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Abstract
In the last years, we have witnessed an unstoppable growth of data created, captured, copied, and

consumed globally by more and more devices. The demand for such an increasing amount of information

to be processed led to research towards higher computational power systems and specialized algorithms.

Among them, quantum computing is a promising paradigm based on quantum theory for performing

fast computations. Quantum algorithms are expected to surpass their classical counterparts in terms

of computational complexity for certain kinds of tasks, and machine learning is one of them, so the

subfield of Quantum Machine Learning is one of the most promising. In this work, we design a hybrid

quantum algorithm for k-Means. The main idea of our algorithm is to compute in a quantum way the

distance between pairs of records in the input dataset. We show that our quantum algorithm could be, in

principle, more efficient than the classical k-Means, yet obtain comparable clustering results.
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1. Introduction

Quantum Machine Learning (QML) is the branch of Quantum Computing (QC) that attempts to

adapt classical data mining and machine learning algorithms, or their expensive subroutines,

to run on a potential quantum computer. Indeed, the expectation is that such machines will

be commonly available for applications in the near future. Many QML algorithms have been

recently studied [1]. However, the translation of classical algorithms into their quantum

counterpart named “quantization” is not trivial and hides many difficulties. In this work, we

focus on the quantization of 𝑘-Means [2], which is one of the most famous algorithms used

for clustering. The 𝑘-Means clustering algorithm is an unsupervised learning algorithm, and

its goal is to find natural groups of elements in a data set. In particular, the elements inside a

group are more similar to the central element of the group than to the central elements of other

groups, according to a specific distance measure. Building a quantum version of this algorithm

means creating a quantum circuit that takes classical data as input and exploits quantum gates

to perform the computation, satisfying all the quantum mechanical constraints. Nowadays

quantum computers are in the noisy intermediate-scale quantum (NISQ) era[3]. This means that

today, quantum computers are prone to noises that generate errors in computation. This is
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known as the decoherence problem. Typically, the deeper the circuit, the more prone the output

is to errors that make it unreliable.

For this reason, this work presents a hybrid 𝑘-Means that exploits a quantum subroutine

to boost the distance computation between each record and each centroid while the overall

algorithm remains classical. This solution permits the mitigation of the decoherence problem in

this NISQ era. In our analysis, we use the classical 𝛿-𝑘-Means algorithm to provide a measure

of error for our hybrid 𝑘-Means that we call 𝑞-𝑘-Means algorithm. The experiments show that

our quantum algorithm could be, in principle, more efficient than its classical counterpart yet

obtain comparable clustering results.

The rest of the paper organizes as follows. Section 2 provides the related works, Section 3

sets up the stage by defining the notations, Section 4 describes the Quantum k-Means, Section 5

reports the experimental results, and eventually, Section 6 summarizes contributions.

2. Related Works

In general, the problem of quantum clustering can be addressed in several ways. Some studies

were inspired by quantum theory. For instance, the classical clustering method proposed in [4]

is based on physical intuition derived from quantum mechanics. In [5], the authors perform

clustering by exploiting a well-known reduction from clustering to the Maximum-Cut problem

that is then solved using a quantum algorithm for approximate combinatorial optimization.

In [6], the authors present an unsupervised quantum learning algorithm for 𝑘-Means clustering

based on adiabatic quantum computing [7].

The general idea for quantizing classical clustering algorithms is to substitute the most

expensive parts in the algorithm with more efficient quantum subroutines. For instance, in [8]

the fidelity distance measure is used for distance computation between each pair of states in the

dataset. The fidelity is efficiently estimated with a quantum circuit containing only a few gates

(two Hadamard gates and a Control-Swap). In this way, the algorithm can perform clustering

directly on quantum states. However, the paper lacks a discussion on how the algorithm could

deal with classical data.

As alternative approaches, full quantum routines for clustering have been proposed. In [9] two

subroutines based on Grover’s search algorithm [10] are used to accelerate classical clustering

methods. For the 𝑘-Means quantization, the authors use the subroutines in this way. First, the

total distance of each state to all other states of one cluster is computed with the help of an

oracle that calculates the distance between two quantum states. Then, another routine finds the

smallest value of this distance function in order to select a quantum state as the new centroid

for the cluster. Unfortunately, this approach cannot be used in practice because the oracle is not

described in detail.

