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Abstract
We present Skel, a meta language designed to describe the semantics of programming languages, and

Necro, a set of tools to manipulate said descriptions. We show how Skel, although minimal, can faithfully

and formally capture informal specifications. We also show how we can use these descriptions to generate

OCaml interpreters and Coq formalizations of the specified languages.

1. Introduction

To formally prove properties of a programming language, or programs in that language, it is

necessary to have a formal specification of its semantics. We expect the tool and the language

used to describe this formalization to be executable, usable, and easily verifiable, that is, close

to a paper-written specification.

Necro provides a language (Skel) and a set of tools to formalize and interpret the semantics of

programming languages. Necro fulfills these requirements and more. First, Skel is designed to be

light and its semantics simple. A light language facilitates maintainability and the development

of tools. Second, Skel is powerful enough to express intricate semantical features, as proven by

its use in an ongoing formalization of JavaScript’s semantics [1]. Third, a semantics described in

Skel can be close to a previously written formulation, be it as inference rules or as an algorithmic

specification. Finally, Necro provides a comprehensive and extensible set of tools to manipulate

these semantics. For instance, to translate it into an interpreter (Necro ML, see Section 3.2), or

to give a formalization in the Coq proof assistant (Necro Coq, see Section 3.3).

Skel is a statically strongly typed language. First introduced in [2], we present its redesign

with a syntax close to ML. We also introduce support for polymorphism and higher order,

enabling the use of monads in specifications [1].

Skel can be seen as a specification language or as a way to define inductive rules. Both

approaches are useful, respectively when writing a semantics whose formalization is a set of

algorithms, (e.g. ECMA-262 [3]), or when writing a semantics defined with inference rules (e.g.

𝜆-calculus). Skel can be used to describe arbitrary semantics, including ones with partiality and

non-determinism.

Necro contains several tools to manipulate skeletal semantics (semantics written in Skel).

First, Necro Lib offers basic operations (parsing, typing, printing, and simple transformations),

in the form of a library to write programs that manipulate the AST describing a semantics.

Second, Necro includes the tools Necro ML, Necro Coq, and Necro Debug, which use said

Proceedings of the 23rd Italian Conference on Theoretical Computer Science, Rome, Italy, September 7-9, 2022
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


library to generate respectively an OCaml interpreter, a Coq formalization, and a step-by-step

debugger.

The contributions of this work are the Skel language, the accompanying tools, and many

examples of semantics available online.
1

The paper is organized as follows. Section 2 introduces Skel. Section 3 presents the Necro

ecosystem. Section 4 compares our work to existing approaches. Section 5 concludes the paper.

2. Skeletal Semantics

2.1. Skel by Example

Let us describe how one specifies a semantics in Skel, using the small-step semantics of 𝜆-

calculus as example. A skeletal semantics is a list of declarations, either type declarations
or term declarations, where each declaration can be unspecified or specified. When a type is

unspecified, we only give its name. For instance, when writing the semantics of 𝜆-calculus, we

might not want to specify how identifiers for variables are internally represented, so we declare

type ident.

A specified type may be a variant type (i.e., an algebraic data type, defined by providing the

list of its constructors together with their input type), a type alias using the := notation, or

a record type (defined by listing its fields and their expected types). For instance, the type of

𝜆-terms would be defined as follows.

type term = | Var ident | Lam (ident, term) | App (term, term)

In this example, (ident, term) is the product type with two components, the first one being

of type ident, and the second of type term.

A record type is declared as type pair = ( left: int , right: int ) and an alias as

type ident := string. Note that types are all implicitly mutually recursive, so the order in

which they are declared does not matter.

We now turn to term declarations. An unspecified term declaration is simply its name and type.

To declare a specified term, we also give its definition. An example of a term we might want to let

unspecified is substitution, so we would declare val subst: ident → term → term → term.

An example of a specified term is the following.

val ss (t:term): term =
match t with
| App (t1, t2) ->

branch
let t1' = ss t1 in
App (t1', t2)

or
let t2' = ss t2 in
App (t1, t2')

or (* beta-reduction of a redex *)
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Term 𝑡 ::= 𝑥 | 𝐶 𝑡 | (𝑡, . . . , 𝑡) | 𝜆𝑝 : 𝜏 → 𝑆 | 𝑡.𝑓 | 𝑡.𝑖 | (𝑓 = 𝑡, . . . , 𝑓 = 𝑡) |
𝑡← (𝑓 = 𝑡, . . . , 𝑓 = 𝑡)

Skeleton 𝑆 ::= 𝑡0 𝑡1 . . . 𝑡𝑛 | let 𝑝 = 𝑆 in 𝑆 | let 𝑝 : 𝜏 in 𝑆 |
match 𝑡 with ”|”𝑝→ 𝑆 . . . ”|”𝑝→ 𝑆 end |
branch 𝑆 or . . . or 𝑆 end | ret 𝑡

Pattern 𝑝 ::= 𝑥 | _ | 𝐶 𝑝 | (𝑝, . . . , 𝑝) | (𝑓 = 𝑝, . . . , 𝑓 = 𝑝)

