system with an
horizon ℎ of 2000 seconds. After 𝑡 = 200 seconds, PS opens the sink valve, and the
controller starts turning on and off the pump to keep the level water value around 2.2
meters so that the gauge pressure is around 200 mbar.

We added a stochastic environment that injects a disturbance on the environmental
pressure so that the ingoing and the outgoing water pressure are unbalanced, i.e., the
sink and source stochastic pressure take different values. Our stochastic pressure 𝑝𝑠

ranges from 𝑝(1 − 𝜃) to 𝑝(1 + 𝜃) where 𝜃 is the percentage of disturbance. We chose
a disturbance of 𝜃 = 0.07 (7%) as it is the maximum value that still yields plausible

𝛿 𝜖 E[𝑍] Samples Time (hh:mm:ss)

0.05 0.05 0.1472 19322.8 01:53:40
0.05 0.01 0.1474 127417.1 12:29:32
0.01 0.01 0.1474 176579.9 17:18:45
0.05 0.005 0.1473 375593.9 36:49:28
0.005 0.005 0.1473 584357.7 57:17:33

Table 1
Experimental results

trajectories (for instance, with 𝜃 = 0.08, we witnessed trajectories in which the water
level exceeded the tank height).

To verify the correctness of the PS, we modelled the Mean Relative Absolute Error
(MRAE) as desired KPI on a current water level to quantify the ability of the system to
keep it around 2.2 meters in presence of a stochastic environmental pressure. Given the
current water level 𝑙𝑐 and reference water level 𝑙𝑟 = 2.2, we define the Relative Absolute
Error (RAE) at time 𝑡 as follows:

RAE(𝑡) = |𝑙𝑐(𝑡)− 𝑙𝑟|
𝑙𝑟

(4)

Thus, we define the MRAE at time 𝑡 as follows:

MRAE(𝑡) =
∫︀ 𝑡

0 RAE(𝜏)𝑑𝜏

𝑡
(5)

where 𝑡 is the current time instant over the simulation. Finally, given 𝑃1 = |𝐻−𝑙𝑟|/𝑙𝑟 =
0.3637 and 𝑃2 = |0− 𝑙𝑟|/𝑙𝑟 = 1, we set our threshold to 𝑃 = 𝑚𝑖𝑛(𝑃1, 𝑃2)/2 = 0.1819.

5. Results
In this section, we report the experimental results obtained on the PS. The experiments
were run on a computer equipped with AMD EPYC 7301 16-Core CPU and 256 GB
RAM. We estimated the expected value of the MRAE on the water level on several
configurations for 𝜖 and 𝛿. From preliminary experiments, we have observed that the
simulation time drastically increases when we run more than 16 copies of the Modelica
system in parallel. In our setting, the simulator is particularly expensive and requires so
many computational resources that the simulation time degrades. This motivates the
fact that we limited our experiment settings up to 16 workers.

Table 1 summarises the average results of 𝑛 = 10 experiments using 1 orchestrator and
16 workers. It reports the average number of samples required by 𝒜𝒜, the average value
of the estimated percentage error (E[𝑍]) and the average value of the time needed to
carry out the experiments.

In each configuration, on average, the PS has a percentage error of 14.7%. This
indicates that our safety property is satisfied since 0.147 = E[𝑍] ≤ 𝑃 = 0.182 holds and

(a) Speed-Up. (b) Efficiency.

Figure 2: Performance scaling of our parallel 𝒜𝒜 implementation.

our KPI can range on average in [2.2− 0.323, 2.2 + 0.323] where 0.323 is 14.7% of the
reference water level.

The system simulation time and hyperparameters 𝜖 and 𝛿 impact the experiments.
Values for 𝜖 and 𝛿 (mainly 𝜖) affect the number of samples needed to obtain the desired
estimate. In fact, accurate estimations with higher statistical confidence, i.e., smaller
values for 𝜖 and 𝛿, require more samples. The simulation time, instead, heavily dominates
the execution time of our experiments in which we can get each sample only via numerical
simulation of the SUV. Such an aspect is not negligible and becomes increasingly relevant
when non-optimal approximation algorithms are used. In [47], the authors explain
how approximation algorithms that do not take advantage of the variance have worse
performance. Note that the number of required samples is the criterion to use to compare
different Monte Carlo approaches. In such a context, having worse performance with the
same 𝜖 and 𝛿 also increases the number of required simulations to estimate the expected
value of the target KPI. For example, if a system takes 4-5 seconds for every simulation
as in our case, performing too many of simulations could make the problem intractable
even when using Statistical Model Checking.

