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Abstract. Analysis of concept naming in OWL ontologies with set-theoretic se-
mantics could serve as partial means for understanding their conceptual structure,
detecting modelling errors and assessing their quality. We carried out experiments
on three existing ontologies from public repositories, concerning the consistency
of very simple name patterns—subclass name being a certain kind of parent class
name extension, while considering thesaurus relationships. Several probable tax-
onomic errors were identified in this way.

1 Introduction

Concept names in semantic web (OWL) ontologies with set-theoretic semantics are
sometimes viewed as secondary information. Indeed, for logic-based reasoners, which
are assumed to be the main customers exploiting these ontologies, anyhow cryptic
URLs can serve well. Experience however shows that even in ontologies primarily
intended for machine consumption, the naming policy is almost never completely ar-
bitrary. It is important for ontology developers (and maintainers, adoptors etc.) to be
able to see the semantic structure of a large part of the ontology at once, and ontology
editors normally use base concept names (local URLs) and not additional linguistic la-
bels within their taxonomy view. At the same time, while inspecting possibly complex
OWL axioms, self-explaining concept names (even independent of their context in the
taxonomy) are extremely helpful.

This leads us to the hypothesis that concept naming in OWL ontologies can (at least
in some cases) be a useful means for analysing their conceptual structure, detecting
modelling errors and assessing their quality. Obviously, a ‘true’ evaluation of concept
naming in specialised domain ontologies requires deep knowledge of the domain. We
however assume that even in specialised ontologies, the ‘seed’ terms often belong to
generic vocabulary and the domain specialisation is rather achieved via adding syntactic
attributes (such as adjectives or nouns in apposition), leading to multi-word terms. The
class-subclass pairs would then often be characterised by the presence of a common
token (or sequence of tokens) on some particular position; we can see this as a simple
(atomic) name pattern. Although the proportion of instances of such a pattern only
represent a fraction of all subclass relationships1, in large- and medium-sized ontologies
this may suffice for partial assessment of the consistency of naming, as part of ontology
quality evaluation.

1 Based on our preliminary analysis, we estimate this fraction to float around 50%, depending
on domain specificity and other factors.



Atomic name patterns can then be weaved into more complex pattern structures
with their own semantics. The deeper understanding of the structure of an ontology
thus acquired can help in e.g. mapping it properly to other ontologies.

The paper is structured as follows. Section 2 sets up the token-level background
for our name patterns. Section 3 explaines the name patterns themselves. Section 4
describes the initial experiments on three ontologies and attempts to interpret their re-
sults. Section 5 surveys some related work. Finally, section 6 summarises the paper and
outlines some future work.

2 Matching Tokens in OWL Concept Names

All name patterns we consider in this work are built upon the sub-string relationships
between pairs of concept names, at token level. The token-level relationship can in gen-
eral have the nature of prefix, postfix or infix, possibly adjusted with some connective.
For example, the name ‘WrittenDocument’ can be extended via prefix to ‘HandWrit-
tenDocument’ or via infix to ‘WrittenLegalDocument’. A postfix extension could be
e.g. ‘WrittenDocumentTemplate’, which, however, unlike the previous ones, would not
be adequate for a subclass of ‘WrittenDocument’, as the main term (distinguished by
its placement as end token) has changed. An adequate postfix extension for a subclass
would in turn be e.g.‘WrittenDocumentWithComments’; here however the postfix has
the form of prepositional construction appended to the main term (thus preserved).

Tokenisation is, for ‘technical’ items such as OWL concept names, usually as-
sumed to rely on the presence of one of a few delimiters, in particular: underscore
(Concept name), hyphen (Concept-name) and change of lowercase letter to uppercase
(ConceptName), which is most parsimonious and therefore most frequent. Although the
semantics of these delimiters could in principle differ (especially the hyphen is likely to
be used for more specific purposes than the remaining two, on some occasions), we will
treat them as equivalent for the sake of simplicity. We will also ignore sub-string rela-
tionship without explicit token boundary (i.e. between two single-word expressions),
assuming that they often deviate from proper subclass relationship (as in ‘fly’ vs. ‘but-
terfly’, or even worse e.g ‘stake’ vs. ‘mistake’).

The mentioned token-level structures then have to be tracked over the ontology
structure (for simplicity let us only consider taxonomic paths). This could lead to an
inventory of naming patterns, some of which we considered in our start-up analysis
presented below. The most obvious naming pattern is of course the one already men-
tioned: a subclass name being token-level extension of its parent class. Such patterns
can already be assigned some status wrt. ontology content evaluation and possible refac-
toring. Although the ‘token analysis’ approach used is admittedly quite naive from the
NLP point of view, we believe that, due to the restricted nature of concept names in on-
tologies, we would not need much more for covering the majority of multi-word names
in real-world ontologies.