Type 𝜏 ::= 𝑏 | 𝜏 → 𝜏 | (𝜏, . . . , 𝜏)
Term decl 𝑑𝑡 ::= val 𝑥 : 𝜏 | val 𝑥 : 𝜏 = 𝑡

Type decl 𝑑𝜏 ::= type 𝑏 | type 𝑏 = ”|” 𝐶 𝜏 . . . ”|” 𝐶 𝜏 | type 𝑏 := 𝜏 |
type 𝑏 = (𝑓 : 𝜏, . . . , 𝑓 : 𝜏)

Figure 1: Syntax of Skel (without Polymorphism)

let Lam (x, body) = t1 in
let Lam _ = t2 in (* t2 is a value *)
subst x t2 body (* body[x←t2] *)

end
| _ -> (branch end: term)
end

The branch . . . or . . . end construct is a Skel primitive to deal with non-deterministic

choice, similar to McCarthy’s ambiguous operator [4]. There is no order in a branching, so any

branch which yields a result can be chosen. Overlapping branches provide non-determinism,

and non-exhaustive branches provide partiality. For instance the branch end at the end will

never yield a result, so ss is partially defined.

The destructuring pattern matching let Lam (x, body) = t1 in ... asserts that t1 is a

lambda-abstraction. If it is not, then the considered branch yields no result. If it is, then x and

body will be assigned to the proper values.

The match . . . with . . . end construct is a pattern matching, similar to any other

language’s pattern matching. In particular, it is deterministic. Only the first (𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛)
pair for which the pattern corresponds with the matched value is taken.

2.2. Formalism

Figure 1 contains the syntax of Skel terms and skeletons. It does not include polymorphism,

which will be described in Section 2.5. There are two types of expressions: terms and skeletons.

Our syntax is close to Moggi’s computational 𝜆-calculus [5] and to Abstract Normal Forms [6]:

we separate what is intuitively an evaluated value to what is a computation. This makes the

evaluation order unambiguous and the manipulation of skeletal semantics simpler.

A term is either a variable, a constructor applied to a term, a (possibly empty) tuple of terms,

a 𝜆-abstraction, the access to a given field of a term, the access to a member of a tuple, a record

of terms, or a term with reassignment of some fields. A skeleton is either the application of



Γ + 𝑥← 𝜏 ≜ Γ, 𝑥 : 𝜏 Γ + _← 𝜏 ≜ Γ

Γ + 𝐶 𝑝← 𝜈 ≜ Γ + 𝑝← 𝜏 , where ctype(𝐶) = (𝜏, 𝜈)

Γ + (𝑝1, . . . , 𝑝𝑛)← (𝜏1, . . . , 𝜏𝑛) ≜ ((Γ + 𝑝1 ← 𝜏1) . . . ) + 𝑝𝑛 ← 𝜏𝑛

Γ + (𝑓1 = 𝑝1, . . . , 𝑓𝑛 = 𝑝𝑛)← 𝜈 ≜ ((Γ + 𝑝1 ← 𝜏1) . . . ) + 𝑝𝑛 ← 𝜏𝑛,

wherefields(𝜈) = {𝑓1 : 𝜏1, . . . , 𝑓𝑛 : 𝜏𝑛}

𝐸 + 𝑥← 𝑣 ≜ 𝐸, 𝑥 : 𝑣 𝐸 + _← 𝑣 ≜ 𝐸 𝐸 + 𝐶 𝑝← 𝐶 𝑣 ≜ 𝐸 + 𝑝← 𝑣

𝐸 + (𝑝1, . . . , 𝑝𝑛)← (𝑣1, . . . , 𝑣𝑛) ≜ (𝐸 + 𝑝1 ← 𝑣1) . . .+ 𝑝𝑛 ← 𝑣𝑛

𝐸 + (𝑓1 = 𝑝1, . . . , 𝑓𝑛 = 𝑝𝑛)← (𝑓1 = 𝑣1, . . . , 𝑓𝑛 = 𝑣𝑛) ≜ (𝐸 + 𝑝1 ← 𝑣1) . . .+ 𝑝𝑛 ← 𝑣𝑛

Figure 2: Pattern Matching of Types and Values

a term to other terms, a let-binding, an existential (see Section 2.4), a branching, a match, or

simply the return of a term. We sometimes omit ret in ret 𝑡. A pattern is either a variable, a

wildcard, a constructor applied to a pattern, a (possibly empty) tuple of patterns, or a record

pattern. Finally, a type is either a base type (defined by the user), an arrow type, or a (possibly

empty) tuple of types. Term and type declarations have already been described in Section 2.1

2.3. Typing

Skel is a strongly typed language with explicit type annotations. Every term declaration is given

a type, as well as every pattern in a 𝜆-abstraction. Polymorphism, presented in Section 2.5, also

uses explicitly specified type arguments. Specifying every type might seem tedious at first, but

it helps to improve confidence on the correctness of the skeletal semantics. A future version of

the typer will include an optional type-inference mechanism.

