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Abstract
We present a weakening of the completeness property in abstract interpretation. Completeness of a
static analyzer represents the ideal situation where no false alarms are produced when answering queries
on program behavior. Completeness, however, is a very rare condition to be satisfied in practice. We
introduce the notion of partial completeness as a weakening of precision, namely, the abstract interpreter
may produce a bounded number of false alarms, and then we show the key recursive properties of
the class of programs for which an abstract interpreter is partially complete with a given bound of
imprecision.
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1. Introduction

Abstract interpretation [2, 3, 4] is a general theory for the design of sound-by-construction
program analysis tools. The abstract interpretation of a program 𝑃 ∈ Programs1, denoted by
J𝑃 K𝐴, consists of an abstract domain 𝐴, often specified by a pair of abstraction 𝛼𝐴 : 𝐶 → 𝐴
and concretization 𝛾𝐴 : 𝐴 → 𝐶 monotone maps, abstracting some concrete properties of
interest 𝐶 and an interpreter J𝑃 K𝐴 : 𝐴 → 𝐴, designed for the language used to specify 𝑃
and on the abstract domain 𝐴. The structure of the abstract domain is given by a partial
order ≤𝐴 that expresses the relative precision of its objects: If 𝑎, 𝑏 ∈ 𝐴 and 𝑎 ≤𝐴 𝑏 then 𝑏
over approximates 𝑎. We are interested in inferring program invariants, hence our concrete
semantics J𝑃 K : ℘(S) → ℘(S) will be the standard collecting denotational semantics (e.g.,
see [5, Chapter 5] or [6, Chapter 3.5]) operating on a domain of sets of memory of states ℘(S).
Soundness means that if program 𝑃 satisfies the condition J𝑃 K𝐴𝛼𝐴(𝑆) ≤𝐴 𝑄 for the input
𝑆 ∈ ℘(S) and output specification 𝑄 ∈ 𝐴, then J𝑃 K𝑆 ⊆ 𝛾𝐴(𝑄). When the converse holds we
have precision, or completeness of the abstract interpreter, and therefore of the analysis. This
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represents the ideal situation where no false alarms are produced. Completeness, however, is a
very rare condition to be satisfied in practice, therefore, static program analysis needs to, in
some way, deal with incompleteness. Moreover, the experience tells us that there are results that
are “more incomplete”, i.e., less precise, than others, and this depends upon the way the program
is written and the way the abstract interpreter is implemented [7]. As an example, consider the
following program

𝑃 ::= while 𝑥 > 1 do 𝑥 := 𝑥− 2

if 𝑥 = 1 then 𝑥 := 10

if 𝑥 = 2 then 𝑥 := 100

and the set of values {2, 4}. Clearly J𝑃 K{2, 4} = {0}. However, when 𝑃 is analyzed by an
abstract interpreter J𝑃 KInt (e.g., see [6, Chapter 4.5]) which considers abstract arithmetical
operators as the best correct approximation (bca for short), defined on the abstract domain of
intervals Int≜ {[𝑎, 𝑏] | 𝑎, 𝑏 ∈ Z∪{−∞,+∞}, 𝑎 ≤ 𝑏}∪{⊥Int} [2] or defined as the bca for Int,

namely, J𝑃 KIntbca ≜ 𝛼Int ∘ J𝑃 K ∘ 𝛾Int ∘𝛼Int, then it may exhibit different levels of imprecision. Recall
that Int abstracts sets of integer values and it contains all intervals [𝑎, 𝑏] such that 𝑎, 𝑏 ∈ Z±∞

where Z±∞ ≜ Z ∪ {−∞,+∞} , and 𝑎 ≤ 𝑏. So, for the input of 𝑃 we get 𝛼Int({2, 4}) = [2, 4],
while for the output we obtain the single point 𝛼Int(J𝑃 K{2, 4}) = [0, 0]. Then, for the two
mentioned analysis of 𝑃 we get J𝑃 KIntbca {2, 4} = [0, 10] and J𝑃 KInt𝛼Int({2, 4}) = [0, 100]. Note
the three different interval properties obtained by the concrete, bca and abstract evaluations of
𝑃 over Int with input {2, 4}: [0, 0] ≤Int [0, 10] ≤Int [0, 100]. These discrepancies are what we
want to measure.

