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Abstract
Finite state automata are fundamental objects in Theoretical Computer Science and find their application

in Text Processing, Compilers Design, Artificial Intelligence and many other areas. The problem of

minimizing such objects can be traced back to the ‘50s and since then it has been the arena for developing

new algorithmic ideas. There are two main paradigms to tackle the problem: top down — which builds

a descending chain of equivalences by subsequent refinements — and bottom up — which builds an

ascending chain of equivalences by aggregation of classes. The former approach leads to a fast 𝒪(𝑛 log𝑛)
algorithm, whereas the latter is currently quadratic for any practical application. Nevertheless, the

bottom up algorithm enjoys the property of being incremental, i.e. the minimization process can be

stopped at any time obtaining a language-equivalent partially minimized automaton. In this work we

correct a small mistake in the algorithm given by Almeida et al. in 2014 and we propose a simple, DFS-like

and truly quadratic incremental algorithm for minimizing deterministic automata. Furthermore, we

adapt the idea to the nondeterministic case obtaining an incremental algorithm which computes the

maximum bisimulation relation in time 𝒪(𝑛2𝑟|Σ|), where 𝑛 is the number of states, Σ is the alphabet

and 𝑟 is the degree of nondeterminism, improving by a factor of 𝑟 the running time of the fastest known

aggregation based algorithm for this problem.
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1. Introduction

Finite state automata are fundamental objects in Theoretical Computer Science and find their

application in Text Processing, Compilers Design, Artificial Intelligence and many other areas.

The minimization of an automaton is the process of constructing a new (language-equivalent)

automaton which is minimal in the number of states. This problem can be traced back to the

‘50s by the work of Moore [1]. A fundamental result in Automata Theory is the Myhill-Nerode

Theorem [2], establishing that in the deterministic case this minimal automaton is in fact the

minimum, up to isomorphism. In the wider setting of nondeterministic automata there is no

analog result and finding any state-minimal automaton is PSPACE-complete [3]. For this reason,

a practical alternative is the minimization with respect to bisimulation. Bisimilarity is indeed
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a valid choice since in the deterministic case two states are bisimilar if and only if they are

Myhill-Nerode equivalent.

Thus, the problem of minimizing automata reduces to the problem of computing bisimilarity

between states, which in turn is equivalent to determining the coarsest partition of a set stable

with respect to some binary relation. The two main paradigms to compute the aforementioned

partition are top down and bottom up.

Top down algorithms start with the partition that separates states between final and non final

and subsequently refine the partition until it is stable. By a careful choice of which block of the

partition to split at each refining step, Paige and Tarjan [4] devised an algorithm that computes

the maximum bisimulation equivalence in time𝒪(𝑚 log 𝑛), where 𝑛 is the number of states and

𝑚 is the number of transitions. The iconic Hopcroft’s Algorithm [5] (which Paige and Tarjan’s

solution is based on) deals with the special case of deterministic automata. Furthermore, it has

recently been proved that the bisimilarity computation requires Ω(𝑚 log 𝑛) time assuming top

down algorithms [6].

On the contrary, bottom up solutions start with the finest partition — the one where each

state constitutes a singleton — and proceed by subsequently merging two blocks found to be

equivalent. For this reason, the technique is also known in the literature as partition-aggregation.

The main advantage of this paradigm is that the algorithm is incremental, i.e. it proceeds in

subsequent stages where at the end of each merging step the resulting automaton is language-

equivalent to the input one. In this way, the minimization process can be stopped at any

time and can be resumed later. The first algorithm of this kind is due to Watson [7]. After a

series of improvements Watson and Daciuk [8] reduced the running time to 𝒪(𝑛2|Σ|𝛼(𝑛)) for

deterministic automata with 𝑛 states, alphabet Σ and where 𝛼(𝑛) is related to the inverse of

Ackermann’s function [9] which can be treated as a constant for any practical value of 𝑛1
. The

main idea is to propagate the definition of bisimilarity: if states 𝑝 and 𝑞 are equivalent, then

also their transitions by the same character must lead to equivalent states. This is done by a

recursive function Equiv which resembles an equivalence algorithm by Hopcroft and Karp [10].

A subsequent work by Almeida et al. [11] aimed at simplifying the algorithm by Watson and

Daciuk maintaining its running time. Unfortunately, there is a small mistake in their version of

Equiv which leads to a Ω(𝑛3) algorithm in the worst case.

Above algorithms are focused on the minimization of deterministic automata. The nonde-

terministic case was tackled by Björklund and Cleophas [12] adapting ideas from Watson and

Daciuk. They devised an incremental algorithm for computing bisimilarity in time 𝒪(𝑛2𝑟2|Σ|),
where 𝑟 is the degree of nondeterminism.

In this work we correct the algorithm by Almeida et al. providing a simplified version of

the one by Watson and Daciuk and maintaining the quadratic running time. The solution is

based on the concept of associated graph whose purpose is twofold: to distill the behaviour of

the aforementioned algorithms by interpreting them as graph colorings and to design our own

incremental procedure. Having established the clear connection between minimization and

graph coloring it is natural to generalize the algorithm for solving the bisimilarity problem on

nondeterministic automata. Furthermore, the proposed solution improves by a factor of 𝑟 the

running time of Björklund and Cleophas [13].

1

It holds 𝛼(𝑛) ≤ 5 for 𝑛 ≤ 22
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The paper is organized as follows: in the next section we give the basics about partitions,

relations, and automata. In Section 3 we briefly describe the algorithm by Almeida et al. and

we point out the mistake. In Section 4 we introduce our procedure on the deterministic case.