3 Some Ammunition for Pattern-Based Evaluation

Let us now outline a few, still rather vague, initial hypotheses concerning the interpre-
tation of name patterns.

The first one, concerning subclassing, is central in our initial investigation:

Hypothesis 1 If the main term in the name of a class and the main term in the multi-
word name of its immediate subclass do not correspond2 then it is likely that there is a
conceptual incoherence.

The hypothesis anticipates that ontology designers should not often, while subclassing,
substantially change the meaning of the main term in the name, as the main term is
likely to denote the conceptual type of the underlying real-world entity, and they are
obliged to keep the set-theoretic consistency (all instances of the subclass also have to
be instances of the parent class). They may however subclass a multi-word name with
a rather specific single-word name.

The second hypothesis is closely related:

Hypothesis 2 If the two main terms from Hypothesis 1 only correspond via some long-
range terminological link then it is likely that there is a shift to a more specific domain
with its own terminology.

This hypothesis might help suggesting points for breaking large monolithic ontologies
into more and less specific parts.

We also formulated two hypotheses that involve more extensive graph structures of
the taxonomy.

Hypothesis 3 Concept with the same main term in their names should not occur in
separate taxonomy paths.

In other words, if there are several partial taxonomies with the same main term, they
are candidates for merger.

Hypothesis 4 If two taxonomy paths exist such that one contains a class X and its
subclass Y, and the other contains a class Z and its subclass W, such that the name of
X is token-level extension of the name of Z, with different main term, and the name of
Y is token-level extension of the name of W, with different main term, then both paths
should be linked with some property and the name pattern should probably apply for
the descendants of Y and W as well.

This amounts to identification of ‘parallel’ taxonomies of related (but conceptually dif-
ferent) entities, which may also be quite important e.g. in ontology refactoring as well
as mapping.

In the experiments below we only systematically compare Hypothesis 1 to our find-
ings. We however occasionally mention the other three hypotheses where relevant.

2 The specification of ‘correspondance’ is discussed in section 4.1.



4 Experiments

In the initial, manual3, phase of our experiments, we restricted the analysis to 3 small- to
medium-sized ontologies we picked from public repositories. Their choice was more-
or-less ‘random’, we however avoided ontologies that appear as mere (converted) ad hoc
taxonomies without the assumption of set-theoretic semantics, as well as ‘toy’ models
designed for demonstrating DL reasoning (such as ‘pizzas’ or ‘mad cows’), which are
actually quite common in such repositories, cf. [9].

4.1 Settings

In designing the experiments, there were numerous choices, especially concerning:

1. What patterns to follow
2. Whether to only consider the own structure of the ontology or also that of imported

ontologies such as upper-level ones (namely, SUMO, in two out of the three cases)
3. Whether to require for fulfilling the patterns that the main term should be identical

in the parent class and subclass, or also allow hyponymy/synonymy.

For the first issue we eventually decided to only consider two concrete patterns. The
one is the presence of a common end token; note that this covers all cases of prefix
and infix extension. The second (which proved much more rare) is the postfix extension
starting with the ‘of’ preposition.

For the second issue we decided to restrict the analysis to the current ontology only
(i.e. both members of the evaluated concept pairs had to be from the current ontology),
but including concepts from imported ontologies that belong to the same domain (or
mean only very slight domain generalisation). The rationale is that we did not intend to
evaluate the way the concepts from the current ontology are grafted on the upper-level
ontology, but only the design of the current ontology proper.

For the third issue, we decided to use WordNet4, with the assumption that a general
thesaurus is likely to contain the main terms of multi-word domain terms. However, we
separately counted and listed the cases where the pattern compliance was established
via WordNet only. We did not use WordNet for single-token subclass terms5; we rather
excluded them from the analysis.

The results of the analysis amount to the simple statistics of:

1. Class-subclass pairs where (one of the two considered) name patterns hold directly.
2. Class-subclass pairs where a name pattern holds via WordNet only.
3. Class-subclass pairs where name patterns don’t hold even via WordNet, but we

eventhough assessed the subclass relationship as correct.
4. Class-subclass pairs where name patterns don’t hold even via WordNet, and we

assessed the subclass relationship as incorrect (at least at the level of class names).

