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Abstract
Graph databases are a straightforward technology for storing knowledge graphs. However, they are
schema-less. We apply the GraphBRAIN Schema (GBS) format to describe Time-sensitive Linguistic
Knowledge in a graph database (Neo4j). Our schema can model relations between concepts and words,
information about word occurrences, and diachronic information about concepts and words. This paper
introduces GraphBRAIN technology and describes our model for time-sensitive linguistic data. Moreover,
we provide an example of usage and show the potential of this model for humanities and cultural heritage
research.
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1. Introduction and Motivation

ICT provides an unprecedented opportunity to foster and support the preservation and research
on immaterial Cultural Heritage. A large part of research in the Humanities and Cultural
Heritage (H&CH) sector involves the collection and analysis of the material of cultural and/or
historical interest. Semantic Web technologies have been used successfully in a number of
humanities projects such as the Pelagios project [1] and the Mapping the Manuscripts project
[2]. Given the relevance of textual materials in this research, it is not surprising that significant
progress has been made in the design of linked data models for language data (see, for example,
the excellent survey in Khan et al. [3]). A notable example of a multilingual synchronic language
resource that has had a profound impact on the research community is BabelNet [4], a semantic
network which connects the English computational lexicon WordNet [? ] with a range of Open
Linked Data resources such as Wikipedia and Wikidata, and many others. Alongside such
resources, the research community has developed Semantic Web ontologies such as LeMON [5]
particularly designed for the encoding of linguistic information.
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The ability to model (language) data diachronically, is particularly important as a large part
of HCH work deals with historical data with a view to model change over time. In this line of
research, some work has started on the modelling of cognate words and loan relations between
words [6]. Related to this is the treatment of semantic change, the phenomenon concerned
with the change in the meaning of words over time. The automatic detection of such changes
has seen a very rapid development in Natural Language Processing (NLP) research in recent
years [7, 8, 9], with the majority of the approaches relying on distributional semantics, i.e. on
representations of the semantics of words trained from corpus data covering different time
intervals via embedding technologies. Some studies, e.g. [10], have advocated for the integration
of such distributional approaches with Linked Open Data technologies, stressing how this best
caters for the heterogeneous nature of the data relevant to this phenomenon, which includes
not only language data, but also data on historical events and entities, as well as of bibliographic
and geographic nature. However, Linked Open Data technologies have some limitations which
we propose to address in this paper, as explained below.

Data Bases (DBs) aim at efficient storage, management and retrieval of data. Knowledge Bases
(KBs), investigated in AI, are aimed at supporting formal reasoning on the available information.
A Knowledge Graph (KG) is a kind of KB [11] where an ontology acts as the data model, and the
data are organized in a graph structure [12]:

ontology + data = knowledge graph.

Combining the advantages of Database Management Systems (DBMSs) for handling individuals
(scalability, storage optimization, efficient handling, mining and browsing of the data, etc.) with
the high-level functionalities available in KBs would endow applications with much more power
than allowed by the DB’s query language alone.

An opportunity for such combination comes from the recent development of Graph Databases,
a kind of NoSQL DBs of which Neo4j [13] is the most popular representative. Neo4j has
been adopted by many big companies and governmental organizations for several different
and relevant use cases, including Recommendation, Biology, Artificial Intelligence and Data
Analytics, Social Networks, Data Science and Knowledge Graphs1. Neo4j comes with a powerful
query language (Cypher) and extensive libraries for advanced data manipulation (APOC).

Unfortunately, formal ontologies and graph DBs refer to different graph models, which cannot
straightforwardly be combined together. The standard formalism for expressing ontologies
and KGs is the Web Ontology Language (OWL)2, based on the Resource Definition Framework
(RDF)3. RDF graphs are built upon RDF Triples of the form:

(Subject, Predicate, Object)

representing arcs between the Subject and Object nodes. A more general structure is provided
by the Labeled Property Graphs (LPGs) model [14] (adopted by Neo4j), ensuring great flexibility
and expressive power. In LPGs, both nodes and arcs are associated with unique identifiers,