Finally, in Section 5 we lift the algorithm to the nondeterministic case. Some conclusions are

drawn in Section 6.

2. Preliminaries

2.1. Relations and Partitions

A binary relation from set 𝐴 to set 𝐵 is a subset 𝜌 ⊆ 𝐴×𝐵. Its size will be denoted by |𝜌|. We

say that 𝑎 ∈ 𝐴 is in relation with 𝑏 ∈ 𝐵 whenever (𝑎, 𝑏) ∈ 𝜌, and we denote this by writing 𝑎𝜌𝑏.
If we consider binary relations over 𝐴 (i.e. subsets of 𝐴× 𝐴), it remains defined the identity

relation 𝜄𝐴 = {(𝑎, 𝑎) : 𝑎 ∈ 𝐴}.
An equivalence relation (or equivalence) is a relation which is reflexive, symmetric and

transitive. Given 𝑎 ∈ 𝐴, the equivalence class of 𝑎 is the set [𝑎] = {𝑏 : 𝑎𝜌𝑏}. The quotient set

𝐴/𝜌 = {[𝑎] : 𝑎 ∈ 𝐴} forms a partition of 𝐴.

2.2. Languages and Automata

An alphabet is a non-empty set Σ of symbols. A string is a finite sequence 𝑤 = 𝑤1 . . . 𝑤𝑛 of

symbols. Σ* is the set of all finite length strings of symbols in Σ and we call a subset 𝐿 ⊆ Σ* a

language.

A nondeterministic finite state automaton (NFA) is 𝒩 =
⟨︀
𝑄,Σ, 𝑞0, 𝛿, 𝐹

⟩︀
where 𝑄 is a non-

empty finite set of states, Σ is the alphabet, 𝑞0 is the initial state, 𝛿 : 𝑄 × Σ → 2𝑄 is the

transition function and 𝐹 ⊆ 𝑄 is the set of final states. The degree of nondeterminism is

𝑟 = max𝑥∈Σ,𝑞∈𝑄 {|𝛿(𝑞, 𝑥)|}. We say that 𝒩 is complete if |𝛿(𝑞, 𝑥)| ≥ 1 for every state and

symbol. In what follows we will assume complete automata: this is not a loss of generalities

since it is always possible to complete an automaton by adding one state and suitable transitions.

As usual, the transition function can be recursively extended to strings, i.e. 𝛿* : 𝑄× Σ* → 2𝑄,

still denoted by 𝛿.

We say that state 𝑞 ∈ 𝑄 accepts a string 𝑤 ∈ Σ* if 𝛿(𝑞, 𝑤) ∩ 𝐹 ̸= ∅. The set of strings

accepted by 𝑞 is denoted by 𝐿(𝑞). The language accepted by the automaton is 𝐿(𝒩 ) = 𝐿(𝑞0).
A minimal automaton accepting 𝐿 has the minimum number of states amongst all automata

accepting 𝐿.

A deterministic finite state automaton (DFA) is a NFA 𝒟 with the added condition that for

each symbol 𝑥 and each state 𝑞, |𝛿(𝑞, 𝑥)| = 1.

For an automaton 𝒩 we define the equivalence relation ∼ ⊆ 𝑄×𝑄 as:

𝑝 ∼ 𝑞 ⇐⇒ 𝐿(𝑝) = 𝐿(𝑞)

If 𝑝 ̸∼ 𝑞 we say they are distinguishable and if exactly one of the two is final we say they are

trivially distinguishable.

Given a NFA 𝒩 and an equivalence 𝜌 over its states, its quotient is defined as 𝒩/𝜌 =⟨︀
𝑄/𝜌,Σ, [𝑞0], 𝛿𝜌, 𝐹/𝜌

⟩︀
where 𝛿𝜌([𝑞], 𝑥) = {[𝑞′] | 𝑞′ ∈ 𝛿(𝑞, 𝑥)}. The Myhill-Nerode Theorem

3



Christian Bianchini et al. CEUR Workshop Proceedings 1–13

[2] estabilishes that the quotient automaton 𝒟/∼ is well defined and is the unique (up to

isomorphism) minimal automaton recognizing 𝐿(𝒟).

Definition 1. Given a NFA, a bisimulation is a binary relation over its states such that, for every

pair (𝑝, 𝑞) ∈ 𝐵:

B1. 𝑝 ∈ 𝐹 ⇐⇒ 𝑞 ∈ 𝐹 ,

B2. ∀𝑥 ∈ Σ ∀𝑝′ ∈ 𝛿(𝑝, 𝑥) ∃𝑞′ ∈ 𝛿(𝑞, 𝑥) ∧ (𝑝′, 𝑞′) ∈ 𝐵,

B3. ∀𝑥 ∈ Σ ∀𝑞′ ∈ 𝛿(𝑞, 𝑥) ∃𝑝′ ∈ 𝛿(𝑝, 𝑥) ∧ (𝑝′, 𝑞′) ∈ 𝐵.

Two states 𝑝 and 𝑞 are said bisimilar if there exists a bisimulation which contains (𝑝, 𝑞). The set of

all bisimulations over the states of 𝒩 is denoted by B𝒩 .

The union of two bisimulation is also a bisimulation. In fact, the following generalization of

this observation is a well-known result.

Lemma 1. B𝒩 is closed under union and has a unique largest bisimulation ℬ, which will be called

bisimilarity, it is an equivalence relation, and it relates all and only bisimilar states. ℬ ⊆ ∼ and if

𝒩 is deterministic, ℬ coincides with ∼.

