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Abstract

In recent work, non-regular streams have been defined corecursively, by representing them with finitary

equational systems built on top of various operators, besides the standard constructor. With finitary

equational systems based only on the stream constructor, one can use the free theory of regular (a.k.a.

rational) trees to get a sound and complete procedure to decide whether two streams are equal. However,

this is not the case if one allows other operators in equations, since the underlying equational theory

becomes non-trivial, hence equality of regular trees is too strong to guarantee termination of corecursive

functions defined even only with the constructor and tail operators. To overcome this problem, we

provide a weaker definition of equality between streams denoted by finitary equational systems built on

different stream operators, including tail operator and constructor, and prove its soundness.
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1. Introduction

In recent work [1, 2], we proposed a novel calculus of numeric streams based on the following

key features:

• Streams (infinite sequences) are represented with finitary equational systems built on

top of various operators, besides the standard constructor, including tail, interleaving

and pointwise binary arithmetic operators. Such systems are modeled as environments
mapping (finite sets of) stream variables to terms built on variables and the aforementioned

operators. For instance, the environment 𝜌 = {x ↦→ 1:2:x, y ↦→ 1:y, z ↦→ x[+]y},

where : is the stream constructor and [+] the pointwise addition, defines three infinite

streams, associated with x, y and z, respectively, which are the unique solution of the

system, namely, the stream alternating 1 and 2, the stream repeating 1, and that obtained

by pointwise addition of the formers, that is, alternating 2 and 3.

• Such equational systems are defined by recursive functions, such as

one_two() = 1:2:one_two()
repeat(n) = n:repeat(n)
incr(s) = s [+] repeat(1)
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• Function definitions do not have the standard inductive semantics. That is, their calls,

rather than leading to non-termination, return pairs (x, 𝜌) where x is a variable and 𝜌 an

environment, representing an equational system. For instance:

one_two() evaluates to (x, {x ↦→ 1:2:x})
repeat(1) evaluates to (y, {y ↦→ 1:y})
incr(one_two()) evaluates to (z, x ↦→ 1:2:x, y ↦→ 1:y, z ↦→ x[+]y})

This is achieved, despite the evaluation strategy is call-by-value, thanks to the fact that

cyclic calls are detected and stream operators are not evaluated.

This mechanism generalizes regular corecursion [3, 4, 5, 6], where the only stream operator

which can be used to build equational systems is the constructor, as in x ↦→ 1:2:x. In this

case, one can show that, under suitable assumptions on the equations, the solutions of the

systems correspond to the free theory of rational (a.k.a. regular) trees [7, 8], that is, finitely

branching trees with possibly infinite depth, but only finitely many subtrees; more concretely,

these correspond to possibly cyclic terms. Hence the only streams which can be represented in

this way are those cyclic, also called regular. Instead, in our generalized approach where other

operators can appear in the equational systems, some non-regular streams can be represented

as well, as shown by the function nat below which returns the stream of natural numbers,

represented by (x, {x ↦→ 0:(𝑥[+]y), y ↦→ 1:y}).
nat() = 0:(nat()[+] repeat(1))

Such an augmented expressive power comes at some price: (1) conditions on equational systems

are needed to ensure unique solutions and (2) equality on streams becomes more complex. While

previous work [1, 2] addressed issue (1), this paper focuses on the problem of equality between

non-regular streams. Indeed, for simplicity, in [1, 2] we considered syntactic equality, which is

trivially sound and decidable, but fails to identify, e.g., (x, {x ↦→ 1:x}) and (y, {y ↦→ 1:1:y}),
which denote the same stream. The streams that are solutions of these two equations can be

proved to be equal if one considers the corresponding regular trees; indeed, for regular trees a

decidable sound and complete procedure exists
1

to decide equality.

However, while the theory of regular trees is free, when one allows in the equational systems

operators which are not constructors, the underlying equational theory becomes non-trivial

and, hence, equality of regular trees is too strong; for instance, it fails to identify (x, {x ↦→ 1:x})
and (y, {x ↦→ 1:x, y ↦→ x^}) where _^ is the tail operator. This has a negative impact on cycle

detection, which is based on equality of function calls to avoid non termination: if a suitable

notion of equality is not adopted, then the augmented expressive power achieved with finite

representations of non-regular streams is partially lost. Indeed, some function calls may not

terminate since cycle detection fails.

After recalling the calculus in Sect. 2, in Sect. 3 we provide our definition of equality and prove

its soundness, in the sense that getting the 𝑖-th element of provably equal stream expressions

gives the same result. In Sect. 4 we show examples of equality checks, Sect. 5 provides an

alternative definition of equality, which ensures termination in the positive case by a cycle

detection mechanism, and in Sect. 6 we discuss further work.