1https://neo4j.com/use-cases/, consulted September 8, 2021.
2https://www.w3.org/OWL/
3https://www.w3.org/RDF/
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may be labeled, and can store properties represented as key/value maps. Relevant advantages
brought by LPGs over RDF graphs are4:

• In RDF graphs nodes are atomic, while in LPGs they carry information; this ensures amuch
more compact structure in the latter. Consequently, RDF graphs are much less readable
and they also cause a significant decay in efficiency, especially in browsing-intensive
tasks such as Social Network Analysis or Graph Mining algorithms;

• RDF cannot distinguish different occurrences of the same relationship between the same
pair of entities; this is possible in LPGs thanks to the unique identifiers of relationships
instances;

• RDF cannot attach properties to instances of relationships; the reification solution (trans-
forming a relationship instance into an object which has relationships to the original
Subject and Object and to the additional properties) worsens readability; another partial
solution is via annotations.

One limitation of Neo4j is that it is schema-less: the user may apply any label/type or
property to each single node or arc. While ensuring great flexibility, this means that there is
no clear semantics for the graph contents. Developing LPG-based KGs requires the definition
of an LPG-based ontological formalism for expressing graph DB schemas, so as to allow data
interpretability and applications interoperability, and of a mapping between this model and
the standard ontological model adopted in the literature. Research on this topic resulted in
the GraphBRAIN technology, whose peculiarities and advantages are discussed in [15]. In
GraphBRAIN the KB designers must provide pre-specified data schemas, expressed in the form
of LPG-based ontologies, that will drive all subsequent accesses to a Neo4j graph DB. By referring
to a schema, the applications will commit to be compliant with it, as in traditional databases. In
this work, we will adopt GraphBRAIN technology to model time-sensitive linguistic knowledge
in a graph database.

2. GraphBRAIN Graph Database Scheme Format

The GraphBRAIN Schema (GBS) format to define graph DB schemas consists of an XML file
whose tags allow us to exploit the representational features provided for by the LPG model.
Here we will recall its main components (more details can be found in [15]).

The main structure of the XML tags is reported in Listing 1, where the universal entity
Entity and the universal relationship Relationship, acting respectively as the roots of the entity
and relationship hierarchies, are implicitly assumed (recall that in ontological terminology
entities correspond to classes and relationships correspond to object properties). Therefore,
entities and relationships are to be specified only starting from the first level of specialization,
which we will call top level. Since each node (resp., arc) in the graph must be associated with
one top-level entity (resp., relationship), the top-level entities (resp., relationships) are to be
considered as disjoint. They may be the roots of specialization hierarchies of sub-entities (resp.,
sub-relationships). The set of direct specializations of a (sub-)entity or (sub-)relationship are
in turn disjoint and are not to be intended as a partition: instances that do not fit any of the

4https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/, consulted September 8, 2021.
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specializations of a parent (sub-)entity or (sub-)relationship may be directly associated with
the parent. This design choice prevents multiple inheritances, i.e. associating an instance to
many classes belonging to different branches in the hierarchy. We partially recover this at the
level of instances: when two instances of different (sub-)entities represent the same object, we
link them using an aliasOf relationship. The single reference object represented by all these
instances takes the union of their attributes.

1 𝑑𝑜𝑚𝑎𝑖𝑛 // tag enclosing the overall ontology
2 [ 𝑖𝑚𝑝𝑜𝑟 𝑡𝑠]
3 𝑒𝑛𝑡𝑖𝑡 𝑖𝑒𝑠 // tag enclosing the classes
4 {𝑒𝑛𝑡𝑖𝑡𝑦} // see (∗)
5 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠 // tag enclosing the relationships
6 { 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝} // see (∗)

Listing 1: Main structure of GBS files.

Entities and relationships are specified using the structure shown in Listing 2. Reference
is used only in relationships to specify their possible domain-range pairs, taxonomy allows
us to conveniently represent the specialization-type assertions; all other object properties are
to be specified in the relationships section. Attributes are mandatory for entities (an entity
instance must be described by some attribute) and optional for relationships (a relationship may
carry information in its very linking two instances). Specialization is a recursive tag, allowing
us to define hierarchies of sub-entities or sub-relationships. In addition to its own attributes,
each specialization inherits all the attributes of the (sub-)entities (resp., (sub-)relationships) on
the hierarchy path from its specific specialization section up to the corresponding top-level
entity (resp., relationship).