The above properties — combined with efficient algorithms to compute it — justify the use of

ℬ as an approximation of ∼ for nondeterministic automata.

2.3. Partition Aggregation

Given an automaton𝒩 , our goal is to compute the bisimilarity relation ℬ over its set of states, so

that the resulting quotient 𝒩/ℬ can be returned as the minimized version of 𝒩 . The partition-

aggregation strategy will compute an ascending chain 𝜄 ⊆ 𝐵1 ⊆ . . . ⊆ 𝐵𝑛 = ℬ of

bisimulation-equivalences.

A partition-aggregation algorithm proceeds by a sequence of merging steps where at each

step 𝑖 the bisimulation 𝐵𝑖 is computed. Since each 𝐵𝑖 is a bisimulation, the minimization process

can be stopped at any step obtaining a language-equivalent automaton with no more states than

the input one; the minimization process can be resumed later from this intermediate automaton.

In this sense, the algorithm is incremental. This property is not shared with top down algorithms

that proceed by partition-refinement — such as Hopcroft’s Algorithm and its many successors —

where only the final result is a bisimulation.

3. The Algorithm Proposed by Almeida et al.

This section is devoted to a brief description of the algorithm proposed by Almeida et al. It

uses the union-find [14, 9] data structure to manage the partition of states, so that finding and

merging classes with the Find and Union primitives can be done in 𝒪(𝛼(𝑛)).
Pairs of states are recursively considered until their equivalence is estabilished. Intermediate

results are cached, so that queries on pairs of states already found to be (non-)equivalent can be

answered in constant time.

4
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Algorithm 1 Aggregation-based minimization by Almeida et al.

1: function MinimizeAlmeida(𝑄, 𝛿, 𝐹 )

2: for all 𝑞 ∈ 𝑄 do
3: Make(𝑞)

4: 𝐸 ← (𝐹 × 𝐹 c) ∪ (𝐹 c × 𝐹 )
5:

6: for all (𝑝, 𝑞) ∈ 𝑄×𝑄 do
7: 𝑓𝑝← Find(𝑝)
8: 𝑓𝑞 ← Find(𝑞)
9: if 𝑓𝑝 ̸= 𝑓𝑞 ∧ (𝑝, 𝑞) ̸∈ 𝐸 then

10: 𝐸 ← ∅
11: 𝐻 ← ∅
12: if Equiv(𝑝, 𝑞) then
13: for all (𝑝′, 𝑞′) ∈ 𝐸 do
14: Union(𝑝′, 𝑞′)

15: else
16: 𝐸 ← 𝐸 ∪𝐻
17:

18: 𝒫 ← {ClassOf(𝑝) : 𝑝 ∈ 𝑄}
19: return 𝒫
20: end function

21: function Equiv(𝑝, 𝑞)

22: if (𝑝, 𝑞) ∈ 𝐸 then
23: return ⊥
24: if (𝑝, 𝑞) ∈ 𝐻 then
25: return ⊤
26:

27: 𝐻 ← 𝐻 ∪ {(𝑝, 𝑞), (𝑞, 𝑝)}
28: for all 𝑥 ∈ Σ do
29: (𝑝′, 𝑞′)← (Find(𝛿(𝑝, 𝑥)),Find(𝛿(𝑞, 𝑥)))
30: if 𝑝′ ̸= 𝑞′ ∧ (𝑝′, 𝑞′) ̸∈ 𝐸 then
31: 𝐸 ← 𝐸 ∪ {(𝑝′, 𝑞′), (𝑞′, 𝑝′)}
32: if ¬Equiv(𝑝′, 𝑞′) then
33: return ⊥
34:

35: 𝐻 ← 𝐻 ∖ {(𝑝, 𝑞), (𝑞, 𝑝)}
36: 𝐸 ← 𝐸 ∪ {(𝑝, 𝑞), (𝑞, 𝑝)}
37: return ⊤
38: end function

At lines 2–3, the identity relation is constructed and pairs of trivially non-equivalent states

are added to the memoization table 𝐸. In the main loop at lines 6–16, we iterate over all pairs

of states to check for equivalence. If a pair is either on the same class – i.e. is a pair of states

already found to be equivalent – or is in the memoization table – i.e. is a pair of distinguishable

states – the minimization continues to the next iteration. Otherwise, two empty collections 𝐸
and 𝐻 are prepared, respectively the set of wondering pairs of states and the history pairs. 𝐸
and 𝐻 are considered global variables and can be accessed from Equiv. The recursive function

Equiv is responsible for checking if states 𝑝, 𝑞 are equivalent and, if so, pairs in 𝐸 are merged.

Otherwise, all visited pairs are set to be distinguishable and this information is used to update

𝐸. At the end the partition in equivalence classes is returned.

The underlying idea of Equiv(𝑝, 𝑞) is to recursively check the transitions from 𝑝 and 𝑞 on all

symbols. If two states are found to be cached as distinguishable, the recursion stops returning

⊥. If they are found to be in visit, it is useless to continue the visit and nothing can be said (i.e.

Equiv returns⊤ postponing the decision to the upper-level of the recursion). These preliminary

checks are at lines 22–25. Next, each 𝑥-transition is checked recursively in the loop at 28–33,

stopping when the states are found to be distinguishable. At the end, if 𝑝 and 𝑞 are not found to

be distinguishable, the pair is removed from the history 𝐻 and added to the “wondering” pairs

𝐸 and ⊤ is returned.

Detailed proof of the algorithm’s correctness can be found in [11].