Finally, in [11] it is proposed a quantum version of 𝑘-Means (called 𝑞-Means) that provides an

exponential speedup in the number of records of the dataset compared to the classical version.

Moreover, 𝑞-Means returns explicit classical descriptions of the final centroids. Although 𝑞-

Means looks promising from a practical point of view, the paper discussion is strictly theoretical.

The experiments are performed using a classical algorithm (𝛿-𝑘-Means) simulating 𝑞-Means,

instead of a real quantum version.



Algorithm 1: 𝛿-𝑘-Means

Input: D - input data, k - number of clusters

Output: 𝐿 - records to clusters assignment, C - centroids

1 𝐶 ← initCentroids(𝐷, 𝑘) ; // centroid initialization
2 while convergence is not achieved do
3 for �⃗� ∈ 𝐷 do // for each record
4 �⃗�← 𝑎𝑟𝑔𝑚𝑖𝑛(𝑑(�⃗�, �⃗�𝑗))∀�⃗�𝑗 ∈ 𝐶 ; // find nearest centroid
5 𝐿𝛿(�⃗�)← {�⃗�𝑝 : |𝑑2(�⃗�, �⃗�)− 𝑑2(�⃗�, �⃗�𝑝)| ≤ 𝛿} ; // find possible labels
6 𝑐𝑗 ← 𝑟𝑎𝑛𝑑(𝐿𝛿(�⃗�)) ; // pick a random centroid
7 𝐶𝑗 ← 𝐶𝑗 ∪ {�⃗�} ; // assign �⃗� to cluster 𝐶𝑗

8 𝐿(�⃗�)← 𝑗 ; // assign label 𝑗 to �⃗�

9 for 𝑗 ∈ [1, 𝑘] do // for each centroid
10 �⃗�𝑗 ← 1

|𝐶𝑗 |
∑︀

�⃗�∈𝐶𝑗
�⃗� ; // update cluster center �⃗�𝑗

11 return 𝐿,𝐶 ; // return assignments and centroids

Different from the literature, our work concentrates on practical problems arising when

implementing a quantum clustering algorithm, with particular attention to the encoding of

classical data.

3. Setting the stage

We keep our paper self-contained by summarizing the key concepts necessary to comprehend

our work. Given a dataset 𝐷 = {�⃗�1, . . . , �⃗�𝑀} of 𝑀 records where every record �⃗�𝑖 is a 𝑁 -

dimensional vector of numerical value, the goal of clustering is to assign each record to one out

of 𝑘 different clusters {𝐶1, . . . , 𝐶𝑘}, represented by centroids {�⃗�1, . . . , �⃗�𝑘} respectively, so that

similar records share the same assignment. The 𝑘-Means algorithm is one of the most famous

clusterings algorithms [12]. After randomly
1

choosing 𝑘 initial centroids, the algorithm consists

of two repeated steps until a certain convergence condition is met. The first step is the cluster
assignment step: every element in the dataset has to be assigned to its closest centroid according

to a specific distance measure. As distance, we consider the Eucledian distance that is defined as

𝑑 (�⃗�, �⃗�) =
√︁∑︀𝑁

𝑖=1 (𝑝𝑖 − 𝑞𝑖)
2
, where 𝑝 and 𝑞 are two 𝑁 -values vectors. The second step is the

centroids update step, where for every cluster we recompute, the new cluster center to be used

as a centroid for the next iteration. In this work, we concentrate on the cluster assignment step

whose time complexity is 𝒪(𝑘𝑀𝑁) where 𝑘 is the number of centroids, 𝑀 is the number of

records, and 𝑁 their dimension.

As already mentioned in Section 2, a quantum version of 𝑘-Means, called 𝑞-Means, is proposed

in [11]. The authors evaluate 𝑞-Means by means of 𝛿-𝑘-Means, a “quantum-approximation” of

𝑘-Means that simulates the quantum calculus that 𝑞-Means is supposed to do. More precisely,

𝛿-𝑘-Means simulates the classical 𝑘-Means algorithm as performed in a quantum environment.

1

We adopt the clever initialization proposed in [13].
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Figure 1: Quantum circuit for the Euclidean distance

Since a quantum algorithm can introduce errors due to decoherence and noise present in quantum

machines, 𝛿-𝑘-Means simulates such errors by introducing some noise in both steps of 𝑘-Means.