To this end, we consider a weaker form of metric function that is made specific for the
elements of an abstract domain, namely, it is compatible with the underlying ordering relation
≤𝐴, hence taking into account the presence of incomparable elements. This distance function
incorporates both the qualitative comparison given by the partial order and a quantitative
comparison (Section 2). By exploiting this idea, we can introduce the notion of 𝜀-partial
completeness of an abstract domain 𝐴 with respect to a given program and a given (set of) input
values (Section 3). A partially complete abstract interpretation allows some false-alarms to be
reported, but their number is bounded. In this case, the imprecision of the abstract interpreter is
bounded by 𝜀, namely, the distance between the property represented by the abstraction of the
concrete semantics and the result of the abstract interpretation on the given input, is at most
𝜀. Given a tolerance 𝜀 of imprecision and a set of inputs 𝐼 , we want to answer the following
questions (Section 4): Can we implement a program analyzer such that all programs having 𝐼 as
input are 𝜀-partial complete? Can we prove if our program analysis has or not a bounded level of
imprecision?

2. Quasi-metrics on Abstract Domains

Our goal is to derive the bound of imprecision of an abstract interpreter with respect to a
given measure over the abstract domain. For this reason, we need a metric to compare the
elements of the abstract domain according to their relative degree of precision. We refer to the
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weaker notion of quasi-metric introduced in [8] on a non-empty set 𝑆. This is a metric function
𝛿 : 𝑆 × 𝑆 → Q≥0 whose symmetry property may not hold. A set endowed with a quasi-metric
is called quasi-metric space. Let 𝒜(𝐶) be the set of all abstract domains 𝐴 abstracting some set
of concrete properties 𝐶 and having ordering relation ≤𝐴

2.

Definition 2.1 (Quasi-metrics𝐴-compatible). We say that the distance function 𝛿𝐴 : 𝐴×𝐴 →
N∞
≥0 ∪ {⊥} is a quasi-metric 𝐴-compatible for 𝐴 ∈ 𝒜(𝐶) if for all 𝑎1, 𝑎2, 𝑎3 ∈ 𝐴, it satisfies the

following axioms:

(i) 𝑎1 = 𝑎2 ⇔ 𝛿𝐴(𝑎1, 𝑎2) = 0

(ii) 𝑎1 ≤𝐴 𝑎2 ⇔ 𝛿𝐴(𝑎1, 𝑎2) ̸= ⊥

(iii) 𝑎1 ≤𝐴 𝑎2 ≤𝐴 𝑎3 ⇒ 𝛿𝐴(𝑎1, 𝑎3) ≤ 𝛿𝐴(𝑎1, 𝑎2) + 𝛿𝐴(𝑎2, 𝑎3)

(iv) ∀𝑎1, 𝑎2 ∈ 𝐴, 𝜀 ∈ N≥0 the predicate 𝛿𝐴(𝑎1, 𝑎2) ≤ 𝜀 is decidable.

We allow the quasi-metric between two uncomparable elements to be ⊥, which represents an
undefined distance. An abstract domain 𝐴 ∈ 𝒜(𝐶) endowed with a quasi-metric 𝐴-compatible
𝛿𝐴, forms an abstract quasi-metric space, denoted by 𝐴≜ (𝐴, 𝛿𝐴). We use A(𝐶) to refer to the
set of all abstract quasi-metric spaces, and write 𝐴 ∈ A(𝐶).

As an example of quasi-metric 𝐴-compatible, we define the weighted path-length 𝛿w𝐴 as the
minimum weighted path, w.r.t. a weight function w, of intermediate elements between two
comparable elements of an abstract domain 𝐴. Here 𝛿w𝐴 considers the lattice of 𝐴 as a weighted
directed graph where each edge corresponds to two adjacent abstract elements 𝑎, 𝑏, that is,
𝑎 ≤𝐴 𝑏 and there are no elements 𝑐 ∈ 𝐴 such that 𝑎 ≤𝐴 𝑐 ≤𝐴 𝑏. So for example, 𝛿wInt over the
intervals abstraction having w(·, ·) = 1, i.e., setting to 1 the weight of each edge of Int, returns
9 between [0, 0] and [0, 10] meaning that there are exactly 9 more elements in [0, 10] respect to
[0, 0], while 𝛿wInt([0, 0], [0,+∞]) = ∞ and 𝛿wInt([0, 0], [1, 10]) = ⊥ because [0, 0] ̸≤Int [1, 10].

3. Partial Completeness

Standard completeness in program analysis3, e.g., see [2, 3, 13], means that no false alarms are
returned by analyzing the program with an abstract interpreter on any possible input state.
Local completeness, instead, is a recently introduced property [14] that requires completeness
only with respect to specific inputs. An 𝜀-partially complete program analyzer allows some false
alarms to be reported over a considered (set of) input, but their amount is bounded by a constant
𝜀 which is determined according to a quasi-metric which is compatible with the abstract domain
used by the analysis. Formally, given a program 𝑃 ∈ Programs, a constant bound 𝜀 ∈ N≥0, a
non-empty set of stores 𝑆 ∈ ℘(S) and 𝐴 ∈ A(℘(S)), we say that 𝐴 is 𝜀-partially complete for
𝑃 in 𝑆 if 𝛼𝐴(J𝑃 K𝑆) ≤𝜀

𝛿𝐴
J𝑃 K𝐴𝛼𝐴(𝑆), where 𝑎 ≤𝜀

𝛿𝐴
𝑏 iff 𝛿𝐴(𝑎, 𝑏) ≤ 𝜀. We now have all the

ingredients to introduce the notion of 𝜀-partial completeness class of programs.