To give the typing rules for Skel, we first define ctype(𝐶), which returns the pair of the

declared input type and output type for the constructor 𝐶 in its type declaration. For instance,

we have ctype(Var) = (ident, term). Similarly, we define ftype(𝑓) to return (𝜏, 𝜈) where 𝜏
is the type of the field 𝑓 , and 𝜈 is the record type to which the field 𝑓 belongs. For instance,

we have ftype(left) = (int, pair). Note that a field name may not belong to two different

record types, and a constructor name may not be used twice, so these functions are well-defined.

Finally, we write fields(𝜈) for the fields and types of record type 𝜈.

The typing rules for terms and skeletons are straightforward, we give them in Appendix A.

They are respectively of the form Γ ⊢𝑡 𝑡 : 𝜏 and Γ ⊢𝑆 𝑆 : 𝜏 , where Γ is a typing environment (a

partial function from variable names to types). To deal with pattern matching in 𝜆-abstractions

and let-bindings, we use the partial function Γ + 𝑝← 𝜏 defined at the top of Figure 2.

2.4. Concrete Interpretation

As such, Skel is a concrete syntax to describe a programming language. The meaning associated

to a Skel description is called an interpretation. We present in this section a concrete interpreta-



tion, which stands for the usual natural semantics of a language [7]. One may also define an

abstract interpretation, where unspecified types are given values in some abstract domain and

where the results from branches are all collected. Such an interpretation is beyond the scope of

this paper.

Every skeleton and term is interpreted as a value. Given sets of values 𝑉𝜏 for each unspecified

type 𝜏 , we build values for variant and product types in the expected way. For arrow types, we

use closures for the specified functions, and we delay the evaluation of unspecified terms until

we have all arguments. To this end, for each declaration val x : 𝜏1 → . . . → 𝜏n → 𝜏 , we

assume given an arity 𝑛 = arity(𝑥) ∈ N and a relation J𝑥K ∈ 𝒫(𝑉𝜏1 × · · · × 𝑉𝜏𝑛 × 𝑉𝜏 ).
The rules for the concrete interpretation are straighforward. They are given in Appendix B.

They are of the form 𝐸, 𝑡 ⇓𝑡 𝑣 for terms and 𝐸,𝑆 ⇓𝑆 𝑣 for skeletons, meaning that in the

environment 𝐸 (partial function mapping variables to values), the term 𝑡 or the skeleton 𝑆 can

evaluate to a value 𝑣.

A construct that is specific to Skel is the existential. To interpret the existential let p:𝜏 in sk,

we take any value of type 𝜏 , and match p to this value, before evaluating the continuation in the

extended environment. This pattern matching, also used for the let-in constructs and closures,

is defined in Figure 2 as the partial function 𝐸 + 𝑝← 𝑣 that returns an extended environment.

The concrete interpretation is relational: a skeleton can be interpreted to 0, 1, or several

values. A branching with no branch has no result, causing partiality. A branching with several

branches can have several results, causing non-determinism. Pattern-matching can fail, causing

partiality. Finally, non-terminating computations also cause partiality.

2.5. Polymorphism and Type Inference

Our type system allows for polymorphism, with explicit type annotations specified using angle

brackets. Any declared and defined type can be polymorphic.

(* Unspecified *)
type list<_>

(* Record *)
type pair<a,b> = (left: a, right: b)

(* Variant *)
type union<a,b> = | InjL a | InjR b

(* Alias *)
type option<a> := union<a,()>

Terms defined at toplevel can also be polymorphic, but let-bound terms are necessarily

monomorphic.

val map<a,b> (f: a → b) (l: list<a>): list<b> =
branch

let Nil = l in
Nil<b>

or
let Cons (a, qa) = l in
let b = f a in
let qb = map<a,b> f qa in
Cons<b> (b, qb)

end
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Figure 3: The Necro Ecosystem

Type annotations are explicitly given when constructing a term (e.g., Nil<b>) or when using

a polymorphic term (e.g., map<a,b> f qa), but they can be locally inferred in patterns, so they

are not specified in them (e.g., let Nil = l in . . . ).

The explicit typing is by design, as explicit type annotations reduce the risk of error. In the

future, we will add an option to perform type inference. This option could also infer the type of

the arguments in constructs of the form 𝜆p:𝜏 → sk.

3. The Necro Ecosystem

Necro is an ecosystem with several tools to perform different operations on skeletal semantics,

as illustrated in Figure 3.

3.1. Necro Lib

Necro Lib [8] is an OCaml library file, necro.cma. It provides a parser and a typer, in order to

transform a Skel file into a Skel AST. The AST is described in the file main/skeltypes.mli
of the repository. It also contains a pretty-printer, which displays the AST in the format of a

Skel file; a set of transformers, along with the tool Necro Trans that calls the transformers on an

AST and prints the result; and a set of utility functions to manipulate the AST. The necro.cma
file is the basis for Necro ML (Section 3.2) and Necro Coq (Section 3.3).