1 (∗) ( 𝑒𝑛𝑡𝑖𝑡𝑦 | 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 | 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ) tag
2 [ 𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠]
3 { 𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐𝑒}
4 [ 𝑡𝑎𝑥𝑜𝑛𝑜𝑚𝑦]
5 {𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛} // see (∗) (recursive)
6 [𝑎𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒𝑠] // specifying the data properties
7 {𝑎𝑡𝑡𝑟 𝑖𝑏𝑢𝑡𝑒}

Listing 2: Structure for describing entity and relationship hierarchies in GBS files.

Regarding datatypes, attributes of type integer, real, boolean, string, text take an atomic
value of the corresponding type, where text is intended for free text of any length. This is
different from string, which has a limited maximum length that can be specified in the ‘length’
attribute. Attributes of type date take values in one of the following forms: year; year/month;
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year/month/day. Attributes of type select denote a choice in an enumeration of values; attributes
of type tree denote a choice in a tree of values; attributes of type entity denote 1:1 relationships
between an instance of the current entity and an instance of another entity (specified in the
‘target’ attribute of the tag), e.g., the birthplace of an entity Person would be modeled as an
attribute of type entity with target=‘Place’.

Each GBS schema is intended to describe one domain. However, sometimes wider domains
involve ontological elements that are already described in more ‘basic’ schemas: for example,
the schemas for Cultural Heritage, Food and Transportations might be exploited in the on-
tology aimed at supporting a touristic application. In such cases, it might be useful to reuse
such schemas, both to standardize the definitions and to build on existing knowledge. The
combination of multiple schemas is more powerful a representation than the simple juxtapo-
sition of their elements. Indeed, their shared entities act as bridges that allow, through the
relationships available in those domains, to connect proprietary entities of each domain that
would not otherwise have a chance to be related with each other. In the GBS framework, classes
and relationships in different ontologies are considered the same (and thus are shared) if they
have the same name. They may have, however, different attributes, reflecting the different
perspectives associated with the different domains. If an attribute is present in different domains
it must have the same type in all of them. Moreover, additional cross-schema relationships (and
entities) may be defined in the overall ontology, building on the existing ones. GBS schemas
support such scenarios by providing for an optional section in which existing schemas can be
imported.

3. Mapping onto DB and Ontology

Since graph DBs are naturally suited to express knowledge graphs, i.e., knowledge bases based
on given ontologies, a fundamental requirement of our approach is that our schemas can be
mapped onto both the DB and to an OWL representation which can then be processed by a
reasoner. In this section, we report how these two mappings work in practice.

As said, part of the main motivation for defining GBS schemas is to endow LPG-based graph
DBs with a schema that ensures a clear semantics to the information pieces they contain and
provides directions for their management and interpretation. In this perspective, the DB users
will be required to work according to pre-specified data schemas expressed in the form of
ontologies.

In our approach we allow a single graph DB to underlie several domains (schemas), provided
that their elements (entities and relationships) are compatible. Each such schema would provide
a partial view of the DB contents, perhaps representing a different perspective.

Let us now show how the GBS elements are implemented using LPG features. Leveraging the
possibility of using many labels for nodes, each node is labeled with the specific entity it belongs
to and with all the domains for which it is relevant (e.g., ‘Herbert Simon’ would be labeled with
‘Person’ for the entity and with ‘economy’ and ‘computing’ for the domains). On the other hand,
since each arc may take at most one type, we use it for specifying the relationship it expresses.

Concerning attributes, a reserved attribute notes is implicitly assumed for both nodes and arcs,
which allows us to add information not accounted for by the other, domain-specific attributes.

5
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Attribute values of types integer, real, boolean, string and text are stored as literal values for
the corresponding DB types, e.g., Neo4j provides the following types matching GBS types:
Integer and Float, Boolean, and String. For types select and tree the string corresponding to
the selected value in the list or tree is stored. An attribute of type entity actually corresponds
to a relationship between the current instance and an instance of the target entity and thus it
is stored in the DB as an arc, connecting the nodes corresponding to these two instances and
having the attribute name as type. Finally, albeit Neo4j provides for temporal types, including
‘Date’, following [13] we propose to model attributes of type date as relationships to one of
the following four entities: Day (representing a specific day of a specific year, with integer
attributes day, month, year ); Month (representing a specific month of a specific year, with
integer attributes month, year ); Year (representing a year, with a single integer attribute year ).