1

See for instance, the support for cyclic terms in SWI-Prolog https://www.swi-prolog.org/pldoc/man?section=cyclic

https://www.swi-prolog.org/pldoc/man?section=cyclic


2. Stream Calculus

In this section we present the calculus and discuss its features. Fig. 1 shows the syntax.

fd :: = fd1 . . . fd𝑛 program

fd :: = f(x) = se function declaration

e :: = se | ne | be expression

se :: = x | if be then se1 else se2 | ne:se | se^ | se1 op se2 | f(e) stream expression

ne :: = x | se(ne) | ne1 op ne2 | 0 | 1 | 2 | ... numeric expression

be :: = x | true | false | ... boolean expression

op :: = [nop] | ‖ binary stream operator

nop :: = + | − | * | / arithmetic operation

Figure 1: Stream calculus: syntax

A program is a sequence of (mutually recursive) function declarations, for simplicity assumed

to only return streams. Stream expressions are variables, conditional expressions, expressions

built by stream operators, and function calls. We consider the following stream operators:

constructor (prepending a numeric element), tail (denoted by a caret), pointwise arithmetic

operations and the interleaving operator (‖), giving a stream whose elements are alternatively

those of the arguments. This latter operator is interesting because it cannot be derived from

the others; indeed, implementing the interleaving with just a recursive call involving the first

element and the tail of a stream would only work for cyclic streams. Numeric expressions

include the access to the 𝑖-th2
element of a stream. We use fd to denote a sequence fd1, . . . , fd𝑛,

with 𝑛 ≥ 0, of function declarations, and analogously for other sequences.
3

The operational semantics, given in Fig. 2, is based on two key ideas:

1. streams are represented with finitary equational systems built with the aforementioned

stream operators

2. evaluation keeps track of already considered calls to allow cycle detection

To obtain point (1), an equational system is modeled by an environment 𝜌 mapping a finite

set of variables into (open) stream values s, built on top of stream variables, numeric values and

the stream operators; consequently, the result of the evaluation of a stream expression is a pair

(s, 𝜌), similarly as done with capsules [9] to support cyclic references. Indeed, since a system of

equations defines a tuple of streams, we need to specify a value that identifies a specific stream.

For instance, (x, {x ↦→ n:x}) denotes the stream constantly equal to n.

To obtain point (2), evaluation has an additional parameter which is a call trace, a map from

function calls where arguments have been evaluated, that is, of shape f(v) (calls for short), into

variables.

Altogether, the semantic judgment has shape e, 𝜌, 𝜏 ⇓(v, 𝜌′), where e is the expression to be

evaluated, 𝜌 the current environment defining variables that can occur in e, 𝜏 the call trace, and

(v, 𝜌′) the result. The semantic judgments should be indexed by an underlying (fixed) program,

omitted for sake of simplicity. Rules use the following auxiliary definitions:

2

For simplicity, here indexing and numeric expressions coincide, even though indexes are expected to be natural

numbers, while values in streams can range over a larger numeric domain.

3

Hence, declarations and calls of constant functions are included.



c :: = f(v) (evaluated) call

v :: = s | n | b value

s :: = x | n:s | s^ | s1 op s2 (open) stream value

𝑖, n :: = 0 | 1 | 2 | ... index, numeric value

b :: = true | false boolean value

𝜏 :: = c1 ↦→ x1 . . . c𝑛 ↦→ x𝑛 (𝑛 ≥ 0) call trace

𝜌 :: = {x1 ↦→ s1 . . . x𝑛 ↦→ s𝑛} (𝑛 ≥ 0) environment

(val)

v, 𝜌, 𝜏 ⇓(v, 𝜌)

(if-t)

be, 𝜌, 𝜏 ⇓(true, 𝜌) se1, 𝜌, 𝜏 ⇓(s, 𝜌′)
if be then se1 else se2, 𝜌, 𝜏 ⇓(s, 𝜌′)

(if-f)

be, 𝜌, 𝜏 ⇓(false, 𝜌) se2, 𝜌, 𝜏 ⇓(s, 𝜌′)
if be then se1 else se2, 𝜌, 𝜏 ⇓(s, 𝜌′)

(cons)

ne, 𝜌, 𝜏 ⇓(n, 𝜌) se, 𝜌, 𝜏 ⇓(s, 𝜌′)
ne:se, 𝜌, 𝜏 ⇓(n:s, 𝜌′)

(tail)

se, 𝜌, 𝜏 ⇓(s, 𝜌′)
se^, 𝜌, 𝜏 ⇓(s^, 𝜌′)

(op)

se1, 𝜌, 𝜏 ⇓(s1, 𝜌1) se2, 𝜌, 𝜏 ⇓(s2, 𝜌2)
se1 op se2, 𝜌, 𝜏 ⇓(s1 op s2, 𝜌1 ⊔ 𝜌2)

(args)

e𝑖, 𝜌, 𝜏 ⇓(v𝑖, 𝜌𝑖) ∀𝑖 ∈ 1..𝑛 f(v), ̂︀𝜌, 𝜏 ⇓(s, 𝜌′)
f(e), 𝜌, 𝜏 ⇓(s, 𝜌′)

e = e1, . . . , e𝑛 not of shape v
v = v1, . . . , v𝑛̂︀𝜌 =

⨆︀
𝑖∈1..𝑛 𝜌𝑖

(invk)

se[v/x], 𝜌, 𝜏{c ↦→ x}⇓(s, 𝜌′)
c, 𝜌, 𝜏 ⇓(x, 𝜌′{x ↦→ s})

c ̸∈ dom(𝜏≈𝜌)
x fresh
fbody(f) = (x, se)