3.2. Necro ML

Necro ML [9] is a generator of OCaml interpreters. Given a skeletal semantics, it produces an

OCaml functor. This functor expects as arguments an OCaml specification of all unspecified

types and terms, it then provides an interpreter that can compute any given skeleton. Skel

cannot be shallowly embedded in OCaml, since OCaml does not have an operator fitting

the branching construct (pattern matching is deterministic in OCaml). So types and terms are

shallowly embedded, but skeletons are deeply embedded. We use an interpretation monad, which

https://gitlab.inria.fr/skeletons/necro/-/blob/master/main/skeltypes.mli


specifies, amongst other things, how skeletons are represented, and how let ins, applications

and branches are computed.

3.2.1. OCaml Interpreter

When Necro ML is executed on a skeletal semantics, it generates an OCaml file, which contains

several modules, functors, and module types. To create an interpreter, one needs to instan-

tiate them, in order to indicate how unspecified types and terms are interpreted, and which

interpretation monad is chosen.

Working examples can be found in the test folder of Necro ML’s repository.

3.2.2. Interpretation Monad

The interpretation monad is defined as follows, where terms are assumed to be pure while

skeletons are monadic (of type 'a t).

module type MONAD = sig
type 'a t
val ret: 'a -> 'a t
val bind: 'a t -> ('a -> 'b t) -> 'b t
val branch: (unit -> 'a t) list -> 'a t
val fail: string -> 'a t
val apply: ('a -> 'b t) -> 'a -> 'b t
val extract: 'a t -> 'a

end

The fail operator takes a string as input which is an error message that should be raised,

and the extract operator is a usability construct to extract a result from the monad, typically

to display it.

There are several proposed ways to instantiate this monad, and the user can also define their

own. The standard identity monad, which is closest to a shallow embedding, tries each branch

in turn. But it chooses the first branch that succeeds, with no ability to backtrack, which can be

problematic in some cases. A more interesting one is the continuation monad, which keeps as a

failure continuation the branches not taken, and can then backtrack if need be [10].

module ContPoly = struct
type 'b fcont = string -> 'b
type ('a,'b) cont = 'a -> 'b fcont -> 'b
type 'a t = { cont: 'b. (('a,'b) cont -> 'b fcont -> 'b) }
let ret (x: 'a) = { cont = fun k fcont -> k x fcont }
let bind (x: 'a t) (f: 'a -> 'b t) : 'b t =

{ cont = fun k fcont -> x.cont (fun v fcont' -> (f v).cont k fcont') fcont }
let fail s = { cont = fun k fcont -> fcont s }
let rec branch l = { cont = fun k fcont ->

begin match l with
| [] -> fcont "No branch matches"
| b :: bs -> (b ()).cont k (fun _ -> (branch bs).cont k fcont)
end}

https://gitlab.inria.fr/skeletons/necro-ml/-/tree/master/test


let apply f x = f x
let extract x = x.cont (fun a _ -> a) (fun s -> failwith s)

end

Nevertheless, the continuation monad is not complete w.r.t the concrete interpretation, as

it always executes the first branch first, and can therefore be caught in an infinite loop. The

following function is an example thereof.

val loop (_:()): () = branch loop () or () end

To fix this issue, we propose another interpretation monad called BFS, which does one step

in each branch, until it gets a result. The file containing all these monads and some others is

available online.
2

Note that to change the interpretation monad, the user simply has to swap it

at module instantiation, no code needs to be rewritten.

3.3. Necro Coq

Necro Coq [11] is a tool to embed a given skeletal semantics into a Coq formalization. It can

then be used to prove language properties or correctness of a given program.

3.3.1. Structure

Necro Coq uses a deep embedding of Skel. The embedding of Skel is defined in the file

files/Skeleton.v, which is presented in Section 3.3.2. The command necrocoq file.sk
provides a Coq file that contains the AST of the original skeletal semantics. To give meaning to

the skeletons, we then provide a file that defines the concrete interpretation for skeletons and

terms.

3.3.2. Skel’s Embedding

The embedding is a straightforward deep embedding. It defines a number of variables, which

are the data of a given skeletal semantics (its constructors, base types, . . . ), and provides the

basic constructs (the definition of a type, a skeleton, . . . ).

3.3.3. Values

The values that are the result of the evaluation of a term or skeleton are deeply embedded as

well. The Coq type which supports values is defined with five constructors. Here are the first

four.

Inductive cvalue : Type :=
| cval_base : forall A, A -> cvalue
| cval_constructor : constr -> cvalue -> cvalue
| cval_tuple: list cvalue -> cvalue
| cval_closure: pattern -> skeleton -> list (string * cvalue) -> cvalue.

2
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The cval_base constructor allows values of an unspecified type to be represented in Coq

with any given type A. For instance, the value 1, in an unspecified type int, could be stored as

cval_base Z 1. The next two constructors are straightforward. The fourth one is a closure

constructor, to store 𝜆-abstractions. The three arguments of the constructor are the bound

pattern, the skeleton to evaluate, and the current environment. The fifth constructor is used for

unspecified functional terms, it will be presented below.