4. Linguistic Knowledge Graph

This section briefly describes the first version of our Linguistic Knowledge Graph. Figure 1 is a
sketch of the Graph Data Model. Our graph aims to model: 1) relations between concepts and
words; 2) information about word occurrences; 3) diachronic information of both concepts and
words. Moreover, we design the graphs considering further extensions, mainly morphological
features and historical events.

Figure 1: Graph Data Model of our Linguistic Knowledge Graph.

6
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Following the structure of existing semantic networks (e.g., WordNet and BabelNet) and
ontologies (LeMON), we design our graph starting from the LexiconConcept that represents
a concept in a specific resource (e.g., WordNet or BabelNet). The LexiconConcept is linked to
a Concept. This structure allows us to define the same concept in different resources. The
lexicon concepts are connected through several semantic relations (hyperonym, hyponym, etc.),
generally represented by the edge :{SEM_RELATION} in the model. Several lexicon entries can
identify the same LexiconConcept. A LexiconEntry is a surface form that refers to one or more
concepts. Lexicon entries can be connected by lexical relations (:{LEX_RELATION} in the graph
model).

LexiconEntry is the root of a hierarchy that includes Lemma and WordForm. A WordForm can
have a Stem. The Lemma class has attributes such as a part-of-speech tag (posTag) and a boolean
(mwe) indicating if the lemma is a multi-word expression or not (e.g., Artificial Intelligence).
Each LexiconEntry refers to a specific Language.

The class Text represents any passage of text, and its hierarchy includes Sentence. In particular,
the relation :HAS_EXAMPLE indicates a passage of text that contains an example of the usage
of a specific LexiconConcept. :HAS_EXAMPLE has the attributes begin and end that indicate the
character offset of where the example starts and ends, respectively. Each Text can belong to a
specific Document, and a Document can be part of a Corpus. The :BELONG_TO relation has an
id that univocally identifies a text in a document and a document in a corpus.

Concerning the diachronic aspect, we model the concept of Date that can be linked to Text,
Document, and Corpus. For example, using this structure we can express when a concept was
used. The graph model also reports Document, and Corpus and the class Person, which can be
linked to Text by the :HAS_AUTHOR relation. Moreover, the class Author is linked to Date
through the relations :BORN and :DIED. The Author is an example of a class external to the
linguistic domain and it highlights how we can easily add classes to our model. In the future,
we plan to include classes for modeling events and linking them to Date and Author.

Figure 2 shows a fragment of the XML file expressing the data model as an LPG ontology,
focusing on LexiconConcept and LexiconEntry entities. In our ontology they are both subclasses
of a ContentDescription entity, and they both have subclasses. In particular, subclasses of Lexico-
nEntry are Lemma andWordForm. Some subclasses add their own attributes to those inherited by
superclasses. Some attributes are required, and some are optional. Some relevant relationships
among these entities are LexiconEntry.hasConcept.LexiconConcept, WordForm.hasLemma.Lemma
and WordForm.hasStem.Stem.

5. Use case

Figure 3 shows the sub-graph related to the Lexicon Entry plane. The extracted sub-graph
shows the concepts associated with the Lexicon Entry by the referring lexical resource, in this
case WordNet, using the HAS_CONCEPT relationship. The concepts sketched are the synsets
airplane.n.01, plane.n.02, plane.n.03, plane.n.04, plane.v.01, plane.v.02. For each Lexicon Concept,
the WordNet glosses are provided by the relation HAS_DEFINITION.

Moreover, the example sub-graph includes a sentence extracted by the book The Last Enemy
and containing the word plane, i.e.