However, as discussed in Section 4, in the quantum version of 𝑘-Means we propose in this paper,

we keep the second step (i.e., centroids update) classical. For this reason, we will consider in the

experiments a slightly different version of 𝛿-𝑘-Means where we introduce the noise 𝛿 only in

the cluster assignment step.

In Algorithm 1, we show the pseudocode of the updated version of the considered 𝛿-𝑘-Means.

Let �⃗� be the centroid closest to the point �⃗�. Then, 𝛿-𝑘-Means defines the set of possible labels

𝐿𝛿(�⃗�) for �⃗� as follows:

𝐿𝛿(�⃗�) = {�⃗�𝑝 :
⃒⃒⃒
𝑑2(�⃗�, �⃗�)− 𝑑2(�⃗�𝑝, �⃗�)

⃒⃒⃒
≤ 𝛿}.

When 𝛿 = 0, 𝛿-𝑘-Means is equivalent to the standard 𝑘-Means since no uncertainty is included

and 𝐿𝛿(�⃗�) contains only the closest centroid. On the other hand, a high value of 𝛿 allows 𝛿-𝑘-

Means to include in 𝐿𝛿(�⃗�) not very close centroids, bringing more noise in the entire procedure.

Indeed, the assignment rule selects randomly a cluster label from the set 𝐿𝛿(�⃗�) (see line 5 in

Algorithm 1). In [11] it is proven that if the data are “well-cluserable” (see [11] for the detailed

definition) and the centroids are well separated, the 𝛿-𝑘-Means algorithm succeeds assigning

the right cluster to most of the points for a suitable value of 𝛿 depending on the separation of

the centroids.

4. Quantum k-Means

Classical information can be encoded in different ways into a quantum state. In [14], the

authors revisit several data encoding strategies and quantum distance algorithms. The process

of encoding input numerical features into the amplitude of a quantum system is called amplitude
encoding [15]. Amplitude encoding allows the design of quantum circuits that compute distances

between quantum states.

One distance measure commonly used in ML is the Euclidean distance [12]. We show here

a general circuit for computing a quantum Euclidean distance 𝑑(𝛿, 𝜑) between two general

quantum states |𝛿⟩, |𝜑⟩ encoded in a register 𝑠 via amplitude encoding [16]. To compute this

distance, we use an additional ancilla qubit 𝑎 entangled with the two states |𝛿⟩ and |𝜑⟩. This

can be accomplished by first applying an Hadamard gate on the ancilla 𝑎, and then by loading

in the register 𝑠 the two states |𝜓⟩ and |𝛿⟩ conditioned on the ancilla. Then, the initial state

|0⟩𝑎 |00 · · · 0⟩𝑠 evolves in
1√
2
(|0⟩𝑎 |𝛿⟩𝑠 + |1⟩𝑎 |𝜑⟩𝑠). Eventually, we apply a Hadamard gate
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Figure 2: QC: quantum Euclidean distance with FF-QRAM.

on ancilla 𝑎. The corresponding state becomes:
1
2

(︀
|0⟩𝑎 (|𝛿⟩𝑠 + |𝜑⟩𝑠) + |1⟩𝑎 (|𝛿⟩𝑠 − |𝜑⟩𝑠)

)︀
.

The probability of measuring the ancilla in the state |0⟩𝑎 is given by 𝑝𝑎 = 1
4‖𝛿 + 𝜑‖22 which

corresponds to 𝑝𝑎 = 1− 1
4‖𝛿−𝜑‖

2
2 = 1− 1

4𝑑(𝛿, 𝜑)
2
, since 𝛿 and 𝜑 are unit vectors. The overall

circuit computing the Euclidean distance between two states 𝛿 and 𝜑 is illustrated in Figure 1.

In the rest of this section, we propose our quantum version of 𝑘-Means. In particular, what we

want to “make quantum” is the computation of the distance between two records. This is similar

to what some previous works have proposed [8], but here we give a practical implementation

of the entire algorithm.

In order to efficiently load classical data in a suitable quantum state, we employ the FF-

QRAM algorithm [17]. In particular, we deal with 𝑁 -feature vectors, and we use the FF-QRAM

algorithm to amplitude encode each vector.

Once data have been loaded, we build a quantum circuit that computes the distance between

a single pair of vectors. In the 𝑘-Means context, we compute distances between every record

and every centroid in order to assign a cluster label to every record in the dataset. This can

be accomplished by using the quantum circuit shown in Figure 1 that computes the Euclidean

distance between two quantum states generated by the amplitude encoding technique.