3.3.4. Interpretation

The file Concrete.v3
provides the concrete interpretation for skeletons. It uses Coq’s induction

to define the relations interp_skel and interp_term, which relate respectively skeletons and

terms in a given environment to their possible interpretations as a value. It mostly follows the

semantics of Appendix B. For instance, this is the rule for a let in construct:

Inductive interp_skel: env -> skeleton -> cvalue -> Prop :=
| i_letin: forall e e' p s1 s2 v w,

interp_skel e s1 v ->
add_asn e p v e' ->
interp_skel e' s2 w ->
interp_skel e (skel_letin p s1 s2) w

The add_asn e p v e' proposition states that the environment 𝑒 can be extended into 𝑒′ by

mapping 𝑝 to 𝑣, that is 𝑒′ = 𝑒+ 𝑝← 𝑣
The file Concrete.v defines the interpretation using big-step evaluation, but we also provide

a file Concrete_ss.v which does a small-step evaluation. An alternative is ConcreteRec.v,

which defines interpretation from the bottom up. That is, instead of using Coq’s induction, it

only defines how to do one step, which doesn’t use recursive calls, and then one may iterate this

step. It is closest to the initial definition in [2]. The purpose of this file is to be able to perform a

strong induction on interp_skel in a simple way.

These interpretations are proven (in Coq) to be equivalent, so one can use indifferently one

or the other, and one may even switch between several of them depending on what is more

useful at the time. The big step definition is usually the easiest to use. The small step one allows

to reason about non-terminating behaviors, and it provides a simple way to prove the subject

reduction of Skel (see below). The iterative one allows, as we mentioned, to perform a strong

induction. An instance where we need to use this one is to prove an induction property on

the semantics of a lambda calculus.
4

As Skel is deeply embedded, one evaluation step in the

language corresponds to several steps in Necro Coq. Because of this, the inductive interpretation

is not convenient to prove that property, whereas this is much simpler using the iterative version

with a strong induction on the height of the derivation tree.

As Skel is strongly typed, we also have a file WellFormed.v to check that a term or skeleton

is well-formed, i.e., that it can be typed. We prove that the concrete interpretation respects the

subject reduction property with regards to well-formedness. Since interpretations are all shown

to be equivalent, it suffices to only prove it for Concrete_ss.v:

3
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Theorem subject_reduction_skel:
forall sk sk' ty,

type_ext_skel sk ty ->
interp_skel_ss sk sk' ->
type_ext_skel sk' ty.

This translates roughly to:

𝑆 : 𝜏 𝑆 → 𝑆′

𝑆′ : 𝜏

where S and S’ are extended skeletons.

With this proven, and since Concrete_ss.v and Concrete.v are equivalent, we have:

∅ ⊢ 𝑆 : 𝜏 𝑆 ⇓𝑆 𝑣

𝑣 ∈ 𝑉𝜏

Finally, interpretations in the form of abstract machines have been defined in [12]. They

reuse the deep embedding provided by Necro Coq and are proven correct in relation to the

concrete interpretation.

3.3.5. Unspecified Functional Values

Since Skel allows to declare unspecified terms, we must be able to interpret them. The natural

idea would be to ask for a cvalue for each given unspecified term. But for unspecified functions

(like the addition), that would mean giving a closure, which is equivalent to specifying the

function. We would lose Skel’s power of partial specification. Instead, we ask for a relation that,

given a list of cvalues as arguments, provides the result of the application of the term to the

arguments. For instance, for the addition, it would be {([𝑥; 𝑦], 𝑥+ 𝑦) | 𝑥, 𝑦 ∈ N}.
There are operational and denotational approaches to represent this in Coq. We choose the

operation approach as it does not need to evaluate ahead of time: it just waits to be applied to

enough arguments before computing. We thus use the following constructor, which denotes an

unspecified functional term that is not fully applied yet.

| cval_unspec: nat -> unspec_value -> list type -> list cvalue -> cvalue.

The first nat argument being n means that there are S n arguments missing. We add one,

because there cannot be 0 argument missing, since if there is 0 argument missing, it is not a

partial application. The list of types is the type annotation for polymorphic unspecified terms,

the list of values is the list of arguments that have already been provided.

3.3.6. Applications and Usability

We have considered several applications of Necro Coq, some of them can be found in the test
folder of the repository. For instance, we have proved the correctness of an IMP code that

computes the factorial function (test/certif folder). Necro Coq has also been used to prove

the equivalence between a small-step and a big-step semantics for a 𝜆-calculus extended with

natural numbers (test/lambda folder). In addition, it has been used in [13] to provide the a
posteriori proof of an automatic generic transformation of a big step semantics into a small step

semantics.

https://gitlab.inria.fr/skeletons/necro-coq/-/tree/master/test
https://gitlab.inria.fr/skeletons/necro-coq/-/tree/master/test/certif
https://gitlab.inria.fr/skeletons/necro-coq/-/tree/master/test/lambda


4. Related Work

We review existing approaches that are generic, in the sense that they can be used to describe

and manipulate any semantics.

Our work is an extension of the work undertaken in [2]. We significantly improve on this

approach by having a more expressive language (with higher-order functions and polymorphism)

and a set of tools to manipulate skeletal semantics. The Coq formalizations of [2] were written by

hand, they can now be automatically generated. Generation of OCaml code was also proposed

in [14], but it was only available for the language of [2], which was less powerful than the

current language. It also did not consider interpretation monads.