(corec)

c, 𝜌, 𝜏 ⇓(x, 𝜌)
𝜏≈𝜌(c) = x

(at)

se, 𝜌, 𝜏 ⇓(s, 𝜌′) ne, 𝜌, 𝜏 ⇓(𝑖, 𝜌)
se(ne), 𝜌, 𝜏 ⇓(n, 𝜌)

at𝜌′(s, 𝑖)=n

(at-var)

at𝜌(𝜌(x), 𝑖)=n′

at𝜌(x, 𝑖)=n′
(at-cons-0)

at𝜌(n:s, 0)=n
(at-cons-succ)

at𝜌(s, 𝑖− 1)=n′

at𝜌(n:s, 𝑖)=n′
𝑖 > 0

(at-tail)

at𝜌(s, 𝑖+ 1)=n
at𝜌(s^, 𝑖)=n

(at-nop)

at𝜌(s1, 𝑖)=n1 at𝜌(s2, 𝑖)=n2
at𝜌(s1 [nop] s2, 𝑖)=n1 nop n2

(at-‖-even)
at𝜌(s1, 𝑖)=n

at𝜌(s1 ‖ s2, 2𝑖)=n
(at-‖-odd)

at𝜌(s2, 𝑖)=n
at𝜌(s1 ‖ s2, 2𝑖+ 1)=n

Figure 2: Stream calculus: operational semantics



• 𝜌 ⊔ 𝜌′ is the union of two environments, which is well-defined if they have disjoint

domains; 𝜌{x ↦→ s} is the environment which gives s on x, coincides with 𝜌 elsewhere;

we use analogous notations for call traces.

• se[v/x] is obtained by parallel substitution of variables x with values v.

• fbody(f) returns the pair of the parameters and the body of the declaration of f, if any, in

the assumed program.

Moreover, rules for calls depend on an equality judgment v1 ≈𝜌 v2, which will be defined in

Sect. 3, stating that v1 and v2 are considered equal in the environment 𝜌. Indeed, look-up of a

call in the the call trace is performed modulo equality, that is:

• c ≈𝜌 c′ iff c = f(v1, . . . , v𝑛), c′ = f(v′1, . . . , v′𝑛) and v𝑖 ≈𝜌 v′𝑖 for all 𝑖 ∈ 1..𝑛

• 𝜏≈𝜌(c) = x if 𝜏(c′) = x, c′ ≈𝜌 c for some c′

• hence, c ̸∈ dom(𝜏≈𝜌) if there is no c′ ∈ dom(𝜏) s.t. c ≈𝜌 c′.

Rules for values and conditional are straightforward. In rules (cons), (tail) and (op), arguments

are evaluated, while the stream operator is applied without any further evaluation.

The rules for function call use a mechanism of cycle detection, similar to that in [6]. They are

given in a modular way. That is, evaluation of arguments is handled by a separate rule (args).

Rule (invk) is applied when a call is considered for the first time, as expressed by the first

side condition. The body is retrieved by the auxiliary function fbody, and evaluated in a call

trace where the call has been mapped into a fresh variable.

Rule (corec) is applied when a call is considered for the second time, as expressed by the side

condition 𝜏≈𝜌(c) = x, which means that, in the call trace, a variable was already associated with

some c′ considered equivalent to c; indeed, as already explained, cycle detection takes place up

to equality in the environment. At this point, the variable x is returned as result. However, there

is no associated value in the environment yet; in other words, the result (x, 𝜌) is open at this

point. This means that x is undefined until the environment is updated with the corresponding

value in rule (invk). However, x can be safely used as long as the evaluation does not require x
to be inspected; e.g., x can be safely passed as an argument to a function call.

For instance, if we consider f()=g() g()=1:f(), then the judgment f(), ∅, ∅⇓(x, 𝜌), with

𝜌 = {x ↦→ y, y ↦→ 1:x}, is derivable; however, while the final result (x, 𝜌) is closed, the

derivation contains also judgments with open results, as, e.g., f(), ∅, {f() ↦→ x, g() ↦→ y} ⇓
(x, ∅) and g(), ∅, {f() ↦→ x}⇓(y, {y ↦→ 1:x}).

Finally, rule (at) computes the 𝑖-th element of a stream expression. After evaluation of the

arguments, the numeric result is obtained by the auxiliary judgment at𝜌(s, 𝑖)=n, inductively

defined at the bottom of the figure.

If the stream value is a variable, rule (at-var), then the evaluation is propagated to the

associated stream value in the environment, if any. If, instead, the variable is free in the

environment, then the execution is stuck; an implementation should raise a runtime error

instead. Rules (at-‖-even) and (at-‖-odd) handle the interleaving operator. The first one is used

for even indexes, and propagates the evaluation to the left-hand side stream; analogously, for

odd indexes, the second rule is applied and the evaluation is propagated to the right-hand side

stream. The remaining rules are self-explanatory; for examples of derivations in this calculus,

we point the reader to [1, 2].



3. Equality of Streams

In this section, we consider the problem of the equality of values. As discussed in the Introduc-

tion, and shown in the operational semantics in Fig. 2, this issue is relevant not only to provide

an equality operator which can be used by the programmer, but also for cycle detection in calls.