7
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<entities>
<entity name=”ContentDescription”>

<attributes>
<attribute name=”name” mandatory=”true” datatype=”string”/>
<attribute name=”description” mandatory=”false” datatype=”string”/>

</attributes>
<taxonomy>

<value name=”LexiconConcept”>
<attributes>

<attribute name=”id” mandatory=”true” datatype=”string”/>
<attribute name=”resource” mandatory=”true” datatype=”string”/>
<attribute name=”taxonomy” mandatory=”false” datatype=”entity” target=”Taxonomy” />

</attributes>
<taxonomy>

...
</taxonomy>

</value>
<value name=”LexiconEntry”>

<attributes>
<attribute name=”pos” mandatory=”true” datatype=”string”/>
<attribute name=”language” mandatory=”false” datatype=”entity” target=”language” />

</attributes>
<taxonomy>

<value name=”Lemma”>
<attributes>

<attribute name=”posTag” mandatory=”true” datatype=”string”/>
<attribute name=”mwe” mandatory=”false” datatype=”boolean” />

</attributes>
</value>
<value name=”WordForm”>

<taxonomy>
<value name=”Stem”>

</taxonomy>
</value>

</taxonomy>
</value>

</taxonomy>
</entity>
...

<entities>
<relationships>

<relationship name=”hasConcept” inverse=”conceptOf”>
<references>

<reference subject=”LexiconEntry” object=”LexiconConcept”/>
</references>

</relationship>
<relationship name=”hasLemma” inverse=”lemmaOf”>

<references>
<reference subject=”WordForm” object=”Lemma”/>

</references>
</relationship>
<relationship name=”hasStem” inverse=”stemOf”>

<references>
<reference subject=”WordForm” object=”Stem”/>

</references>
</relationship>
...

</relationships>

Figure 2: Fragment of the schema expressed in LPG ontology format

“My plane had been fitted out with a new cockpit hood”.

The book is represented as a Document instance and belongs to the corpus Gutenberg (rel.
BELONG_TO). The rel. HAS_AUTHOR connects the book with the author Richard Hillary, who
was born on the 20th of April 1919 (rel. BORN ) and died on the 08th of January 1943 (rel. DIED).
The book publishing date, i.e. 1942, can be obtained via the rel. PUBLISHED_IN.

The extracted sentence is connected to both the Lexicon Entry plane and the Lexicon Concept
airplane.n.01 respectively by the rels. HAS_OCCURRENCE and HAS_EXAMPLE. The former rel.
addresses the occurrence of the word plane in the sentence, the latter that plane occurs with
the meaning specified by the Lexicon Concept airplane.n.01, i.e.

8
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Figure 3: Example of a sub-graph for the Lexicon Entry plane.

“an aircraft that has a fixed wing and is powered by propellers or jets”.

In both relations, the offsets of the word plane are specified by the relationship attributes, i.e. 3
and 8.

In the proposed example, the time dimension is elicited by three components: the book
publishing date, the date of birth and the date of death of the author Richard Hillary. The
time specifications acquire a relevant role in the context of Diachronic Linguistics. From the
publishing date of The Last Enemy, we can infer that the occurrence of plane in the extracted
sentence is one of the earlier appearances of the word plane with the airplane.n.01 sense.
Furthermore, information about the Author, such as his influences, and the historical period
in which he lived, can enable deeper analyses, guiding the study and the definition of the
cause-effects relationship in Lexical Semantic Change phenomena.

6. Conclusions and Future Work

We have presented a new time-sensitive model of linguistic knowledge that can be used for
graph databases. This model has the potential to be employed in a range of applications in the
CH sector and in Humanities research. In linguistics, the model can be used to investigate word
histories and conduct etymological research, as well as the analysis of quantitative patterns in
the distribution of word senses not only across time (semantic change), but also according to the
authors of the texts and other textual features (semantic variation). Moreover, the model’s ability
to connect word meaning instances in texts with lexical concepts also enables applications in
the growing area of word sense disambiguation from historical texts, which aims to associate
the most likely meaning of a word to an instance of usage of that word in a historical text
[16, 17]. More broadly, research in representing word meaning change in texts can be fruitfully
applied to the automatic detection of concept drift, i.e. the phenomenon by which the definition,
properties, instances or label of a concept change [18, 19], has been shown to have relevant
implications for conceptual history research [20].

In future work, we plan to extend our model to include more information about events.
Moreover, we will import data from several semantic networks and linked open data.
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