Regarding meta-languages to describe semantics, existing tools are much more complex than

Skel. This is the case of Lem [15] and Ott [16]. The simplicity of Skel (the file skeltypes.mli
describing Skel’s AST is only 114 lines of specification) allows anyone to easily write a tool

handling skeletal semantics. This is less immediate with Lem and Ott, as one has to deal with

many additional features. For instance, Lem natively defines set comprehension, relations, and

maps. Also, Coq generation is done as a shallow embedding, hence functions must be proven

to terminate. In addition, shallow embedding of large semantics are not easily manipulated in

Coq, due to the space complexity of the induction and inversion tactics.

The K framework [17] also allows to formally define the semantics of a language and prove

programs, and it is designed to be easy to use. It does not allow, however, to prove meta-theory

properties of a language
5
, which is one of our future goals. Furthermore, there are no Coq

backend for K at the present time, and since K is a large language, writing new backends is far

from trivial.

Finally, another common way to describe a semantics is to implement it both in OCaml and in

Coq, or other similar tools, either directly or through tools to transform them (Coq extraction to

OCaml or coq-of-ocaml [18] to go the other way). One may then execute the semantics using

the OCaml version and prove properties using the Coq one. In this case, the Coq formalization

is simpler to manipulate, but changing design choices (such as going from a shallow to a deep

embedding) is very costly, as OCaml or Coq AST are not easy to manipulate.

5. Conclusion

Skel offers a way to specify semantics of programming languages, using a language light enough

to be easily readable and maintainable, yet powerful enough to express many semantical features.

We have focused on dynamic semantics, but one may also describe static semantics in Skel.

The tools Necro provide, such as Necro ML, help in the process of writing a semantics. Necro

Coq allows to manipulate and certify these semantics once written. They give the necessary

framework to prove program correctness and language properties.

Skel has been used to write the semantics of a set of basic languages such as IMP, but it has

also been used to formalize more massive languages, such as WASM (unpublished), and an

ongoing formalization of JavaScript [1]. We plan to write a formalization of Python based on an

existing precise description [19].

5

https://sympa.inria.fr/sympa/arc/coq-club/2020-02/msg00066.html

https://sympa.inria.fr/sympa/arc/coq-club/2020-02/msg00066.html


The Necro ecosystem includes other tools, such as Necro Debug,
6

which is a step-by-step

execution of a semantics. An example execution can be found online.
7
. In addition, people can

easily produce a new tool using Necro Lib.

Although not mentioned in this paper, Skel allows to split the definition of a semantics in

several files, and to access them using an include construct. The OCaml generation tool can

handle these multi-file semantics using modules, but at the moment this is not the case for

Necro Coq. A future task is to implement this functionality using Coq modules. Once this has

been done, the logical next step is to implement a standard library for Skel, defining basic types

like lists, with properties on these types proven using Necro Coq. Initial work on this standard

library can be found online.
8

Finally, Skel and Necro are currently being used to describe semantics style transformations,

both at the object level [13] and at the meta-language level [12]. Work has also started to

automatically derive control flow analyses from a language description.

6

https://gitlab.inria.fr/skeletons/necro-debug

7

https://skeletons.inria.fr/debugger/index_while.html

8

https://gitlab.inria.fr/skeletons/necro/-/tree/master/examples/necro_in_necro

https://gitlab.inria.fr/skeletons/necro-debug
https://skeletons.inria.fr/debugger/index_while.html
https://gitlab.inria.fr/skeletons/necro/-/tree/master/examples/necro_in_necro
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A. Typing Rules for Skeletal Semantics

Γ(𝑥) = 𝜏

Γ ⊢𝑡 𝑥 : 𝜏
Var

val x:𝜏

Γ ⊢𝑡 𝑥 : 𝜏
TermUnspec

val x:𝜏 = t

Γ ⊢𝑡 𝑥 : 𝜏
TermSpec

Γ ⊢𝑡 𝑡 : 𝜏 ctype(C) = (𝜏, 𝜏 ′)

Γ ⊢𝑡 C 𝑡 : 𝜏 ′
Const

Γ ⊢𝑡 𝑡1 : 𝜏1 . . . Γ ⊢𝑡 𝑡𝑛 : 𝜏𝑛

Γ ⊢𝑡 (𝑡1, . . . , 𝑡𝑛) : (𝜏1, . . . , 𝜏𝑛)
Tuple

Γ + 𝑝← 𝜏 ⊢𝑆 𝑆 : 𝜏 ′

Γ ⊢𝑡 (𝜆𝑝 : 𝜏 → 𝑆) : 𝜏 → 𝜏 ′
Clos

Γ ⊢𝑡 𝑡 : 𝜈 ftype(𝑓) = (𝜏, 𝜈)