Figure 2 illustrates the whole quantum circuit (QC). QC can compute the Euclidean distance

simultaneously between the features of two vectors. The �̂�-qubit register |𝑖⟩ is the index register

for the 𝑁 features of each vector. It consists of �̂� = ⌈log2𝑁⌉ qubits which control the rotation

of a qubit |𝑟⟩.
To get a proper estimate of the Euclidean distance, we need to repeat the execution of this

circuit a certain number of times 𝑡. In this way, we can estimate the Euclidean distance as

𝑑(𝜓, 𝜑) =

√︂
4− 4

(︁
#|0⟩𝑎
𝑡′

)︁
, where # |0⟩𝑎 is the number of times the ancilla qubit is measured

in the state |0⟩. Actually, also the FF-QRAM encoding procedure requires a post-selection on

the qubit |𝑟⟩ (see [17, 14] for more details). Thus, # |0⟩𝑎 is the number of times the outcome

for ancilla is 0 after having post-selected the result where qubit |𝑟⟩ was in 1. Notice that, here,

𝑡′ < 𝑡 is not the total number of repetitions, but the number of times the post-selection on |𝑟⟩ is

successful.

Algorithm 2 describes the pseudocode of the proposed procedure, 𝑞-𝑘-Means, for cluster

computation. We adopt 𝑘-Means++ [13] as centroid initialization strategy (line 1). Then, we



Algorithm 2: q-𝑘-Means

Input: 𝐷 - input data, 𝑘 - number of clusters, 𝑡 - number of quantum shots

Output: 𝐿 - records to clusters assignment, C - centroids

1 𝐶 ← initCentroids(𝐷, 𝑘) ; // centroid initialization
2 while centroids do not change do
3 for �⃗� ∈ 𝐷 do // for each record
4 𝑣 ←∞; // init distance
5 for 𝑗 ∈ [1, 𝑘] do // for each centroid
6 # |0⟩𝑎 ← QC(𝑡,�⃗�,�⃗�𝑗) ; // quantum circuit executed 𝑡 times

7 𝑑←
√︂

4− 4
(︁
#|0⟩𝑎
𝑡′

)︁
; // Euclidean distance estimation

8 if 𝑑 ≤ 𝑣 then // if closer to current centroid
9 𝑣 ← 𝑑; // update current distance

10 𝐶𝑗 ← 𝐶𝑗 ∪ {�⃗�} ; // assign �⃗� to cluster 𝐶𝑗

11 𝐿(�⃗�)← 𝑗 ; // assign label 𝑗 to �⃗�

12 for 𝑗 ∈ [1, 𝑘] do // for each centroid
13 �⃗�𝑗 ← 1

|𝐶𝑗 |
∑︀

�⃗�∈𝐶𝑗
�⃗� ; // update cluster center �⃗�𝑗

14 return 𝐿,𝐶 ; // return assignments and centroids

compute the quantum Euclidean distance between each record �⃗� and each centroid �⃗�𝑗 . In

particular, the quantum distance computation is repeated for each of the 𝑀𝑘 pairs of vectors,

where 𝑀 is the number of records in the dataset and 𝑘 is the number of centroids (lines 3-7).

Then, the algorithm assigns �⃗� to the cluster𝐶𝑗 such that the distance between �⃗� and the centroid

�⃗�𝑗 of the cluster 𝐶𝑗 is the minimum (lines 8-10). Eventually, each centroid �⃗�𝑗 is updated (lines

11-12). The output of 𝑞-𝑘-Means consists of a final cluster assignment 𝐿 and the corresponding

centroids 𝐶 .

Our hybrid approach improves the cluster assignment step with respect to the classical 𝑘-

Means by a factor 𝑁 if we do not consider the QRAM preparation. In particular, the overall

complexity of the cluster assignment step is 𝑂(𝑀𝑘), where 𝑀 is the number of records and 𝑘 is

the number of centroids, plus the cost of the QRAM preparation.

5. Experiments

In this section, we assess the effectiveness of the 𝑞-𝑘-Means algorithm
2
. We intend to evaluate

the capability of 𝑞-𝑘-Means in terms of clustering quality by simulating it on a number of

datasets. Since quantum computers currently available are not large enough to test 𝑞-𝑘-Means,

we exploit the qasm_simulator provided by qiskit
3
.