On the complexity analysis, the authors claim that the algorithm terminates in time

𝒪(𝑛2|Σ|𝛼(𝑛)). This comes from the assumption that each pair visited during the recursion

of Equiv will be skipped on the subsequent iterations of MinimizeAlmeida (cf. [11, Lemma

4.9]). The assumption is wrong and a family of counterexamples can be constructed such that

MinimizeAlmeida terminates in time Θ(𝑛3|Σ|𝛼(𝑛)) (see Fig 1).
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Figure 1: A small counterexample of [11, Lemma 4.9]:

pair (6, 7) is visited twice. Consider Equiv(2, 3).
Pair (6, 7) is visited a first time by reading 0.

Symbol 1 leads to (4, 5) which stops the recur-

sion without inserting (6, 7) in 𝐸. At some

subsequent iteration, (6, 7) is visited again via

Equiv(6, 7). By generalization of this automa-

ton (𝐴1) automata 𝐴𝑛 of 8𝑛 − 1 states can be

provided such that 𝑛 pairs are visited (roughly)

𝑛2
times each.

4. Deterministic Case

In this Section we present our idea to correct the previously presented algorithm, discussing

its correctness and complexity. The main point is to run the recursive check on a richer data

structure, the associated graph introduced below, whereby the running time of the overall

algorithm is going to be 𝒪(𝑛2|Σ|𝛼(𝑛)).

4.1. The Associated Graph

The reason why Algorithm 1 is not quadratic on some automata is the fact that whenever a pair

of distinguishable states is found the recursion stops losing reusable information gathered on

elements of 𝐸. A graph associated to the automaton clarifies how pairs of states evolve when

they are found to either be equivalent or distinguishable.

Definition 2. Given a DFA 𝒟 its associated graph 𝒢 = (𝑉,𝐴) is defined as:

𝑉 = 𝑄×𝑄,

𝐴 = {⟨𝑝, 𝑞⟩ → ⟨𝛿(𝑝, 𝑥), 𝛿(𝑞, 𝑥)⟩ | 𝑝, 𝑞 ∈ 𝑄, 𝑥 ∈ Σ} .

⟨𝑝, 𝑞⟩ is distinguishable if 𝑝 and 𝑞 are distinguishable and equivalent otherwise.

Coloring 𝒢 with distinguishable vertices black and equivalent vertices white, the problem of

computing ∼ can be seen as the problem of correctly coloring the associated graph.

The algorithm by Almeida et al. can be described as follows: starts by coloring trivially dis-

tinguishable and equivalent vertices in black and white, respectively, and in grey the remaining

vertices. At each iteration of the main loop, it considers a grey vertex ⟨𝑝, 𝑞⟩ and starts a visit of

𝒢 from it. If the visit reaches a black vertex ⟨𝑝′, 𝑞′⟩, the recursion stops and all vertices in the

path from ⟨𝑝, 𝑞⟩ to ⟨𝑝′, 𝑞′⟩ (saved in 𝐻) are colored in black. Otherwise, if all paths lead either

to white or grey vertices all visited vertices are colored white. The main issue with Algorithm 1

is that when a black vertex is encountered all information of vertices in 𝐸 ∖𝐻 gets lost.

4.2. The Algorithm for Deterministic Automata

We now present the minimization algorithm based on the observations above.

6
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Algorithm 2 Proposed algorithm for deterministic automata.

1: function MinimizeDfa(𝑄,Σ, 𝛿, 𝐹 )

2: for all ⟨𝑝, 𝑞⟩ ∈ 𝑄×𝑄 do
3: if 𝑝, 𝑞 are triv. distinguishable then
4: Color(⟨𝑝, 𝑞⟩)← Black

5: else if 𝑝 = 𝑞 then
6: Color(⟨𝑝, 𝑞⟩)←White

7: else
8: Color(⟨𝑝, 𝑞⟩)← Grey

9: for all ⟨𝑝, 𝑞⟩ ∈ 𝑄×𝑄 do
10: if Color(⟨𝑝, 𝑞⟩) = Grey then
11: ℋ ← EmptyGraph

12: 𝑒𝑞 ← Equiv(⟨𝑝, 𝑞⟩)
13: if ¬𝑒𝑞 then
14: ℋ ← Reverse(ℋ)
15: Visit(ℋ, ℎ)

16: for all ⟨𝑝′, 𝑞′⟩ ∈ WhiteV(ℋ) do
17: Union(𝑝′, 𝑞′)

18: end function

19: function Equiv(⟨𝑝, 𝑞⟩) ◁ℋ and ℎ global

20: if ⟨𝑝, 𝑞⟩ ∈ ℋ then
21: return ⊤
22: else if Color(⟨𝑝, 𝑞⟩) = Black then
23: ℎ← ⟨𝑝, 𝑞⟩
24: return ⊥
25: else if Color(⟨𝑝, 𝑞⟩) = White then
26: return ⊤
27: else ◁ here ⟨𝑝, 𝑞⟩ is Grey and fresh

28: Color(⟨𝑝, 𝑞⟩)←White

29:

30: for all 𝑥 ∈ Σ do ◁ in lex. order

31: ⟨𝑝𝑥, 𝑞𝑥⟩ ← ⟨𝛿(𝑝, 𝑥), 𝛿(𝑞, 𝑥)⟩
32: AddArc(ℋ, ⟨𝑝, 𝑞⟩ , ⟨𝑝𝑥, 𝑞𝑥⟩)
33: 𝑒𝑞 ← Equiv(⟨𝑝𝑥, 𝑞𝑥⟩)
34: if ¬𝑒𝑞 then return ⊥
35:

36: return ⊤
37: end function

The general structure of MinimizeDfa is the same as MinimizeAlmeida rewritten in terms of

colorings. The only difference is that instead of maintaining two sets 𝐸 and 𝐻 we maintain the

global variableℋ which represents the visited portion of 𝒢. The idea is that when Equiv(⟨𝑝, 𝑞⟩)
returns to the main loop, after line 15, vertices inℋ will be correctly colored, either in White

or Black. In Algorithm 1 this information was lost while in Algorithm 2ℋ is used to determine

extra black vertices. Helper procedures Reverse and Visit perform, respectively, arc-reverse of

a graph and the Black-coloring ofℋ starting from the source vertex ℎ.