3 For examining the ontologies, we simply unfolded their taxonomies in Protégé.
4 http://wordnet.princeton.edu/
5 Our main focus are specialised domain ontologies, whose single-token terms are likely to

either miss in standard lexical databases or exhibit a meaning shift there.



In the tables below, the cases 2, 3 and 4 are explicitly listed and commented. Three sym-
bolic labels were added for better overview. � means: correct relationship, contradicts
our Hypothesis 1. � means: incorrect, conforms to our Hypothesis 1. Finally, ⊗ means:
main terms correspond via thesaurus, i.e. Hypothesis 1 does not apply6.

The number of cases 3 (‘false positives’) and 4 (‘true positives’) can be viewed
as evaluation measures for our envisaged method of conceptual error detection. There
could potentially be ‘false positives’ even among the cases 2 (and theoretically even
among the cases 1) due to homonymy of terms; we however did not clearly identify any
such case. The accuracy of our approach can thus be simply established as the ratio of
the number of cases 4 vs. the number of cases 3+4.

4.2 ATO Mission Models Ontology

This, US-based military (ATO probably stands for ‘Air Tasking Order’) ontology, which
we picked from the DAML repository7, is an ideal example of highly specific ontology
rich in multi-token names; there are very few single-token ones, and none of these is
involved as subclass in one of the subclass relationships. The ontology contains 86
classes (aside classes inherited from imported ontologies), and there are 116 immedi-
ate subclass relationships8 (including some multiple inheritance). Of them, 95 comply
with the name patterns, and 21 don’t. Table 1 lists and comments the subclass rela-
tionships that break the name pattern. We assume (see the table) that the majority of
non-compliance cases (11, i.e. 52%) are modelling errors9; some others (5, i.e. 24%)
are not strict non-compliance as relationship between the names could be determined
using WordNet, and only a few (5, i.e. 24%) seem to be ‘false alarms’. In addition, the
ontology contains some portions relevant to Hypotheses 3 (e.g. some ‘missions’ placed
beyond the main ‘mission’ taxonomy and under some other concepts) and 4 (e.g. par-
allel taxonomies for ‘missions’ and ‘mission plans’).

4.3 Government Ontology

This ontology (also from the DAML repository), is relatively smaller and less domain-
specific; it contains 53 classes (aside classes inherited from imported ontologies), and
there are 27 immediate subclass relationship (including some multiple inheritance). Of
the subclass relatioships, 11 comply with the name patterns and 13 don’t; finally, 3
involve a single-token subclass, thus being irrelevant for our method. Table 2 lists and
comments the subclass relationships that break the name patterns.

4.4 EuroCitizen Ontology

This ontology, picked from the OntoSelect10 repository, contains 71 classes. It has no
explicit imports, but largely borrows from SUMO at higher levels of the taxonomy. It

6 But Hypothesis 2 might do if the correspondence is ‘long range’ only.
7 http://www.daml.org/ontologies/
8 Here we also considered relationships such that the superclass belonged to the imported but

tightly thematically linked ATO ontology.
9 Or, possibly, artifacts of the DAML→OWL conversion.

10 http://olp.dfki.de/ontoselect/



Superclass Subclass/es Comment
AirspaceControlMeasure AirCorridor � Subclassing indeed looks

TimingReferencePoint misleading. A ‘measure’ can
DropZone be setting up e.g. a corridor,
CompositeAirOperationsRoute but not the corridor itself.

AirStation AirTankerCellAirspace � Rather evokes part-of
relationship but hard to
judge w/o domain expertise.

ATOMission AircraftRepositioning � By the available comment,
means AircraftRepositioningMission.
However, ‘repositioning’ looks like
acceptable term, though not hyponym
of ‘mission’ in WordNet.

ATOMission CompositeAirOperations ⊗ ‘Mission’ is direct
hyponym of ‘operation’
in WordNet. Note however
the misuse of plural form.

ATOMissionPlan IndividualLocationReconnais- � The ‘Plan’ token erroneously
sanceRequestMission missing. The remaining 19
MissileWeaponAttackMission sibling subclasses do have it.

CommandAndCon- AirborneElementsTheaterAirCon- � Subclass clearly misplaced,
trolProcess trolSystemMission ‘mission’ concept non contiguous.
CommandAndCon- ForwardAirControl � Probably means
trolProcess ForwardAirControlProcess.
CommandAndCon- FlightFollowing ⊗ ‘Following’ could be seen as
trolProcess process (it is hyponym of

‘processing’ in WordNet).
Hypothesis 2 might apply.