2

Python code at: https://github.com/AlessandroPoggiali/Qkmeans-ICTCS

3

Qiskit library: https://qiskit.org/

https://github.com/AlessandroPoggiali/Qkmeans-ICTCS
https://qiskit.org/


For an evaluation of the algorithm as much complete as possible, the parameters that we are

going to test follow:

• shots (𝑡): how many times we repeat the execution of a quantum circuit.

• sc_thresh: it rules the stopping condition of the algorithm. It is defined as the relative

tolerance with regards to the Frobenius norm of the difference in the cluster centers of

two consecutive iterations to declare convergence.

• max_iterations (max_ite): the maximum number of iterations the algorithm can per-

form.

If not differently specified, we tested 𝑞-𝑘-Means with the following parameters: max_ite: 10,

sc_thresh: 0.0001, and shots: 8192 on all four synthetic datasets.

In order to evaluate the algorithm performance and the cluster quality, our analysis considers

the following measures.

• n_ite (ite): the actual number of iterations 𝑞-𝑘-Means performs to converge.

• avg_similarity (sim): the concept of similarity is defined in terms of how accurately

𝑞-𝑘-Means assigns the right centroids to records with respect to the classical assignments.

The avg_similarity measure is basically the average similarity among all iterations of

the algorithm.

• silhouette (sil): the Silhouette Coefficient measures how an element is similar to its

cluster with respect to the other clusters.

• SSE [18]: it corresponds to the sum of the squared differences between each record and

its centroid.

• v_measure (vm) [19]: it measures the correctness of the clustering assignments with

respect to ground truth.

Dataset. For the 𝑞-𝑘-Means assessment, we consider two groups of datasets: the first

group of four synthetic datasets and two real datasets. The synthetic datasets come from

the clustering guide of scikit-learn4
. These datasets show the characteristics of different

clustering algorithms on datasets that are “interesting” but still in two dimensions. For these

datasets, we also have the ground truth (i.e., the actual clustering we want to obtain) so that we

can have an objective evaluation of the algorithm. They include: aniso, blobs, blobs2, and

moon (also known as noisymoon). While instead, the real datasets we take into consideration

are: iris, and diabetes. Regarding the real datasets, we have no ground truth. Thus, we have to

choose a suitable number of centroids 𝑘. As synthetic datasets, the real datasets are available

on scikit-learn.

Data Preprocessing. The essential data preprocessing required by 𝑞-𝑘-Means consists of

two steps: standardization and normalization. The standardization of the dataset has the effect

of having zero mean and unit variance among all samples. This is common practice in ML

4

https://scikit-learn.org/stable.

https://scikit-learn.org/stable


Figure 3: Clustering result with 1-norm preprocessing left, inf-norm right.

Table 1
𝑞-𝑘-Means results on blobs2 dataset.

Preprocessing ite sim sse sil vm

1-norm 8 99.62 177.18 0.857 0.970

inf-norm 7 99.65 422.23 0.865 0.983

to compensate for scaling effects and to ensure that the data does not only populate a small

subspace of the input space. In fact, input spaces in higher dimensions lead to indistinguishably

small distances between data points. The normalization applies row by row and allows us to

deal with unit length vectors. While the dataset standardization is always applied, we have

two different preprocessing techniques available: the normalization to unit length (1-norm) and

the inf-norm preprocessing, which is equivalent to dividing the entries of the vector by the

component of maximum modulus.

Finally, vector values are converted to suitable angles in order to encode them in the FF-

QRAM. Note that the ancilla post-selection probability for the quantum Euclidean distance is

always around 0.5 [15]. However, we can enhance the FF-QRAM post-selection probability

applying the inf-norm normalization [20].

Looking at the algorithm assessments, the execution with the inf-norm gives comparable

results with respect to the 1-norm (see Table 1). In this test, we executed 𝑞-𝑘-Means on blobs2

dataset using 1024 shots. The Silhouette score tells us that in the inf-norm case, we obtain

a better clustering, and also the v_measure tells us that the final assignment is closer to the

ground truth. Instead, the SSE in the inf-norm case is worse than in the 1-norm case. This

depends on the range of input data, and hence it does make sense only when comparing results

whereby input data have their range of values comparable. We report in Figure 3 the output in



Table 2
𝑞-𝑘-Means, 𝛿-𝑘-Means, and 𝑘-Means results on synthetic datasets.