To illustrate the second issue we show an example.

ones() = 1:ones()
incr_reg(s) = (s(0)+1) : incr_reg(s^)

Intuitively, the result of incr_reg(ones()) should be the stream consisting of infinite oc-

currences of number 2. However, it is easy to see that this is not the case if cycle detection is

based on mere syntactic equality. Indeed, if incr_reg is called on ones(), that is, on the result

(x, {x ↦→ 1:x}), then incr_reg is recursively called on (x^, {x ↦→ 1:x}) and cycle detection

fails because x and x^ are not syntactically equal, despite they denote the same stream. This

leads to non-termination, since rule (corec) will never be applied.

Again as anticipated in the Introduction, the first step towards a more expressive definition is

to consider equality in the free theory of regular terms, as in [6]. This can be done by a coinduc-

tive definition
4

which computes the unfolding of variables by looking up their associated values

in the environment. This allows us to identify results returned by ones() and altOnes(), where

altOnes() = 1:1:altOnes(). Indeed, in the environment of shape {x ↦→ 1:x, y ↦→ 1:1:y}
resulting from the evaluation, one can check by unfolding that the values associated with x and

y correspond to the same regular term. However, if one allows other operators in the equational

systems, then the equational theory is no longer free, hence equality of regular terms fails to

identify the results of ones() and ones()^ as in the example above.

In order to deal with the tail operator, our solution is based on the key idea that the equality

check performs a partial symbolic evaluation of the tail. For instance, with this solution the

example incr_reg(ones()) is correctly handled, since the symbolic evaluation of the tail of

(x, {x ↦→ 1:x}) returns (x, {x ↦→ 1:x}).
The equality check is formalized by the judgment s1 ≈𝜌 s2, coinductively defined in Fig. 3.

In rules (var-l) and (var-r), a variable defined in the environment is equal to a stream value if

the same holds for its associated stream value. In rule (var), a variable is equal to itself. In rule

(cons), prepending the same element to equal streams gives equal streams. Analogously, in rule

(tail-tail), the tails of two equal streams are equal. In rule (op), two streams defined using the

same binary operation are equal if their arguments are respectively equal.

The most interesting rules are those handling the case when one of the two sides of the

equality is of shape s^. Indeed, in such cases an attempt is made at computing (a stream value

equal to) the tail of s, through the auxiliary judgment Tail𝜌(s)=s′ defined at the bottom of the

figure.
5

Function Tail𝜌 is inductively defined, and the base case is the constructor, rule (tail-

cons), where the result is simply the tail stream. In the other cases, the function is propagated as

expected. In particular, in rule (tail), to obtain the result we need two subsequent applications

of Tail𝜌, the former getting the tail of the argument. Note also, in rule (‖), that, given a stream

4

As further discussed at the end of this section, for regular terms the coinductive definition can be turned into an

equivalent inductive and algorithmic one.

5

Note the difference between this judgment and the notation s^ which is part of the syntax of streams (Fig. 1).



s :: = x | n:s | s^ | s1 op s2 (open) stream value

op :: = [nop] | ‖ binary stream operator

𝜌 :: = x1 ↦→ s1 . . . x𝑛 ↦→ s𝑛 (𝑛≥0) environment

(var-l)

𝜌(x) ≈𝜌 s
x ≈𝜌 s

(var-r)

s ≈𝜌 𝜌(x)
s ≈𝜌 x

(var)

x ≈𝜌 x
(cons)

s1 ≈𝜌 s2
n:s1 ≈𝜌 n:s2

(tail-tail)

s1 ≈𝜌 s2
s1^ ≈𝜌 s2^

(op)

s1 ≈𝜌 s′1 s2 ≈𝜌 s′2
s1 op s2 ≈𝜌 s′1 op s

′
2

(tail-l)

s′ ≈𝜌 s2
s1^ ≈𝜌 s2

Tail𝜌(s1)=s′ (tail-r)

s1 ≈𝜌 s′

s1 ≈𝜌 s2^
Tail𝜌(s2)=s′

(tail-cons)

Tail𝜌(n : s)=s
(var)

Tail𝜌(𝜌(x))=s
Tail𝜌(x)=s

(tail)

Tail𝜌(s)=s′ Tail𝜌(s′)=s′′

Tail𝜌(s^)=s′′

(nop)

Tail𝜌(s1)=s′1 Tail𝜌(s2)=s′2
Tail𝜌(s1[nop]s2)=s′1[nop]s

′
2

(‖)
Tail𝜌(s1)=s′1

Tail𝜌(s1 ‖ s2)=s2 ‖ s′1

Figure 3: Equality check

whose elements are alternatively those of the arguments, the elements of the tail are alternatively

those of the second argument and the tail of the first.