Another observation is about the performance of the developed parallel tool. Figure 2a
and Figure 2b illustrate, respectively, speed-up and efficiency by varying the number
of workers used for the simulation with 𝜖 = 𝛿 = 0.05. Values for other configurations,
even with smaller 𝜖 and 𝛿, follow the same trend. The speed-up is the ratio between the
time required using a single worker and the time required using 𝑛 workers, whereas the
efficiency is the ratio between the speed-up with 𝑛 workers and 𝑛. Both figures show
that we are able to efficiently parallelise up to 16 workers with an efficiency greater than
85% and a speed-up grater than 13.5x.

6. Conclusion
In this work, we performed formal verification of CPSs via Statistical Model Checking.
In our setting, solving the verification problem means establishing whether the expected

value of a desired KPI does not exceed a given threshold 𝑃 . We developed a parallel
implementation of 𝒜𝒜 and evaluated our approach’s viability on an example provided
by the Modelica Standard Library, the Pumping System. We observed that, even in
limited presence of disturbances, the system, on average, is able to satisfy the desired
specification. An interesting aspect is the need for parallel approaches when dealing with
simulation-based verification. Although 𝜖 and 𝛿 heavily impact the number of required
samples by 𝒜𝒜, the parallelisation makes the verification feasible.

Several directions may be pursued in future work. Among those, we mention (1)
the improvement of the efficiency of our parallel approach and comparison of several
implementations to establish the most suitable parallel implementation of 𝒜𝒜, and (2)
the systematic analysis of the behaviour of PS with stochastic environments that present
stronger disturbances and bigger tanks.

Acknowledgments
This work was partially supported by: Italian Ministry of University and Research under
grant “Dipartimenti di eccellenza 2018–2022” of the Department of Computer Science of
Sapienza University of Rome; INdAM “GNCS Project 2020”; Sapienza University projects
RG12117A8B393BDC, RG11816436BD4F21, RG11916B892E54DB, RP11916B8665242F;
Lazio POR FESR projects E84G20000150006, F83G17000830007.

References
[1] G. Agha and K. Palmskog. A survey of statistical model checking. ACM Trans

Model Comput Simul, 28(1), 2018.
[2] R. Allen, et al. Efficient generation and selection of virtual populations in quantitative

systems pharmacology models. CPT: Pharmacom Sys Pharmacol, 5(3), 2016.
[3] R. Alur. Principles of Cyber-Physical Systems. MIT, 2015.
[4] C. Baier, et al. Model-checking algorithms for continous-time markov chains. IEEE

Trans Softw Eng, 29, 2003.
[5] P. Balazki, et al. A quantitative systems pharmacology kidney model of diabetes

associated renal hyperfiltration and the effects of sglt inhibitors. CPT: Pharmacom
Sys Pharmacol, 7(12), 2018.

[6] P. Ballarini, et al. HASL: a new approach for performance evaluation and model
checking from concepts to experimentation. Perf Eval, 90, 2015.

[7] L. Bordeaux, et al. CSP properties for quantified constraints: Definitions and
complexity. In AAAI 2005. AAAI, 2005.

[8] L. Bortolussi, et al. Smoothed model checking for uncertain continuous-time markov
chains. Inf Comput, 247, 2016.

[9] M. Cadoli and T. Mancini. Combining relational algebra, SQL, constraint modelling,
and local search. TPLP, 7(1-2), 2007.

[10] M. Cadoli, et al. SAT as an effective solving technology for constraint problems. In
ISMIS 2006, LNCS, vol. 4203. Springer, 2006.