𝑞-𝑘-Means 𝛿-𝑘-Means 𝑘-Means

ite sim sse sil vm 𝛿 ite sim sse sil vm ite sse sil vm

ANISO 10 96.6 2569.1 .64 .70 1.4 10 96.77 2279.2 .68 .76 6 2208.7 .72 .85

BLOBS 7 99.6 422.23 .86 .98 1.5 10 99.6 409.94 .86 .98 2 396.85 .87 .99

BLOBS2 10 97.6 2420.5 .70 .67 1.7 10 97.5 2353.4 .70 .67 3 2318.7 .71 .69

MOON 5 99.2 7185.8 .55 .39 4.1 10 99.2 7191.1 .55 .38 2 7152.1 .55 .37

Table 3
Confusion matrix 𝑘-Means vs 𝑞-𝑘-Means: the True Positive (TP) column report the percentage of sample

pairs whereby both clusterings group them together, the others column follow.

tp fp fn tn

ANISO 61.25% 3.78% 4.93% 30.04%
BLOBS 66.58% 0.13% 0.13% 33.16%
BLOBS2 62.35% 1.13% 1.03% 35.49%
MOON 49.17% 0.86% 0.86% 49.11%

the original space of the final clustering assignment. We observe that we get a more accurate

clustering in the second case, even though bad-clustered points are still present. Henceforth,

we adopt the inf-norm as the default preprocessing.

Results on Synthetic Datasets. Table 2 reports the evaluation measures observed for 𝑞-

𝑘-Means on synthetic datasets. The values show good performance on aniso, blobs, and

blobs2. In fact, the measures sil and vm highlight a good clustering output. While, in the moon

dataset, in spite of having a high similarity value, the vm returned is low. This probably happens

because the moon dataset, as it is generated, is not a well-clusterable dataset. In fact, it has no

spherical clusters hence algorithms like 𝑘-Means will not be able to identify the right shapes of

its clusters. Table 2 reports also the results obtained with 𝛿-𝑘-Means and 𝑘-Means. In particular,

𝑞-𝑘-Means produces a clustering with error 𝛿 when the 𝛿-𝑘-Means similarity is comparable

to the 𝑞-𝑘-Means similarity. A final consideration concerns the confusion matrices in Table 3,

where we report the percentages of True Positive (TP), False Positive (FP), False Negative (FN),
and True Negative (TN). We observe that 𝑘-Means and 𝑞-𝑘-Means typically output the same

results on the datasets blobs, blobs2, and moon. In fact, the value 𝐹𝑃 + 𝐹𝑁 in these datasets

is quite small. This does not hold for the aniso dataset where, instead, 𝐹𝑃 + 𝐹𝑁 = 8.71%.

Results on Real Datasets. With real datasets, we have no prior knowledge about the

clustering result we should achieve. In other words, the number of clusters 𝑘 has to be selected

properly in order to get good clusterization. A very common heuristic used in clustering to

determine the number of clusters in a dataset is the elbow method [12]. Our first test aims at

performing the elbow method with the 𝑘-Means and 𝑞-𝑘-Means algorithm separately on the

iris dataset. We repeat the execution of both algorithms by varying 𝑘 from 2 to 8. We obtain

the curves in Figure 4. A suitable value of 𝑘 for both algorithms is 3 because this is the point

where the SSE stops decreasing sharply. The comparison between the classical and the quantum



Figure 4: Elbow method: (left) on iris dataset with 𝑘-Means, (center) on iris dataset with 𝑞-𝑘-Means,

(right) on diabetes dataset with 𝑘-Means.