Let us analyze the version of Equiv(⟨𝑝, 𝑞⟩) in Algorithm 2. At lines 20–27 some base cases

are checked. In particular, if ⟨𝑝, 𝑞⟩ is Black, then it is stored in the global variable ℎ and ⊥ is

returned. Otherwise, if ⟨𝑝, 𝑞⟩ is White we return ⊤ to continue the downstream inspection.

Finally, in case ⟨𝑝, 𝑞⟩ is Grey, it is colored White and at lines 30–34 the for loop tries to

continue the recursive visit by reading each symbol in lexicographic order. Before each recursive

callℋ is updated by adding arc ⟨𝑝, 𝑞⟩ → ⟨𝑝𝑥, 𝑞𝑥⟩ — we assume vertex ⟨𝑝𝑥, 𝑞𝑥⟩ is added, if not

already present.

Even though we do not give detailed proofs for space reasons, below we outline the main

arguments for complexity and correctness.

As far as complexity is concerned it is clear that, summing over all the iterations of the main

loop, line 9, the associated graph is visited at most thrice: during the “forward” recursion pass

and, optionally, during Reverse and Visit. In fact, every vertex starts Grey and gets White

during the forward pass of an Equiv-call. Possibly, if the call returns ⊥, some White vertices

become Black. Altogether, considering the cost of maintaining the union-find data-structure,

we have the following: (notice that |𝒢| = 𝑛2 + 𝑛2|Σ|)

Theorem 1. MinimizeDfa algorithm terminates in time 𝒪(𝑛2|Σ|𝛼(𝑛)).

To prove correctness we will show the following invariant at line 16: all vertices in ℋ are

correctly colored either Black or White — Lemma 2 below.

7
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We start by showing some properties of the coloring performed by Equiv and Visit. First of

all, notice that, since we are in the deterministic case, for every 𝑢 = ⟨𝑝, 𝑞⟩ ∈ 𝑉 and 𝑤 ∈ Σ* there

is a unique path in 𝒢 starting from 𝑢 and spelling 𝑤: denote by 𝛿(𝑢,𝑤) = ⟨𝛿(𝑝, 𝑤), 𝛿(𝑞, 𝑤)⟩
the last vertex of this path.

Definition 3. Given 𝑢 ∈ 𝑉 and 𝑤 ∈ Σ*, we say that 𝑤 for 𝑢 is:

1. simple if 𝑢⇝ 𝛿(𝑢,𝑤) in 𝒢 is simple,

2. avalanche
2

if it is simple and vertex 𝛿(𝑢,𝑤) is Black.

If there exists 𝑤 avalanche for 𝑢, denote by av(𝑢) the lexicographically smallest such 𝑤 and name

𝑢⇝ 𝛿(𝑢, av(𝑢)) the avalanche path of 𝑢.

If Equiv(𝑢0) is called in the main loop, line 12, the visit checks all simple words for 𝑢0 in

lexicographic order, either until all words are explored or — if it exists — until av(𝑢0) is found.

Any vertex that can reach the avalanche path should be colored in Black.

Proposition 1. Consider ℋ upon return of Equiv(𝑢0) at line 12. If there exists 𝑢 ∈ ℋ distin-

guishable, then av(𝑢0) exists. Furthermore, if all White vertices in 𝒢 ∖ ℋ are equivalent, then for

every 𝑢 ∈ ℋ, if 𝑢 is distinguishable we have that 𝑢⇝ 𝛿(𝑢0, av(𝑢0)) exists inℋ.

Proof. Suppose 𝑢 ∈ ℋ is distinguishable. First of all, we prove that there exists 𝑤 ∈ Σ* such

that 𝛿(𝑢0, 𝑤) is Black — recall av(𝑢0) is the lexicographically smallest such 𝑤. Since 𝑢 ∈ ℋ,

there exists 𝑤0 such that 𝑢 = 𝛿(𝑢0, 𝑤0). Since 𝑢 is distinguishable, there exists 𝑤1 such that

𝛿(𝑢,𝑤1) is trivially distinguishable (i.e. Black from the start). Thus, 𝛿(𝑢0, 𝑤0𝑤1) is Black.

Let ℎ = 𝛿(𝑢0, av(𝑢0)), 𝑢 ∈ ℋ distinguishable and 𝜋 be the 𝒢-path leading 𝑢 to some trivially

distinguishable 𝑣. We claim 𝜋 must cross the avalanche path of 𝑢0 (call it 𝛼). Suppose not. Since

ℎ is the only Black vertex inℋ, 𝑣 /∈ ℋ. Hence, 𝜋 must traverse some arc 𝑢′ → 𝑢′′ with 𝑢′ ∈ ℋ
and 𝑢′′ /∈ ℋ. By assumption on 𝜋 and construction of Equiv it follows that 𝑢′ /∈ 𝛼 and 𝑢′′ is
White. Since 𝜋 leads 𝑢′′ to 𝑣 it follows that 𝑢′′ is distinguishable contradicting the hypothesis

on White vertices in 𝒢 ∖ ℋ.