[11] S. Chakraborty, et al. Automotive cyber–physical aystems: A tutorial introduction.
IEEE Des&Test, 33(4), 2016.

[12] Q. Chen, et al. MILP, pseudo-boolean, and OMT solvers for optimal fault-tolerant
placements of relay nodes in mission critical wireless networks. Fundam Inform,
174(3–4), 2020.

[13] P. Dagum, et al. An optimal algorithm for Monte Carlo estimation. SICOMP, 29(5),
2000.

[14] A. David, et al. Uppaal smc tutorial. Int Soft Tech Trans, 17(4), 2015.
[15] G. Della Penna, et al. Automatic verification of a turbogas control system with the

murphi verifier. In HSCC 2003, LNCS, vol. 2623. Springer, 2003.
[16] G. Della Penna, et al. Finite horizon analysis of Markov chains with the Murphi

verifier. STTT, 8(4–5), 2006.
[17] M. Esposito and L. Picchiami. Intelligent search for personalized cancer therapy

synthesis: an experimental comparison. In RCRA 2021, CEUR W.P., vol. 3065.
CEUR, 2021.

[18] M. Esposito and L. Picchiami. Simulation-based synthesis of personalised therapies
for colorectal cancer. In OVERLAY 2021, CEUR W.P., vol. 2987. CEUR, 2021.

[19] M. Esposito and L. Picchiami. A comparative study of AI search methods for
personalised cancer therapy synthesis in copasi. In AI*IA 2022, LNCS, vol. 13196.
Springer, 2022.

[20] D. Goswami, et al. Challenges in automotive cyber-physical systems design. In
SAMOS 2012. IEEE, 2012.

[21] G. Gottlob, et al. Conditional constraint satisfaction: Logical foundations and
complexity. In IJCAI 2007. 2007.

[22] R. Grosu and S. Smolka. Monte Carlo model checking. In TACAS 2005, LNCS, vol.
3440. Springer, 2005.

[23] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Form
Asp Comp, 6(5), 1994.

[24] B. Hayes, et al. Residential demand management using individualised demand aware
price policies. IEEE Trans Smart Grid, 8(3), 2017.

[25] M. Hengartner, et al. Negative affect is unrelated to fluctuations in hormone levels
across the menstrual cycle: Evidence from a multisite observational study across
two successive cycles. J Psycho Res, 99, 2017.

[26] M. Kwiatkowska, et al. Prism 4.0: Verification of probabilistic real-time systems. In
CAV 2011, LNCS, vol. 6806. Springer, 2011.

[27] B. Leeners, et al. Associations between natural physiological and supraphysiological
estradiol levels and stress perception. Front Psycol, 10, 2019.

[28] F. Maggioli, et al. SBML2Modelica: Integrating biochemical models within open-
standard simulation ecosystems. Bioinformatics, 36(7), 2020.

[29] T. Mancini, et al. Evaluating ASP and commercial solvers on the CSPLib. Con-
straints, 13(4), 2008.

[30] T. Mancini, et al. Combinatorial problem solving over relational databases: View
synthesis through constraint-based local search. In SAC 2012. ACM, 2012.

[31] T. Mancini, et al. System level formal verification via model checking driven

simulation. In CAV 2013, LNCS, vol. 8044. Springer, 2013.
[32] T. Mancini, et al. Anytime system level verification via random exhaustive hardware

in the loop simulation. In DSD 2014. IEEE, 2014.
[33] T. Mancini, et al. Demand-aware price policy synthesis and verification services for

smart grids. In SmartGridComm 2014. IEEE, 2014.
[34] T. Mancini, et al. System level formal verification via distributed multi-core hardware

in the loop simulation. In PDP 2014. IEEE, 2014.
[35] T. Mancini, et al. Computing biological model parameters by parallel statistical

model checking. In IWBBIO 2015, LNCS, vol. 9044. Springer, 2015.
[36] T. Mancini, et al. SyLVaaS: System level formal verification as a service. In PDP 2015.