Γ ⊢𝑡 𝑡.𝑓 : 𝜏
FieldGet

Γ ⊢𝑡 𝑡 : (𝜏1, . . . , 𝜏𝑚) 1 ≤ 𝑖 ≤ 𝑚

Γ ⊢𝑡 𝑡.𝑖 : 𝜏𝑖
TupleGet

fields(𝜏) = {𝑓1 : 𝜏1, . . . , 𝑓𝑛 : 𝜏𝑛} Γ ⊢𝑡 𝑡1 : 𝜏1 . . . Γ ⊢𝑡 𝑡𝑛 : 𝜏𝑛

Γ ⊢𝑡 (𝑓1 = 𝑡1, . . . , 𝑓𝑛 = 𝑡𝑛) : 𝜏
Rec

Γ ⊢𝑡 𝑡 : 𝜏 ∀𝑖 ∈ J1;𝑚K,Γ ⊢𝑡 𝑡𝑖 : 𝜏𝑖 ∀𝑖 ∈ J1;𝑚K, ftype 𝑓𝑖 = (𝜏𝑖, 𝜏)

Γ ⊢𝑡 𝑡← (𝑓1 = 𝑡1, . . . , 𝑓𝑚 = 𝑡𝑚) : 𝜏
FieldSet

Γ ⊢𝑡 𝑡 : 𝜏
Γ ⊢𝑆 ret 𝑡 : 𝜏

Ret

Γ ⊢𝑆 𝑆1 : 𝜏 . . . Γ ⊢𝑆 𝑆𝑛 : 𝜏

Γ ⊢𝑆 (𝑆1 . . . 𝑆𝑛) : 𝜏
Branch

Γ ⊢𝑆 𝑆 : 𝜏 Γ + 𝑝← 𝜏 ⊢𝑆 𝑆′ : 𝜏 ′

Γ ⊢𝑆 let 𝑝 = 𝑆 in𝑆′ : 𝜏 ′
LetIn

Γ + 𝑝← 𝜏 ⊢𝑆 𝑆 : 𝜏 ′

Γ ⊢𝑆 let 𝑝 : 𝜏 in𝑆 : 𝜏 ′
Exist

Γ ⊢𝑡 𝑡 : 𝜏 Γ + 𝑝1 ← 𝜏 ⊢𝑆 𝑆1 : 𝜈 . . . Γ + 𝑝𝑛 ← 𝜏 ⊢𝑆 𝑆𝑛 : 𝜈

Γ ⊢𝑆 match 𝑡 with|𝑝1 → 𝑆1|. . . |𝑝𝑛 → 𝑆𝑛 : 𝜈
Match

Γ ⊢ 𝑡0 : 𝜏1 → · · · → 𝜏𝑛 → 𝜏 Γ ⊢𝑡 𝑡1 : 𝜏1 . . . Γ ⊢𝑡 𝑡𝑛 : 𝜏𝑛

Γ ⊢𝑆 (𝑡0 𝑡1 . . . 𝑡𝑛) : 𝜏
App



B. Concrete Interpretation of Skeletal Semantics

First we defined rules to handle environments. We define the relation 𝑝 ̸↦→ 𝑣 which holds if 𝑝
cannot represent the value 𝑣, and the partial function 𝐸 + 𝑣match(𝑝1, . . . , 𝑝𝑛) as follows:

𝑝 ̸↦→ 𝑣

𝐶𝑝 ̸↦→ 𝐶𝑣
NoMatchSameConstr

𝐶 ̸= 𝐶 ′

𝐶𝑝 ̸↦→ 𝐶 ′𝑣
NoMatchDiffConstr

𝑝𝑖 ̸↦→ 𝑣𝑖 0 ≤ 𝑖 ≤ 𝑛

(𝑝1, . . . , 𝑝𝑛) ̸↦→ (𝑣1, . . . , 𝑣𝑛)
NoMatchTuple

𝑝𝑖 ̸↦→ 𝑣𝑖 0 ≤ 𝑖 ≤ 𝑚 ≤ 𝑛

(𝑓1 = 𝑝1, . . . , 𝑓𝑚 = 𝑝𝑚) ̸↦→ (𝑓1 = 𝑣1, . . . , 𝑓𝑛 = 𝑣𝑛)
NoMatchRecord

𝐸 + 𝑝1 ← 𝑣 = 𝐸′

𝐸 + 𝑣match(𝑝1, . . . , 𝑝𝑛) = (1, 𝐸′)
GetMatchFirst

𝑝1 ̸↦→ 𝑣 𝐸 + 𝑣match(𝑝2, . . . , 𝑝𝑛) = (𝑖, 𝐸′)

𝐸 + 𝑣match(𝑝1, . . . , 𝑝𝑛) = (𝑖+ 1, 𝐸′)
GetMatchNext



Now we define the rules for concrete interpretation:

𝐸(𝑥) = 𝑣

𝐸, 𝑥 ⇓𝑡 𝑣
Var

val x : 𝜏 arity(𝑥) = 0 J𝑥K(𝑣)
𝐸, 𝑥 ⇓𝑡 𝑣

TermUnspecZero

val x : 𝜏 arity(𝑥) > 0

𝐸, 𝑥 ⇓𝑡 ⌈𝑥, ()⌉
TermUnspecSucc

val x:𝜏 = t 𝜖, 𝑡 ⇓𝑡 𝑣
𝐸, 𝑥 ⇓𝑡 𝑣

TermSpec

𝐸, 𝑡 ⇓𝑡 𝑣
𝐸, (C 𝑡) ⇓𝑡 C 𝑣

Const

𝐸, 𝑡1 ⇓𝑡 𝑣1 . . . 𝐸, 𝑡𝑛 ⇓𝑡 𝑣𝑛
𝐸, (𝑡1, . . . , 𝑡𝑛) ⇓𝑡 (𝑣1, . . . , 𝑣𝑛)