To explain what does it mean that the definition of the judgment s1 ≈𝜌 s2 in Fig. 3 is

coinductive, we briefly recall some notions on inference systems [10, 11, 12]. An inference
system is a set of rules of shape

j1,...,j𝑛
j where the premises j1, . . . , j𝑛 and the consequence j

are elements of a given set of judgments. A proof tree for a judgment j is a tree whose nodes

are (labelled with) judgments where the root is (labelled with) j and, for each node (labeled)

j ′ and (labels of the) children j1, . . . , j𝑛, there is a rule
j1,...,j𝑛

j ′ . Then, the set of the judgments

inductively defined are those with a finite proof tree, whereas the set of judgments coinductively
defined are those with an either finite or infinite proof tree. In our case, the coinductive

definition is the most natural and abstract for infinite objects such as streams, and is convenient

for the soundness proof. It is possible to provide an alternative inductive definition by following

the standard technique, adopted in co-SLD resolution [13, 14] and proved sound for an arbitrary

inference system in [5], of adding already considered judgments as coinductive hypotheses. Such

an inductive definition is effective, meaning that there is a procedure which decides whether

equality between two regular terms is derivable or not, thanks to the assumption that regular

terms can only have a finite set of sub-terms. In our case, this leads to a judgment 𝜀 ⊢ s1 ≈𝜌 s2,

reported in Sect. 5, which keeps a trace 𝜀 of the already considered pairs. This inductive

definition provides a first step towards an algorithm, as we will discuss in the Conclusion.

We now prove the soundness of the equality check. That is, if we derive that two streams

are equal, then they are equal in the sense that access to an arbitrary index will give the same

result. Soundness of the equality check (Theorem 3.2) relies on soundness of the Tail judgment

(Theorem 3.1). To the aim of the proof of Theorem 3.2, we introduce the notation at𝜌(s, 𝑖+1)
𝑘
=n,

meaning that the proof tree of at𝜌(s, 𝑖+ 1)=n has depth 𝑘.



Theorem 3.1. If Tail𝜌(s)=s′ holds, then, for all 𝑖, 𝑘≥0, at𝜌(s, 𝑖+ 1)
𝑘
=n implies at𝜌(s′, 𝑖)

𝑘′
=n for

some 𝑘′≤𝑘.

Proof. By induction on the rules defining Tail𝜌(s)=s′.

(tail-cons) This is an axiom with conclusion Tail𝜌(n:s)=s. We have to show that, for all 𝑖≥0,

at𝜌(n:s, 𝑖+ 1)
𝑘
=n implies at𝜌(s, 𝑖)

𝑘′
=n with 𝑘′≤𝑘, and this is true since at𝜌(n:s, 𝑖+1)

𝑘
=n

is necessarily derived from at𝜌(s, 𝑖)
𝑘−1
= n by rule (at-cons-succ).

(var) Tail𝜌(𝜌(x))=s is the premise and Tail𝜌(x)=s the conclusion. We have to show that, for all

𝑖≥0, at𝜌(x, 𝑖+ 1)
𝑘
=n implies at𝜌(s, 𝑖)

𝑘′
=n with 𝑘′≤𝑘. Since at𝜌(x, 𝑖+ 1)

𝑘
=n is necessarily

derived from at𝜌(𝜌(x), 𝑖+ 1)
𝑘−1
= n by rule (at-var), by inductive hypothesis we have

at𝜌(s, 𝑖)
𝑘′
=n with 𝑘′≤𝑘 − 1<𝑘.

(tail) Tail𝜌(s)=s′,Tail𝜌(s′)=s′′ are the premises, and Tail𝜌(s^)=s′′ the conclusion. We have to

show that, for all 𝑖≥0, at𝜌(s^, 𝑖+1)
𝑘
=n implies at𝜌(s′′, 𝑖)

𝑘′′
=n with 𝑘′′≤𝑘. Since at𝜌(s^, 𝑖+

1)
𝑘
=n is necessarily derived from at𝜌(s, 𝑖+2)

𝑘−1
= n by rule (at-tail), by inductive hypothesis

on the first premise we have at𝜌(s′, 𝑖+ 1)
𝑘′
=n, with 𝑘′≤𝑘 − 1<𝑘. Moreover, by inductive

hypothesis on the second premise, we have at𝜌(s′′, 𝑖)
𝑘′′
=n, with 𝑘′′≤𝑘′≤𝑘 − 1<𝑘.

(nop) Tail𝜌(s1)=s′1,Tail𝜌(s2)=s′2 are the premises, and Tail𝜌(s1[nop]s2)=s′1[nop]s′2 the con-

clusion. We have to show that, for all 𝑖≥0, at𝜌(s1[nop]s2, 𝑖+ 1)
𝑘
=n implies

at𝜌(s′1[nop]s′2, 𝑖)
𝑘′
=n with 𝑘′≤𝑘. Since at𝜌(s1[nop]s2, 𝑖+ 1)

𝑘
=n is necessarily derived

from at𝜌(s1, 𝑖 + 1)
𝑘−1
= n1 and at𝜌(s2, 𝑖 + 1)

𝑘−1
= n2, with n = n1 nop n2, by rule (at-

nop), by inductive hypothesis on the first and second premise we have at𝜌(s′1, 𝑖)
𝑘1=n1

and at𝜌(s′2, 𝑖)
𝑘2=n2 with 𝑘1, 𝑘2≤𝑘 − 1, respectively. Hence, by rule (at-nop), we have

at𝜌(s′1[nop]s′2, 𝑖)
𝑘′
=n1 nop n2 = n, with 𝑘′ = max(𝑘1, 𝑘2) + 1≤𝑘 − 1 + 1 = 𝑘.