IEEE, 2015.
[37] T. Mancini, et al. User flexibility aware price policy synthesis for smart grids. In

DSD 2015. IEEE, 2015.
[38] T. Mancini, et al. Anytime system level verification via parallel random exhaustive

hardware in the loop simulation. Microprocessors and Microsystems, 41, 2016.
[39] T. Mancini, et al. SyLVaaS: System level formal verification as a service. Fundam

Inform, 149(1–2), 2016.
[40] T. Mancini, et al. On minimising the maximum expected verification time. Inf Proc

Lett, 122, 2017.
[41] T. Mancini, et al. Computing personalised treatments through in silico clinical trials.

A case study on downregulation in assisted reproduction. In RCRA 2018, CEUR
W.P., vol. 2271. CEUR, 2018.

[42] T. Mancini, et al. An efficient algorithm for network vulnerability analysis under
malicious attacks. In ISMIS 2018. Springer, 2018.

[43] T. Mancini, et al. Optimal fault-tolerant placement of relay nodes in a mission
critical wireless network. In RCRA 2018, CEUR W.P., vol. 2271. CEUR, 2018.

[44] T. Mancini, et al. Parallel statistical model checking for safety verification in smart
grids. In SmartGridComm 2018. IEEE, 2018.

[45] T. Mancini, et al. Any-horizon uniform random sampling and enumeration of
constrained scenarios for simulation-based formal verification. IEEE TSE, 2021.

[46] I. Melatti, et al. A two-layer near-optimal strategy for substation constraint man-
agement via home batteries. IEEE Trans Ind Elect, 69(8), 2022.

[47] V. Mnih, et al. Empirical bernstein stopping. In ICML 2008. Ass. Comp. Mach.,
2008.

[48] G. Norman, et al. Model checking for probabilistic timed automata. Form Meth Sys
Des, 43(2), 2013.

[49] A. Pappagallo, et al. Monte Carlo based Statistical Model Checking of Cyber-Physical
Systems: a Review. Inf, 11(12), 2020.

[50] S. Sebastio and A. Vandin. MultiVeStA: Statistical model checking for discrete event
simulators. In ValueTools 2013. ICST/ACM, 2013.

[51] K. Sen, et al. "statistical model checking of black-box probabilistic systems". In
CAV 2004, LNCS, vol. 3114. Springer, 2004.

[52] K. Sen, et al. On statistical model checking of stochastic systems. In CAV 2005,
LNCS, vol. 3576. Springer, 2005.

[53] S. Sinisi, et al. Complete populations of virtual patients for in silico clinical trials.
Bioinformatics, 36(22–23), 2020.

[54] S. Sinisi, et al. Optimal personalised treatment computation through in silico clinical
trials on patient digital twins. Fundam Inform, 174(3–4), 2020.

[55] S. Sinisi, et al. Reconciling interoperability with efficient verification and validation
within open source simulation environments. Simul Model Pract Theory, 109, 2021.

[56] E. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems
(2nd Ed.). Springer, 1998.

[57] D. Teutonico, et al. Generating virtual patients by multivariate and discrete re-
sampling techniques. Pharm Res, 32(10), 2015.

[58] E. Tronci, et al. Patient-specific models from inter-patient biological models and
clinical records. In FMCAD 2014. IEEE, 2014.

[59] H. Younes. Probabilistic verification for “black-box” systems. In CAV 2005, LNCS,
vol. 3576. Springer, 2005.

[60] H. Younes. Ymer: A statistical model checker. In CAV 2005, LNCS, vol. 3576.
Springer, 2005.

[61] H. Younes and R. Simmons. Probabilistic verification of discrete event systems using
acceptance sampling. In CAV 2002, LNCS, vol. 2404. Springer, 2002.

[62] L. Zhang. Modeling automotive cyber physical systems. In DCABES 2013. IEEE,
2013.

[63] P. Zuliani, et al. Bayesian statistical model checking with application to State-
flow/Simulink verification. Form Meth Sys Des, 43(2), 2013.

	1 Introduction
	2 Background
	2.1 Statistical model checking
	2.2 Verification problem

	3 CPSs Verification via Statistical Model Checking
	3.1 Univariate Approximation Algorithm AA
	3.2 Parallel implementation

	4 Case Study
	5 Results
	6 Conclusion