ConstraintChecking RouteValidation � Specialisation to subdomain;
‘validation’ should be closely
related to ‘checking’ but surprisingly
is not in WordNet.

ControlAgency ForwardAirControllerAirborne � A tricky case: the end token in
subclass is actually an attribute
of the true entity (‘controller’).
Furthermore, although the
relationship between ‘agency’ and
‘controller’ is not intuitive, it
might be OK in the domain context.

ForwardAirControl AirborneBattleDirection ⊗ ‘Direction’ is direct
subclass of ‘control’
in WordNet.

GroundTheaterAirCon- ControlAndReportingCenter � Though the relationship between
trolSystem ControlAndReportingElement the end tokens is not intuitive,

it looks OK in the domain context.
IntelligenceAcquisition AirborneEarlyWarning � Rather looks like two subsequent

processes: warning is preceded
by intelligence acquisition.
However the end token ‘acquisition’
bears little meaning by itself.

ModernMilitaryMissile ArmyTacticalMissileSystem � A system (i.e. group) of missiles,
possibly including a launcher,
is probably not a subclass of ‘missile’.

PrepositionedMate- GroundStationTankerMission ⊗ ‘Mission’ is close hyponym
rielTask of ‘task’ in WordNet.
SupportingTask GroundStationTankerMission ⊗ As above.

Table 1. Name pattern breaks in the ATO Mission Models ontology



Superclass Subclass/es Comment
AreaOfConcern TransnationalIssue � Pattern 2 applies. Interestingly,

here the ‘semantic’ term is rather
that after ‘of’: ‘issue’ is close
hyponym of ‘concern’ in WordNet.
Note that Hypothesis 3 would incorrectly
suggest to integrate this concept
into the taxonomy of geographic areas.

DiplomaticOrganization ConsulateGeneral � A tricky case: the subclass
name is a noun phrase obeying
French rather than English
syntax rules.

GovernmentOrganization GovernmentCabinet ⊗ ‘Cabinet’ is hyponym of
‘organisation’ in WordNet.
Hypothesis 2 might apply.

JudicialOrganization AppealsCourt ⊗ ‘Court’ is hyponym of
(+ 3 other court types) ‘organisation’ in WordNet.

Hypothesis 2 might apply.
LegislativeOrganization LegislativeChamber � Correct. None of the

senses of ‘chamber’ is closely
related to ‘organisation’ in WordNet

OverseasArea BritishCrownColony ⊗ Both ‘colony’ and ‘territory’
UnincorporatedUni- are close hyponyms of ‘area’
tedStatesTerritory in WordNet.

PoliticalParty PoliticalCoalition � Political coalitions often
have similar rights as parties but
they are not conceptually identical.
‘Coalition’ is also not hyponym
nor synonym of ‘party’ in WordNet.

SuffrageLaw RestrictedSuffrage � The (restricted) suffrage
by itself is obviously different
from the law that imposes it.

SuffrageLaw VoterAgeRequirement ⊗With some reservation, voter
age requirements can probably be
viewed as ‘suffrage laws’. This
case however reveals the pitfalls
of using WordNet, as ‘requirement’
is indeed hyponym of ‘law’ there.
Hypothesis 2 might apply.

Table 2. Name pattern breaks in the Government ontology



Superclass Subclass/es Comment
Blood BloodGroup � Incorrect. In the veins there

are not amounts of a bloodgroup but
amounts of blood having some group.

CombatSport MartialArt � Correct. Somewhat marginal usage
of ‘art’.

ContentBearingObject NaturalLanguage ⊗ ‘Object’ is again an extremely
versatile concept; but ‘natural language’
is its long-range hyponym in WordNet.
Hypothesis 2 might apply.

HumanAttribute ReligiousBelief � Correct. The problem is due to
the notion of ‘attribute’ being
extremely versatile.

HumanBloodGroup RhesusBloodGroupSystem � Incorrect. The Rhesus system
is an individual rather than class;
it defines blood groups rather
than having them as instances.

LandArea StateOrProvince ⊗ ‘Province’ is direct hyponym of ‘area’
in WordNet. However, the term should not
be treated as multi-word proper; it is
a logical disjunction.

Region GeographicArea ⊗ ‘Area’ is direct hyponym of ‘region’
in WordNet.

TeamSport IceHockey ⊗ ‘Hockey’ is hyponym of ‘sport’
in WordNet.
Hypothesis 2 might apply.