Tuple

𝐸, (𝜆𝑝 : 𝜏 → 𝑆) ⇓𝑡 ⟨𝑝,𝐸, 𝑆⟩
Clos

𝐸, 𝑡 ⇓𝑡 (𝑓1 = 𝑣1, . . . , 𝑓𝑛 = 𝑣𝑛)

𝐸, 𝑡.𝑓𝑖 ⇓𝑡 𝑣𝑖
FieldGet

𝐸, 𝑡 ⇓𝑡 (𝑣1, . . . , 𝑣𝑚) 1 ≤ 𝑖 ≤ 𝑚

𝐸, 𝑡.𝑖 ⇓𝑡 𝑣𝑖
TupleGet

𝐸, 𝑡1 ⇓𝑡 𝑣1 . . . 𝐸, 𝑡𝑛 ⇓𝑡 𝑣𝑛
𝐸, (𝑓1 = 𝑡1, . . . , 𝑓𝑛 = 𝑡𝑛) ⇓𝑡 (𝑓1 = 𝑣𝑖, . . . , 𝑓𝑛 = 𝑣𝑛)

Rec

𝐸, 𝑡 ⇓𝑡 (𝑓1 = 𝑣1, . . . , 𝑓𝑛 = 𝑣𝑛) ∀𝑖 ∈ J1;𝑚K, 𝐸, 𝑡𝑖 ⇓𝑡 𝑤𝑗𝑖

∀𝑖 ∈ J1;𝑛K ∖ {𝑗1, . . . , 𝑗𝑚}, 𝑤𝑖 = 𝑣𝑖

𝐸, 𝑡← (𝑓𝑗1 = 𝑡1, . . . , 𝑓𝑗𝑚 = 𝑡𝑚) ⇓𝑡 (𝑓1 = 𝑤1, . . . , 𝑓𝑛 = 𝑤𝑛)
FieldSet

𝐸, 𝑡 ⇓𝑡 𝑣
𝐸, ret 𝑡 ⇓𝑆 𝑣

Ret

𝐸,𝑆𝑖 ⇓𝑆 𝑣 1 ≤ 𝑖 ≤ 𝑛

𝐸, (𝑆1 . . . 𝑆𝑛) ⇓𝑆 𝑣
Branch

𝐸,𝑆 ⇓𝑆 𝑣 𝐸 + 𝑝← 𝑣, 𝑆′ ⇓𝑆 𝑤

𝐸, let 𝑝 = 𝑆 in 𝑆′ ⇓𝑆 𝑤
LetIn

𝑣 ∈ 𝑉𝜏 𝐸 + 𝑝← 𝑣, 𝑆 ⇓𝑆 𝑤

𝐸, let 𝑝 : 𝜏 in 𝑆 ⇓𝑆 𝑤
Exist

𝐸, 𝑡 ⇓𝑡 𝑣 𝐸 + 𝑣match 𝑝1 . . . 𝑝𝑛 = (𝑖, 𝐸′) 𝐸′, 𝑆𝑖 ⇓𝑆 𝑤

𝐸, match 𝑡 with|𝑝1 → 𝑆1| . . . |𝑝𝑛 → 𝑆𝑛end ⇓𝑆 𝑤
Match

𝐸, 𝑡0 ⇓𝑡 𝑓 𝐸, 𝑡1 ⇓𝑡 𝑣1 . . . 𝐸, 𝑡𝑛 ⇓𝑡 𝑣𝑛 𝑓 𝑣1 . . . 𝑣𝑛 ⇓app 𝑤

𝐸, (𝑡0 𝑡1 . . . 𝑡𝑛) ⇓𝑆 𝑤
App

𝑣 ⇓app 𝑣
AppZero

𝐸 + 𝑝← 𝑣1, 𝑆 ⇓𝑆 𝑔 𝑔 𝑣2 . . . 𝑣𝑛 ⇓app 𝑤

⟨𝑝,𝐸, 𝑆⟩ 𝑣1 . . . 𝑣𝑛 ⇓app 𝑤
AppClos

arity(𝑥) > 𝑛

⌈𝑥, (𝑣1, . . . , 𝑣𝑚)⌉ 𝑣𝑚+1 . . . 𝑣𝑛 ⇓app ⌈𝑥, (𝑣1, . . . , 𝑣𝑛)⌉
AppUnspecNext

arity(𝑥) = 𝑚 ≤ 𝑛 J𝑥K(𝑣1, . . . , 𝑣𝑚, 𝑔) 𝑔 𝑣𝑚+1 . . . 𝑣𝑛 ⇓app 𝑤

⌈𝑥, (𝑣1, . . . , 𝑣𝑚)⌉ 𝑣𝑚+1 . . . 𝑣𝑛 ⇓app 𝑤
AppUnspecCont
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