Lemma 2. The following hold at the end of each iteration of loop 9–17:

D1. {⟨𝑝, 𝑞⟩ | Color(⟨𝑝, 𝑞⟩) = Black} ∩ ∼ = ∅,

D2. {⟨𝑝, 𝑞⟩ | Color(⟨𝑝, 𝑞⟩) = White} ⊆ ∼.

Proof. Before entering the the loop both properties hold by initialization.

D1. Assume (D1) and (D2) hold before Equiv(𝑢0). It is sufficient to prove that at the end of

the iteration for every ⟨𝑝, 𝑞⟩ ∈ ℋ we have that ⟨𝑝, 𝑞⟩ is Black if and only if ⟨𝑝, 𝑞⟩ is

distinguishable.

(→) If 𝑢 = ⟨𝑝, 𝑞⟩ ∈ ℋ is Black, then it must have been colored by Visit. Therefore,

𝑒𝑞 = ⊥ and before Reverse there was 𝑢 ⇝ ℎ in ℋ. Since ℎ was Black before the

Equiv-call, by (D1) it follows ℎ distinguishable. Thus, ⟨𝑝, 𝑞⟩ is distinguishable.

(←) If 𝑢 = ⟨𝑝, 𝑞⟩ ∈ ℋ is distinguishable, then by Prop. 1 it follows that after Reverse

and Visit pair ⟨𝑝, 𝑞⟩ has been colored in Black.

2

The word “catastrophically" leads to the Black vertex.

8
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D2. It follows from (D1) and the fact that all vertices inℋ are either Black or White.

Theorem 2. Algorithm 2 is correct and incremental.

Proof. Both correctness and incrementality follow from Lemma 2 and the fact that — upon

termination — all vertices of 𝒢 are either Black or White. In particular, (D2) of Lemma 2

proves that Union is always correct.

5. Nondeterministic Case

Algorithm 2 is not directly applicable to the nondeterministic case, the reason being that reaching

a pair of non-bisimilar states — i.e. sufficient condition to color in Black a node by Algorithm 2

— is not a sufficient condition now to declare a pair of states distinguishable.

To tackle this issue we first turn the associated graph into a bipartite graph. In the definition

below, for each state 𝑝 we introduce the shadow state 𝑝 as a distinct copy of the real 𝑝.

Definition 4. Let𝒩 be a complete NFA. The associated graph 𝒢(𝒩 ) is a bipartite directed graph

with vertices 𝑉0 ∪ 𝑉1 and arcs 𝐴0 ∪𝐴1, defined as:

𝑉0 = 𝑄×𝑄,

𝑉1 = {⟨𝑝, 𝑞, 𝑥⟩ , ⟨𝑝, 𝑞, 𝑥⟩ | 𝑝, 𝑞 ∈ 𝑄, 𝑥 ∈ Σ} ,
𝐴0 =

{︀
⟨𝑝, 𝑞⟩ →

⟨︀
𝑝′, 𝑞, 𝑥

⟩︀
, ⟨𝑝, 𝑞⟩ →

⟨︀
𝑝, 𝑞′, 𝑥

⟩︀
| 𝑝′ ∈ 𝛿(𝑝, 𝑥), 𝑞′ ∈ 𝛿(𝑞, 𝑥)

}︀
,

𝐴1 =
{︀⟨︀

𝑝′, 𝑞, 𝑥
⟩︀
→

⟨︀
𝑝′, 𝑞′

⟩︀
,
⟨︀
𝑝, 𝑞′, 𝑥

⟩︀
→

⟨︀
𝑝′, 𝑞′

⟩︀
| 𝑝′ ∈ 𝛿(𝑝, 𝑥), 𝑞′ ∈ 𝛿(𝑞, 𝑥)

}︀
.

⟨𝑝, 𝑞⟩ in “left" 𝑉0 will be called equivalent or distinguishable as in Def. 2.

The bisimilarity between 𝑝 and 𝑞 (Def. 1) can be checked in two steps: 0) choose 𝑥 ∈ Σ and

𝑝′ ∈ 𝛿(𝑝, 𝑥), and 1) respond with suitable 𝑞′ ∈ 𝛿(𝑞, 𝑥). The idea is to mimic step 0) traversing

arcs of 𝐴0 and step 1) traversing arcs of 𝐴1. The triplet ⟨𝑝′, 𝑞, 𝑥⟩ ∈ 𝑉1 indicates that we have

chosen symbol 𝑥, state 𝑝′ ∈ 𝛿(𝑝, 𝑥), and we are expecting to respond with some 𝑞′ ∈ 𝛿(𝑞, 𝑥) (𝑞
provides the information on the state that must respond). 𝐴1 arcs do something similar.

Then we need to tune up nondeterminism and Black coloring of vertices in 𝒢. Observe that

𝑢 ∈ 𝑉0 needs only one Black child to be colored in Black, while it needs all children White to

be colored in White. Dually, 𝑢 ∈ 𝑉1 behaves the same but with reversed colors. A check will

be performed using the variable Doubts(𝑢) which, roughly speaking, counts how many Black

neighbours are needed to mark 𝑢 as Black.

5.1. The Algorithm for Nondeterministic Automata

We present Algorithm 3 for the nondeterministic case, whose essential ingredients are those of

Algorithm 2. Details are left to the reader.