(‖) Tail𝜌(s1)=s′1 is the premise and Tail𝜌(s1 ‖ s2)=s2 ‖ s′1 the conclusion. We have to show that,

for all 𝑖≥0, at𝜌(s1 ‖ s2, 𝑖+1)
𝑘
=n implies at𝜌(s2 ‖ s′1, 𝑖)

𝑘′
=n with 𝑘′≤𝑘. The proof proceeds

by case analysis on the parity of 𝑖:

𝑖 even: at𝜌(s1 ‖ s2, 𝑖+1)
𝑘
=n is necessarily derived from at𝜌(s2, 𝑖

2)
𝑘−1
= n by rule (at-‖-odd);

hence, by rule (at-‖-even) we have at𝜌(s2 ‖ s′1, 𝑖)
𝑘′
=n with 𝑘′ = 𝑘.

𝑖 odd: at𝜌(s1 ‖ s2, 𝑖 + 1)
𝑘
=n is necessarily derived from at𝜌(s1, 𝑖+1

2 )
𝑘−1
= n by rule (at-‖-

even); that is, at𝜌(s1, 𝑖−1
2 + 1)

𝑘−1
= n, hence, by inductive hypothesis, at𝜌(s′1,

𝑖−1
2 )

𝑘′′
=n with

𝑘′′≤𝑘 − 1. Finally, by rule (at-‖-odd) we have at𝜌(s2 ‖ s′1, 𝑖)
𝑘′
=n with 𝑘′ = 𝑘′′ + 1≤𝑘.

Theorem 3.2. For all 𝑖≥0, if at𝜌(s, 𝑖)=n, at𝜌(s′, 𝑖)=n′, and s ≈𝜌 s′, then n = n′.



Proof. Assume that at𝜌(s, 𝑖)
𝑘
=n, at𝜌(s′, 𝑖)

𝑘′
=n′. The proof is by Noetherian induction on the pairs

(𝑘, 𝑘′), with the componentwise order, that is, (𝑘1, 𝑘2)≤(𝑘′1, 𝑘
′
2) iff 𝑘1≤𝑘′1 and 𝑘2≤𝑘′2.

Base We consider the pair (0, 0), that is, the case when the two judgments are derived by axiom

(at-cons-0), hence, for 𝑖 = 0. We have at𝜌(n:s, 0)=n, and at𝜌(n′:s′, 0)=n′. Moreover,

we have n:s ≈𝜌 n′:s′, which has been necessarily derived by rule (cons), hence n=n′.

Inductive step We consider pairs (𝑘, 𝑘′) where either 𝑘>0 or 𝑘′>0, and proceed by case

analysis on the (last) rule applied to derive the judgment s ≈𝜌 s′.

(var-l) We have x ≈𝜌 s and 𝜌(x) ≈𝜌 s. Moreover, we have at𝜌(x, 𝑖)
𝑘
=n, at𝜌(s, 𝑖)

𝑘′
=n′

and, since the former judgment has been necessarily derived by rule (at-var),

at𝜌(𝜌(x), 𝑖)
𝑘−1
= n. We apply the inductive hypothesis and get the thesis.

(var-r) This case is symmetrical to the one above.

(var) We have x ≈𝜌 x. We conclude by the fact that the judgment at𝜌(s, 𝑖)=n is deter-

ministic, therefore at𝜌(x, 𝑖)=n1 and at𝜌(x, 𝑖)=n2 implies n1 = n2.

(cons) We have 𝑚:s ≈𝜌 𝑚′:s′ and s ≈𝜌 s′. Moreover, we have at𝜌(𝑚:s, 𝑖) 𝑘=n,

at𝜌(𝑚
′:s′, 𝑖)𝑘

′
=n′ and, since 𝑘>0 or 𝑘′>0, we have 𝑖>0 and these judgments

have been necessarily derived by rule (at-cons-succ); therefore, at𝜌(s, 𝑖− 1)
𝑘−1
= n,

at𝜌(s′, 𝑖− 1)
𝑘′−1
= n′. We apply the inductive hypothesis and get the thesis.

(tail-tail) We have s^≈𝜌s′^ and s≈𝜌s′. Moreover, we have at𝜌(s^, 𝑖)
𝑘
=n, at𝜌(s′^, 𝑖)

𝑘′
=n′

and, since these judgments have been necessarily derived by rule (at-tail),

at𝜌(s, 𝑖+ 1)
𝑘−1
= n, and at𝜌(s′, 𝑖+ 1)

𝑘′−1
= n′. We apply the inductive hypothesis and

get the thesis.

(op) By cases on the binary operator op.

(nop): We have s1 [nop] s2 ≈𝜌 s′1 [nop] s′2, s1 ≈𝜌 s′1 and s2 ≈𝜌 s′2. Moreover, we have

at𝜌(s1 [nop] s2, 𝑖)
𝑘
=n, at𝜌(s′1 [nop] s′2, 𝑖)

𝑘′
=n′ and, since these judgments have been

necessarily derived by rule (at-nop), at𝜌(s1, 𝑖)
𝑘−1
= 𝑙, at𝜌(s2, 𝑖)

𝑘−1
= 𝑚, at𝜌(s′1, 𝑖)

𝑘′−1
= 𝑙′,

at𝜌(s′2, 𝑖)
𝑘′−1
= 𝑚′

, n = 𝑙 nop 𝑚, n′ = 𝑙′ nop 𝑚′
. We apply the inductive hypothesis

and get the thesis.