Table 4
𝑞-𝑘-Means vs 𝑘-Means on iris and diabetes.

iris diabetes

𝛿 ite sim sse sil 𝛿 ite sim sse sil

𝑘-Means - 4 - 565.50 0.51 - 7 - 1671.27 0.37

𝛿-𝑘-Means 3.20 10 95.20 582.25 0.49 1.95 10 87.35 1863.52 0.32

𝑞-𝑘-Means - 7 95.33 616.83 0.48 - 10 87.83 2147.90 0.20

algorithm with this configuration is reported in Table 4. We repeated the same experiment on

the diabetes dataset. Again, we select the right 𝑘 using the elbow method with 𝑘-Means, and

then we compare the result that 𝑞-𝑘-Means gives us for the same 𝑘. Figure 4 shows that a good

value for 𝑘 is 8 for this dataset. Hence, by executing the 𝑞-𝑘-Means algorithm with 𝑘 = 8, we

obtain the result in Table 4. The result shows that 𝑞-𝑘-Means performs not well compared to

𝛿-𝑘-Means and 𝑘-Means according to SIL measure. A possible explanation can be related to the

use of PCA to reduce the number of features from 10 to 4, which is necessary for executing the

algorithm in a reasonable amount of time, due to the technological limits. This makes records

belonging to different clusters too similar, and the number of shots was insufficient to estimate

a sufficiently precise Euclidean distance, which therefore affected the quality of the clustering.

Eventually, we observe that the SIL measures of 𝑘-Means and 𝑞-𝑘-Means on the iris dataset are

similar, while in the diabetes dataset, 𝑘-Means performs better than 𝑞-𝑘-Means.

𝑞-𝑘-Means onReal QuantumHardware. All tests reported up to now were carried out using

the qasm simulator, a simulator provided by qiskit which simulates quantum computation by

using classical hardware. Here, we show the best we can do with currently available quantum

computers. IBM offers cloud access
5

to some of their quantum computers, so it is possible

to delegate the execution of a quantum circuit to a real quantum machine. We had access to

quantum computers with no more than five qubits. For this reason, we must consider simple

instances of our 𝑞-𝑘-Means where no more than five qubits are necessary.

The first test considers 𝑞-𝑘-Means where we use three qubits: one qubit for the ancilla |𝑎⟩,
one for the register |𝑟⟩, and one for addressing 𝑁 = 2 features (i.e., |𝑖⟩). Instead of simulating

each of the 𝑀𝑘 quantum circuits locally, we first check the least busy quantum computer

5

https://quantum-computing.ibm.com/

https://quantum-computing.ibm.com/


Figure 5: blobs3 dataset. (left) Original data, (right) inf-norm processing

Table 5
𝑞-𝑘-Means: real hardware vs simulator.

ite sim sse sil vm

real hw 2 100 89.66 0.79 1

simulator 2 100 89.66 0.79 1

Figure 6: Clustering result on blobs3. (left) Real hardware, (right) Simulator.

available and send to it every circuit to be executed. This requires several steps, like waiting

on the queue of a quantum computer and receiving the result, so it introduces an overhead.

Furthermore, this communication overhead will be paid per pair of vectors, so it could highly

affect the overall performance of the algorithm, especially for big datasets. For this reason,

we took into account for this experiment a small dataset (blobs3) consisting of 𝑀 = 16 two

dimensional vectors, which form two well-distinguishable spherical clusters (Fig. 5). Notice

that the number of clusters is not involved in the quantum circuit preparation, but we chose

𝑘 = 2 to simplify the overall execution.

We compare the output of 𝑞-𝑘-Means executed using real quantum hardware with the output

of the algorithm executed by the simulator. In Table 5 we report this comparison, while in

Figure 6 we show the clustering obtained.



From the table, we can see that both clusterization were successful with respect to the ground

truth with the same number of iterations. However, to conclude, until a large-scale noise-free

quantum computer is available, testing complex quantum circuits on real quantum hardware

will be an unfeasible task.

6. Conclusion

We have proposed 𝑞-𝑘-Means, a hybrid approach for clustering classical data. The algo-

rithm implements a quantum subroutine to boost the cluster assignment step of the classical

𝑘-Means. In particular, this quantum subroutine computes the Euclidean distance between

two 𝑁 -dimensional vectors, i.e., a record and a cluster centroid. The complexity of this step

is 𝑂(𝑀𝑘), where 𝑀 and 𝑘 are the number of records and the number of centroids, respec-

tively. The experiments show that 𝑞-𝑘-Means could be in principle more efficient than classical

𝑘-Means, yet obtaining comparable clustering results. In this work, we exploited quantum

parallelism only to compute distances. Our future work is to design and analyze two variants

of 𝑞-𝑘-Means that leverage quantum parallelism to compute (i) the distances between a single

record and 𝑘 centroids simultaneously, and (ii) the distances between𝑀 records and 𝑘 centroids

simultaneously.
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