First of all, notice that we are actually dealing with four colors: ⊥ (never been explored),

Grey (in visit), Black (distinguishable) and White (equivalent).

9
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Algorithm 3 Proposed algorithm for nondeterministic automata, adapted from DFA case.

1: {⊥, Black,White,Grey} ← {−1, 0, 1, 2}
2:

3: function MinimizeNfa(𝑄,Σ, 𝛿, 𝐹 )

4: for all ⟨𝑝, 𝑞⟩ ∈ 𝑄×𝑄 do
5: if 𝑝, 𝑞 are triv. distinguishable then
6: Color(⟨𝑝, 𝑞⟩)← Black

7: else if 𝑝 = 𝑞 then
8: Color(⟨𝑝, 𝑞⟩)← White

9: else
10: Color(⟨𝑝, 𝑞⟩)← ⊥
11: for all ⟨𝑝, 𝑞⟩ ∈ 𝑄×𝑄 do
12: ℋ ← EmptyGraph

13: Equiv(⟨𝑝, 𝑞⟩ , 0)
14: for all 𝑢 ∈ 𝑉0 ∩ℋ do
15: ⟨𝑝′, 𝑞′⟩ ← 𝑢
16: if Color(𝑢) ̸= Black then
17: ◁ 𝑢 is either Grey or White

18: Color(𝑢)← White

19: Union(𝑝′, 𝑞′)

20: end function
21:

22: procedure Relax(𝑣) ◁ℋ is global

23: for 𝑢 ∈ Adj(ℋ, 𝑣) do
24: Doubts(𝑢)← Doubts(𝑢)− 1
25: if Doubts(𝑢) = 0 then
26: Color(𝑢)← Black

27: Relax(𝑢)

28: end procedure

29: function Equiv(𝑢, 𝑠) ◁ℋ is global

30: if Color(𝑢) ̸= ⊥ then
31: return Color(𝑢)

32:

33: Color(𝑢)← Grey

34: Doubts(𝑢)← 0
35:

36: for 𝑣 ∈ Adj(𝒢, 𝑢) ∧ Color(𝑢) ̸= 𝑠 do
37: 𝑐𝑜𝑙← Equiv(𝑣, 1− 𝑠)
38: if 𝑐𝑜𝑙 = 𝑠 then
39: Color(𝑢)← 𝑐𝑜𝑙
40: Doubts(𝑢)← 0
41: else if 𝑐𝑜𝑙 = Grey then
42: AddArc(ℋ, 𝑣, 𝑢)
43: Doubts(𝑢)← Doubts(𝑢) + 1

44:

45: if Color(𝑢) = Grey then
46: if Doubts(𝑢) = 0 then
47: Color(𝑢)← 1− 𝑠
48: else if 𝑠 = 0 then
49: Doubts(𝑢)← 1

50:

51: if Color(𝑢) = Black then
52: Relax(𝑢)

53: return Color(𝑢)
54: end function

The procedure MinimizeNfa is structurally the same as MinimizeDfa, the twist being the

usage and maintenance of ℋ. Function Equiv takes two inputs: the current vertex 𝑢 and

the “side" 𝑠 ∈ {0, 1} of the bipartition. If 𝑢 has already been encountered we return its color.

Otherwise, it is colored in Grey with zero Doubts. At lines 36–43 each successor 𝑣 of 𝑢 is

recursively visited. In case 𝑠 = 0 (𝑢 ∈ 𝑉0) if 𝑣 is recursively found Black, then 𝑢 can be safely

marked Black. Otherwise, there is not enough information to safely assign a Black/White

color to 𝑢. In particular, if 𝑣 is Grey we add arc 𝑣 → 𝑢 toℋ (notice that it is reversed w.r.t. the

transition) and we increment Doubts(𝑢) — Blackness of 𝑢 depends on the (possible) future

Blackness of 𝑣. Case 𝑠 = 1 is dual.

Upon leaving the loop at lines 45–49, if 𝑢 is still Grey we consider two cases: if there are no

doubts (i.e. Doubts(𝑢) = 0) each of its successors has the same color (either Black or White)

and this can be safely assigned to 𝑢; otherwise, in case 𝑢 ∈ 𝑉0 we set Doubts(𝑢) = 1.

Proceeding at lines 51–53, if 𝑢 is made Black this information is propagated (Relaxed) to its

neighbours inℋ. Notice that in this case we explicitly define the procedure Relax: in Algorithm

2 the corresponding procedure Visit’s purpose, was to color in Black all vertices reachable

from some distinguishable vertex. In Algorithm 3 we also need to consider the doubts of each

vertex 𝑣 by coloring in Black only non-doubtful vertices.

The complexity is again easy to be determined. Observe that in case the automaton has 𝑛
states and 𝑚 transitions, |𝒢| ≤ 7𝑛𝑚. Equiv performs the equivalent of a visit of 𝒢 and Relax

visits every arc of ℋ at most once. Hence, their cost over all the execution of Algorithm 3 is

10
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bounded by the size of 𝒢. Considering the cost of maintaining the union-find data structures

and recalling that 𝑟 is the degree of nondeterminism, we have the following:

Theorem 3. MinimizeNfa terminates in time 𝒪(𝑛𝑚𝛼(𝑛)) ⊆ 𝒪(𝑛2|Σ|𝑟𝛼(𝑛)).

Let us briefly discuss correctness.

Proposition 2. Let 𝑝 ̸= 𝑞 and 𝑢 = ⟨𝑝, 𝑞⟩ be White. Then, for every arc 𝑢→ 𝑣 ∈ 𝐴0, vertex 𝑣 is

either Grey or White.