(‖): By cases on the parity of 𝑖.

𝑖 even: We have s1 ‖ s2 ≈𝜌 s′1 ‖ s′2 and s1 ≈𝜌 s′1. Moreover, we have at𝜌(s1 ‖ s2, 𝑖)
𝑘
=n,

at𝜌(s′1 ‖ s′2, 𝑖)
𝑘′
=n′ and, since these judgments have been necessarily derived by rule

(at-‖-even), at𝜌(s1, 𝑖
2)

𝑘−1
= 𝑛, at𝜌(s′1,

𝑖
2)

𝑘′−1
= 𝑛′

. We apply the inductive hypothesis

and get the thesis.

𝑖 odd: This case is symmetrical to the one above.

(tail-r) We have s1≈𝜌s2^ and s1≈𝜌s′, with Tail𝜌(s2)=s′. Moreover, we have at𝜌(s1, 𝑖)
𝑘
=n,

at𝜌(s2^, 𝑖)
𝑘′
=n′ and, since the latter judgment has been necessarily derived by rule



(at-tail), at𝜌(s2, 𝑖 + 1)
𝑘′−1
= n′. From Theorem 3.1 we have that at𝜌(s′, 𝑖)

𝑘′′
=n′ with

𝑘′′≤𝑘′ − 1<𝑘′. We apply the inductive hypothesis and get the thesis.

(tail-l) This case is symmetrical to the one above.

4. Examples

We illustrate how the equality check works by some examples. The first one is shown in Fig. 4.

.

.

.

x ≈𝜌 𝑦^^
(var-l)

1 : x ≈𝜌 1 : 𝑦^^
(cons)

Tail𝜌(y^)=1 : 𝑦^^

1 : x ≈𝜌 𝑦^^
(tail-r)

x ≈𝜌 𝑦^^
(var-l)

Tail𝜌(2 : 3 : 1 : 𝑦^^)=3 : 1 : 𝑦^^
(cons)

Tail𝜌(y)=3 : 1 : 𝑦^^
(var)

Tail𝜌(3 : 1 : 𝑦^^)=1 : 𝑦^^
(cons)

Tail𝜌(y^)=1 : 𝑦^^
(tail)

Figure 4: x ≈𝜌 𝑦^^ with 𝜌 = {x ↦→ 1:x, y ↦→ 2 : 3 : 1 : y^^}

In this proof tree, rule (var-l) is applied first, and then rule (tail-r); we could have applied

the rules in the other order as well. The proof tree of Tail𝜌(y^)=1 : 𝑦^^ is shown in the bottom

part of the figure. The result is computed by applying twice the tail operator, and unfolding y.

Then, in the main proof tree, rule (cons) is applied since the first element of both streams is 1. It

is easy to see that there is a regular infinite proof tree, denoted by the dots.

In the second one, in Fig. 5, we show how the equality check deals with non-regular streams.

.

.

.

x ≈𝜌 y (var-l)

.

.

.

x ≈𝜌 y (var-l)

x [+] x ≈𝜌 y [+] y
(op)

Tail𝜌(1 : 𝑦)=y
(tail-cons)

Tail𝜌((1 : 𝑦) [+] (1 : 𝑦))=y [+] y
(tail-nop)

x [+] x ≈𝜌 ((1 : 𝑦) [+] (1 : 𝑦))^
(tail-r)

1:(x [+] x) ≈𝜌 1 : ((1 : 𝑦) [+] (1 : 𝑦))^
(cons)

1:(x [+] x) ≈𝜌 y
(var-r)

x ≈𝜌 y (var-l)

Figure 5: x ≈𝜌 y with 𝜌 = {x ↦→ 1:(x [+] x), y ↦→ 1 : ((1 : 𝑦) [+] (1 : 𝑦))^}



Here, both x and y denote the stream of all powers of 2. The derivation starts with the

unfolding of both variables, followed by the application of rule (cons). Then, the tail of the

second component is computed, with the proof tree shown as additional premise in rule (tail-r).

After that, the derivation continues by distributing the equality check to the substreams x and

y. It is easy to see that there is a regular infinite proof tree, denoted by the dots.

5. Equality Check with Trace

We provide an alternative definition of equality, which ensures termination in the positive case

by a cycle detection mechanism. The judgment 𝜀 ⊢ s1 ≈𝜌 s2, defined in Fig. 6, means that s1
and s2 are equal in 𝜌 under the equality trace 𝜀, containing coinductive hypotheses as pairs

of already considered stream values. The trace is abstractly considered as a set, so order and

repetitions are immaterial.

s :: = x | n:s | s^ | s1 op s2 (open) stream value

op :: = [nop] | ‖ binary stream operator

𝜌 :: = {x1 ↦→ s1 . . . x𝑛 ↦→ s𝑛} (𝑛 ≥ 0) environment

𝜀 :: = (s1, s′1) . . . (s𝑛, s
′
𝑛) (𝑛 ≥ 0) equality trace

(var-l)

𝜀 · (x, s) ⊢ 𝜌(x) ≈𝜌 s
𝜀 ⊢ x ≈𝜌 s

(var-r)