2We consider abstract domains in 𝒜(𝐶) that are either recursive or trivial [9, 1].
3In some topics concerning abstract interpretation, completeness is typically recurrent, e.g., in comparative seman-
tics [10, 11] or formal languages [12]. Here we are considering only the field of program analysis.
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Definition 3.1 (𝜀-Partial completeness class). The partial completeness class of an abstract
quasi-metric space 𝐴 ∈ A(℘(S)), a constant 𝜀 ∈ N≥0 and a non-empty set of inputs 𝑆 ∈ ℘(S),
denoted C(𝐴, 𝜀, 𝑆) ⊆ Programs, is defined as:

C(𝐴, 𝜀, 𝑆) ≜ {𝑃 ∈ Programs | 𝛼𝐴(J𝑃 K𝑆) ≤𝜀
𝛿𝐴

J𝑃 K𝐴𝛼𝐴(𝑆)}.

Similarly to the completeness case [15], for every 𝜀, the 𝜀-partial completeness class is infinite
and non-extensional. It is infinite because for all 𝜀 ∈ N≥0 and 𝑆 ∈ ℘(S), C(𝐴) ⊆ C(𝐴, 𝜀, 𝑆)
and C(𝐴) is infinite, where C(𝐴) denotes the (global) completeness class of programs. It is
also non-extensional because there always exist programs 𝑃 and 𝑄 such that: 𝑃 is partially
complete for 𝐴, J𝑃 K = J𝑄K, and 𝑄 is not partially complete for 𝐴.

4. Recursive Properties of Partial Complete Programs

It is well known that for trivial abstractions (i.e., either the identity or an abstraction having
one element only) the corresponding completeness class turns out to be the whole set of
programs [13]. Moreover, for all non-trivial abstractions in 𝒜(℘(S)), its completeness class is
strictly contained in Programs [15]. In this section, we study the counterpart of these results
for the case of partial completeness. It turns out that the quasi-metric 𝐴-compatible chosen for
measuring the imprecision of the analysis, plays an important rule here in order to determine
the recursive properties of C(𝐴, 𝜀, 𝑆) and, therefore, of the considered program analysis.
We first consider the simplest case of abstract quasi-metric spaces of stores 𝐴 ∈ A(℘(S))
satisfying the property of having a limited imprecision by 𝜀 ∈ N≥0, i.e., abstractions such that
∀𝑎 ∈ 𝐴 : 𝛿𝐴(⊥𝐴, 𝑎) ≤ 𝜀. These include, for instance, the case of finite height lattices with the
weighted path-length quasi-metric—complete lattices which are both ACC and DCC.

Theorem 4.1. If 𝐴 ∈ A(℘(S)) has limited imprecision, then we have for all 𝑆 ∈ ℘(S): ∃𝜀 ∈
N≥0. C(𝐴, 𝜀, 𝑆) = Programs .

For example, the Sign≜ {Z,−, 0,+,∅} abstraction [16] measured with 𝛿wSign having w(·, ·) =
1, has limited imprecision because by for any 𝜀 ≥ 3, the partial completeness class turns
out C((Sign, 𝛿wSign), 𝜀, 𝑆) = Programs. The difference with respect to the case of standard
completeness class C(𝐴) is that, thanks to the possibility of admitting an upper margin to
imprecision (i.e., possible false alarms), there always exists a class of partial completeness with
respect to a given bound which includes all programs.

Conversely, an abstract quasi-metric space of stores 𝐴 ∈ A(℘(S)) has unlimited imprecision
when: ∀𝜀 ∈ N≥0, ∃𝑎 ∈ 𝐴. 𝛿𝐴(⊥𝐴, 𝑎) > 𝜀. The abstract quasi-metric space (Int, 𝛿wInt) is such
an example.

Theorem 4.2. Let 𝐴 ∈ A(℘(S)) be any abstract quasi-metric space of stores with unlimited
imprecision 𝛿𝐴 and 𝑆 ∈ ℘(S). Then, the following equivalence holds: ∃𝜀 ∈ N≥0. C(𝐴, 𝜀, 𝑆) =
Programs ⇔ 𝐴 = ℘(S).