WaterSport InTheWater � Shortcut that makes the names
OnTheWater too context-dependent.

Table 3. Name pattern breaks in the EuroCitizen ontology

is rather heterogeneous (with respect to its relatively tiny size), but contains clusters
of related concepts, where name patterns can be identified. The overall quality of the
ontology does not seem to be very high, as it contains many clear modelling errors, such
as apparent instances formalised as classes. The outcomes of analysis are in Table 3.

4.5 Summary

Table 4 shows the overall figures. The results are obviously most promising for the ATO
Mission Models ontology, which is most domain-specific of the three. In general, the
proportion of multi-word names seems to decrease with the growing generality of the
ontology (EuroCitizen being the most general of the three). The accuracy of ‘incon-
sistency alarms’, if they were properly implemented, could be acceptable for human
inspection and evaluation of the ontology. However, perhaps with the exception of ATO
Mission Models, the coverage of our simple approach is still too small to guarantee
substantial ‘cleaning’ of taxonomic errors.



ATO Missions Government EuroCitizen
Subclass relationships 116 27 62
with multi-token subclass 116 24 40
Pattern-compliant (identical) 95 11 30
Pattern-compliant (WordNet) 5 8 4
Pattern-non-compliant, incorrect (‘true alarm’) 11 2 4
Pattern-non-compliant, correct (‘false alarm’) 5 3 2
Pattern proportion (w/o use of WordNet) 82% 41% 48%
Accuracy of ‘alarm’ 69% 40% 67%

Table 4. Summary of results

5 Related Work

Our research is to some degree similar to projects aiming at converting shallow models
such as thesauri or directory headings to more structured and conceptually clean ontolo-
gies [2–6]. The main difference lays in our assumption that the ontologies in question
are already intended to bear set-theoretical semantics, and that the ‘inconsistencies’ in
naming patterns are due to either sloppy naming (possibly just reflecting shortcut ter-
minology used by domain practitioners) or more serious modelling errors, rather than
being an inherent feature of (shallow) models.

On the other hand, the research in ‘true’ OWL ontology evaluation and refactoring
has typically been focused on their logical aspects [1, 10]. Our research is, in a way, par-
allel to theirs. We aim at similar long-term goals, such as detecting potential modelling
inconsistencies or making implicit structures explicit. We however focus on a different
aspect of ontologies: the naming policy. Due to the subtler nature of consistency or im-
plicit structures in these realms (usually requiring some degree of acquaintance with the
domain), the conclusions of name pattern analysis have probably to be more cautious
than those resulting from logic-based analysis.

6 Conclusions and Future Work

We presented a simple method of tracking name patterns (based on token-level ex-
tensions) over OWL ontology taxonomies, which could help detect some errors with
respect to their set-theoretic interpretation. Initial experiments on three ontologies from
public repositories indicated that the method has some potential, although the perfor-
mance will probably largely vary from one ontology to another, especially with respect
to their domain specificity.

There are various directions in which our current work ought to be extended. First
of all, the so far manual process of pattern (non-compliance) detection used in the very
first experiments should be replaced by an automatic one. We also plan to reuse expe-
rience from popular NLP-oriented methods of ontology ‘reconstruction’ from shallow
models, such as those described in [3] or [5]. Consequently, we should, analogously
to those approaches, adopt at least a simple formal model. Furthermore, concept names
used as identifiers are obviously not the only lexical items available in ontologies. future



(especially, more automated) analysis should pay similar attention to additional, poten-
tially even multi-lingual lexical labels (based on rdf:label) and comments, which
may help reveal if the identifier name is just a shortcut of the ‘real’ underlying concept
name. In addition to class names, property naming (in connection with their domain
and range) should also be followed, e.g. as drafted in [7]. In long term, we perceive as
important to combine the analysis of naming patterns with the analysis of logical pat-
terns, in the sense of ‘guessing’ the modeller’s original intention that got distorted due
to the representational limitations of OWL. Our closely related interest is also the use
of discovered patterns for mapping between ontologies. We already started to test the
behaviour of some well-known (string-based and graph-based) ontology mapping meth-
ods with respect to naming patterns present in ontologies, using synthetic ontology-like
models [8]. In the future, the analysis of (naming and other) patterns would be used as
pre-processing step to mapping.

The research was partially supported by the IGA VSE grants no.12/06 “Integration of
approaches to ontological engineering: design patterns, mapping and mining”, no.20/07
“Combination and comparison of ontology mapping methods and systems”, and by the
Knowledge Web Network of Excellence (IST FP6-507482).
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