Proof. Since 𝑝 ̸= 𝑞, there are only two places at which 𝑢 = ⟨𝑝, 𝑞⟩ changed from Grey to White:

Line 18. In this case, upon termination of Equiv(𝑢, 0) the pair is Grey and Doubts(𝑢) = 1
(line 49). In the loop of its Equiv-call every neighbour was recursively found to be either

Grey or White — or 𝑢 would have been colored in Black. Finally, it cannot be the case

that some Grey neighbour 𝑣 became Black afterward: Relax(𝑣) would have colored 𝑢
in Black by setting Doubts(𝑢) = 0.

Line 47. In this case, inside the loop of Equiv(𝑢, 0) none of 𝑢’s neighbours were found to be

either Black or Grey. Thus, they must all be White.

Therefore, every neighbour of 𝑢 is either Grey or White.

Proposition 3. At line 19 (end of the main loop), for every 𝑣 ∈ 𝑉1 if 𝑣 is either Grey or White,

then there exists 𝑣 → 𝑢′ ∈ 𝐴1 such that 𝑢′ is White.

Proof. If 𝑣 is White, then it must have been colored at line 39 after finding a White neighbour.

If 𝑣 is Grey, upon termination of Equiv at line 13 some of its neighbours must have been found

to be Grey. Since every Grey left node is colored in White before the end of the iteration, it

follows again that 𝑣 has some White neighbour.

Lemma 3. The following hold at line 19 (end of the main loop):

N1. ℛ𝑊 = {⟨𝑝, 𝑞⟩ | Color(⟨𝑝, 𝑞⟩) = White} ⊆ ℬ,

N2. ℛ𝐵 = {⟨𝑝, 𝑞⟩ | Color(⟨𝑝, 𝑞⟩) = Black} ∩ ℬ = ∅.

Proof.

N1. By Lemma 1 it is sufficient to prove thatℛ𝑊 is a bisimulation.

First, notice that pairs violating (B1) are colored in Black from the start. Consider

⟨𝑝, 𝑞⟩ ∈ ℛ𝑊 . If 𝑝 = 𝑞, (B2) and (B3) trivially hold. Otherwise, let 𝑥 ∈ Σ and 𝑝′ ∈ 𝛿(𝑝, 𝑥).
From Prop. 2 it follows that 𝑣 = ⟨𝑝′, 𝑞, 𝑥⟩ is either Grey or White. From Prop. 3 it

follows that some neighbour 𝑢′ of 𝑣 is inℛ𝑊 . By Def. 4 we have 𝑢′ = ⟨𝑝′, 𝑞′⟩ for some

𝑞′ ∈ 𝛿(𝑞, 𝑥). Thus, (B2) holds for ⟨𝑝, 𝑞⟩. The very same argument can be used to prove

that (B3) holds for ⟨𝑝, 𝑞⟩. Hence,ℛ𝑊 is a bisimulation.

N2. The result follows from (N1) and the fact that vertices in 𝑉0∩ℋ are either Black or White.

11



Christian Bianchini et al. CEUR Workshop Proceedings 1–13

Theorem 4. MinimizeNfa is correct and incremental.

Proof. The inclusionℛ𝑊 ⊆ ℬ is (N1). For the converse inclusion notice that it can be easily

checked that, upon termination, every pair ⟨𝑝, 𝑞⟩ ∈ 𝑉0 is either Black or White. Therefore,

ℬ = 𝑉0 ∩ ℬ = (ℛ𝐵 ∪ℛ𝑊 ) ∩ ℬ = ∅ ∪ (ℛ𝑊 ∩ ℬ) ⊆ ℛ𝑊 .

Incrementality follows again from (N1).

6. Conclusions

Bisimilarity is a fundamental (equivalence) relation among the states of finite automata, finding

applications and variants in a number of different areas. Algorithms for computing bisimilarity

are a classic and can be subdivided in two categories: top-down and a bottom-up. The former

(partition refinement) approach starts with a coarse partition and refines it until the result is

produced, while the latter (partition aggregation) starts from a singleton-classes equivalence

relation and merges classes until possible.

Although algorithms belonging to the bottom-up category are, to the best of our knowledge,

still currently asymptotically slower than their alternative ones, aggregation based techniques

enjoy the property of being incremental: automata resulting at intermediate stages of the

computation are partially minimized yet language-equivalent to the input one.

Moreover, partition aggregation algorithms, even though less celebrated than partition

refinement ones — introduced by Hopcroft and generalized by Paige and Tarjan —, are interesting

(at least) for two reasons. The first is theoretical: if two methods computes the same relation

(just one from “above" and the other from “below"), why is there a complexity gap? Is there some

(hidden) cost involved in maintaining incrementality? The second is practical: some applicative

contexts can greatly benefit from having a partially minimized equivalent automaton, especially

when, as alternative, long sequences of refinement steps are involved.

In this work, while fixing a minor mistake in the algorithm by Almeida et al., we reduced

bisimilarity computation to a coloring problem on an associated graph. We then extended the

algorithm to nondeterministic case, obtaining a complexity improvement on the best known

bound for this case. The time complexity of both algorithms carry the 𝛼(𝑛) factor which we

aim to shave off as future work. As a further line of research, it will be interesting to investigate

the effect of applying the technique introduced here to the color refinement algorithm (a.k.a.

Weisfeiler-Leman-1 algorithm, see [15]), currently implemented using an algorithm by Cardon

and Crochemore (see [16]) belonging to the top-down/partition-refinement category.
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