Informally, if we consider a non-trivial abstract quasi-metric space that has unlimited imprecision
and an input 𝑆, then independently of how we set a threshold 𝜀 of false alarms acceptance,
there always exists a program 𝑃 for which the abstract analysis over 𝐴 with input 𝑆, is not
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𝜀-partially complete, namely 𝑃 ̸∈ C(𝐴, 𝜀, 𝑆). By a straightforward padding argument, any
of these programs can be extended to an infinite set of programs for which the abstraction is
𝜀-partially incomplete. The class of 𝜀-partial incomplete programs for 𝐴 ∈ A(℘(S)) with input 𝑆,
is the complement set of C(𝐴, 𝜀, 𝑆), formally: C(𝐴, 𝜀, 𝑆) = {𝑃 ∈ Programs | 𝛼𝐴(J𝑃 K𝑆) ̸≤𝜀

𝛿𝐴

J𝑃 K𝐴𝛼𝐴(𝑆)}. Theorem 4.2 implies that any non-trivial abstract domain of stores endowed with
an unlimited imprecision 𝛿𝐴, has an infinite set of programs for which the abstract interpreter is
𝜀-partially incomplete. Conversely, if 𝛿𝐴 has limited imprecision, then, trivially, we can always
find a certain level of tolerance that makes the analysis 𝜀-partially complete for all programs.

We now study the computational limits of the class of partially complete and incomplete
programs. In this case, the topological structure of𝐴 in terms of ascending chains, is fundamental.
We say that an abstract quasi-metric space of stores 𝐴 ∈ A(℘(S)) is 𝜀-trivial for some 𝜀 ∈ N≥0

if C(𝐴, 𝜀, 𝑆) = Programs. The following theorem shows that the class of programs C(𝐴, 𝜀, 𝑆)
turns out to be recursively enumerable (r.e.) whenever the abstract domain of stores 𝐴 satisfies
the Ascending Chain Condition (ACC).

Theorem 4.3. If 𝐴 ∈ A(℘(S)) is ACC, then for every 𝑆 ∈ ℘(S) and 𝜀 ∈ N≥0, C(𝐴, 𝜀, 𝑆) is r.e..

Sketch. Run a dovetail algorithm constructing the set 𝑏≜
⨆︀

𝑖∈N{𝛼𝐴(J𝑃 K𝑠𝑖)} starting from
𝑏 = ⊥, where 𝑠𝑖 ∈ 𝑆 is an enumeration of 𝑆. If, at some point of the iterates, there exists 𝑠𝑖 ∈ 𝑆
such that J𝑃 K𝑠𝑖 ̸= ∅, 𝑏 = 𝑏 ⊔𝐴 𝛼𝐴(J𝑃 K𝑠𝑖) and 𝛿𝐴(𝑏, J𝑃 K𝐴𝛼𝐴(𝑆)) ≤ 𝜀, then the algorithm
terminates. If 𝑃 ∈ C(𝐴, 𝜀, 𝑆) then the convergence of the above algorithms is guaranteed by
the ACC of 𝐴.

The following theorem states that both C(𝐴, 𝜀, 𝑆) and C(𝐴, 𝜀, 𝑆) are non-r.e. sets when 𝐴 is
not 𝜀-trivial and not ACC.

Theorem 4.4. If 𝐴 ∈ A(℘(S)) is not 𝜀-trivial, then C(𝐴, 𝜀, 𝑆) is non-r.e.. Moreover, if 𝐴 is also
not ACC, then C(𝐴, 𝜀, 𝑆) is non-r.e..

As a straightforward corollary, the local completeness class C(𝐴,𝑆) for 𝐴 satisfying the ACC
property is r.e., while non-r.e. for non-ACC abstractions. Furthermore, if 𝐴 is not trivial, then
C(𝐴,𝑆) is non-r.e. even if 𝐴 is ACC. Let us notice that Theorems 4.3 and 4.4 provide a further
insight into the structure of C(𝐴, 𝜀, 𝑆) and its complement class C(𝐴, 𝜀, 𝑆). These theorems
prove that, given any non-ACC abstract quasi-metric space of stores 𝐴, whenever we limit the
expected imprecision of our analysis to a bound 𝜀 of possible false alarms w.r.t. an input 𝑆, we
cannot build a procedure that enumerates all programs satisfying that bound or that do not
respect that bound, unless the abstract domain is 𝜀-trivial. Therefore, deciding whether a static
program analysis can produce or cannot produce some bounded set of false alarms is in general
impossible, unless 𝐴 satisfies the ACC. In this last case, we can at least answer “yes” if the
static analysis has a bounded imprecision over a program with a specific input. The 𝜀-partial
completeness and incompleteness class of an abstraction are therefore a non-trivial property of
programs for which no recursively enumerable procedure may exist which is able to enumerate
all of their elements.
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