𝜀 · (s, x) ⊢ s ≈𝜌 𝜌(x)
𝜀 ⊢ s ≈𝜌 x

(var)

𝜀 ⊢ x ≈𝜌 x
(cons)

𝜀 ⊢ s1 ≈𝜌 s2
𝜀 ⊢ n:s1 ≈𝜌 n:s2

(tail-tail)

𝜀 ⊢ s1 ≈𝜌 s2
𝜀 ⊢ s1^ ≈𝜌 s2^

(tail-l)

𝜀 ⊢ s′ ≈𝜌 s2
𝜀 ⊢ s1^ ≈𝜌 s2

Tail𝜌(s1)=s′ (tail-r)

𝜀 ⊢ s1 ≈𝜌 s′

𝜀 ⊢ s1 ≈𝜌 s2^
Tail𝜌(s2)=s′

(op)

𝜀 ⊢ s1 ≈𝜌 s′1 𝜀 ⊢ s2 ≈𝜌 s′2
𝜀 ⊢ s1 op s2 ≈𝜌 s′1 op s

′
2

(corec)

𝜀 ⊢ s1 ≈𝜌 s2
(s1, s2) ∈ 𝜀

Figure 6: Equality of streams with equality trace

The rules are analogous to those in Fig. 3, except that in (var-l) and (var-r) considered pairs

are added as coinductive hypotheses in the trace, and rule (corec) states that two stream values

are equal if the same pair is contained in the trace of coinductive hypotheses, that is, it has

been already considered. The function Tail𝜌 is that defined in Fig. 3. Whereas the judgment

s1 ≈𝜌 s2 in Fig. 3 is defined coinductively, the judgment 𝜀 ⊢ s1 ≈𝜌 s2 is defined inductively. The

soundness of ∅ ⊢ s1 ≈𝜌 s2 with respect to s1 ≈𝜌 s2 follows from a general result proved in [5].

As an example, in Fig. 7 we show the derivation of the judgment with the equality trace for

the first example of Sect. 4. The proof tree is exactly analogous to that in Fig. 4, with only two

differences: a new pair is added to the equality trace 𝜀 when rules (var-l) and (var-r) are applied,

while rule (corec) is used to end the derivation, as soon as an already processed pair is found.



{(x, 𝑦^^)} ⊢ x ≈𝜌 𝑦^^
(corec)

{(x, 𝑦^^)} ⊢ 1 : x ≈𝜌 1 : 𝑦^^
(cons)

Tail𝜌(y^)=1 : 𝑦^^

{(x, 𝑦^^)} ⊢ 1 : x ≈𝜌 𝑦^^
(tail-r)

∅ ⊢ x ≈𝜌 𝑦^^
(var-l)

Figure 7: ∅ ⊢ x ≈𝜌 𝑦^^ with 𝜌 = {x ↦→ 1:x, y ↦→ 2 : 3 : 1 : y^^}

6. Conclusion

We provided an operational characterization of equality between streams which goes beyond

equality of regular terms, by performing a partial symbolic evaluation of the tail operator.

Such operational characterization has been described by a coinductive inference system, that

is, infinite derivations are allowed. This description is very natural and abstract, and convenient

for the soundness proof, but clearly non-algorithmic. Thus, the first objective for future work is

to provide a sound algorithm to check equality. To this end, the first step, shown in Sect. 5, is to

convert the coinductive definition into an inductive one, where derivations are finite. This has

been done by the standard technique, adopted in co-SLD resolution [13, 14] and proved sound

for an arbitrary inference system in [5], of adding already considered judgments as coinductive
hypotheses. Thanks to this general result, we know that, if we have a finite derivation for

∅ ⊢ s1 ≈𝜌 s2, then we have a possibly infinite, but regular derivation tree for s1 ≈𝜌 s2 as well,

hence by Theorem 3.2 we can conclude that the inductive definition of equality is sound.

The following further steps are required to actually get an algorithm sound and complete

w.r.t. the coinductive definition in Fig. 3, that is, a procedure which always terminates and

returns a positive answer iff s1 ≈𝜌 s2 is derivable:

1. a proof that there exists a sound and complete algorithm for the judgment Tail𝜌(s)=s′;
2. a proof that derivation trees for s1 ≈𝜌 s2 are all regular, that is, the set of checked pairs is

finite. This is not so simple as happens for equality of regular terms, because checking

that s1 ≈𝜌 s2 is derivable needs inspection of not only the sub-terms of s1 and s2, but also

the possibly new terms generated by the symbolic computation of tail.

Another issue for further research is completeness; indeed, the characterization proposed in

this work fails to capture some laws that hold in the equational theory defined by index access.

For instance, if 𝜌 = {x ↦→ 0 : 𝑥}, then, for all 𝑖 ≥ 0, at𝜌(x, 𝑖)=at𝜌(x [+] x, 𝑖)=at𝜌(x ‖ x, 𝑖)=0
holds, while x ≈𝜌 x [+] x and x ≈𝜌 x ‖ x are not derivable according to the definition in Fig. 3.

Hence, a long-term goal is to investigate more expressive definitions of equality, and decidability

of equality for (fragments of) the stream calculus.
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