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Abstract
We provide a formal model based on extended state machines (EFSMs) with the addition of so-called
admissibility functions to describe the state changes of an asset for interactions between HTTP agents
and the asset by using the abstraction of properties, actions, and events. Furthermore, we describe the
RESTful interface for assets that can be derived from EFSMs to offer assets’ interactions in a clearly
defined way and based on established standards. We use the continuous example of a robot arm to
explain our results and provide the complete interaction model for the robot arm.
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1. Introduction

In the past semantic digital twins have been built by enriching machine data with semantics
(using RDF uplifting) and making that data available [1]. For this purpose only an interface
for reading the Linked Data is necessary. A real digital twin that is not just a digital shadow,
however, must also offer the capability to interact with it by sending data to the digital twin
that influences it in some way and thus also the asset that is modeled by the twin. An example
of this we will also look at in greater detail, later on, would be a robot arm. We could use a
semantic digital twin to, on the one hand, get semantic information about the robot arm, but on
the other hand, also control the robot by sending RDF to the digital twin.

The question arises, what the RDF that must be sent to the digital twin in order to control it,
should look like. For this purpose it is very helpful to have a clearly defined interface with clear
semantics for the interactions between agents and digital twins, i.e. we need an interaction
model that can be formally described. This will also easy automatic composition or orchestration
of several semantic digital twins.
For the interface, it makes sense to build on technologies that support semantics and are

already well established for companies. Thus we want to build the interface on existing Web
technologies like REST, HTTP, and RDF. Utilizing these technologies makes a semantic digital
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twin even more useful because it can be easily integrated into the existing IT infrastructure of
companies, the number of semantic digital twins can be scaled up massively and data can be
integrated among all those twins in a straightforward way.
In view of the above considerations, we will treat a digital twin as a read-write interface

for assets, additional services (e.g. a predictive maintenance model) that are often seen as an
integral part of a digital twin can be implemented in a decoupled way as microservices on top
of that read-write interface of the digital twin.
In this paper, we provide a formal model based on extended finite state machines for the

semantics of interactions between HTTP agents and digital twins. This model can be used to
clearly define what effects a certain interaction with an asset has on its current state.
In the next section, we describe the related work. In Section 3 we briefly introduce the two

concepts we are building our work upon, namely REST and extended finite state machines.
In Section 4 we describe our formal interaction model and in Section 5 the related RESTful
interface. In Section 6 we give a short discussion of the results and conclude our work in Section
7.

2. Related Work

The Web of Things (WoT) is an initiative to solve the increasing fragmentation of Internet
of Things devices (i.e. the fact that one needs a new app for every device) by proposing a
uniform application layer: the web. One central concept of the WoT are the so-called Thing
Descriptions which are a semantic self-description of a device and its capabilities. Charpenay
et al. [2] introduce the ontology for Thing Descriptions and they also specifically talk about
interactions that things should expose. Even though they define interactions as web resources
and state that there are three patterns for interaction (properties, actions, and events similar to
our approach) they stay relatively vague about what exactly the difference between them is and
do not give a clear definition. It is also not clear for the Web of Things which effects a certain
interaction exactly has.

Ewert et al. [3] implemented asset administration shells which can be seen as a precursor for
digital twins. The administration shells are based on so-called submodels that each describe one
technical aspect of an asset. Submodels can specify properties, operations (similar to actions),
and events for interaction with the asset. While Ewert et al. describe a clear interface for the
interactions using MQTT, they also do not give semantics to the interactions, i.e. it is not clear
what happens to the asset when a certain operation is executed or a property is changed.

Harth and Käfer [4] outline a formalism for Read-Write Linked Data based on state transition
systems. They use a regular finite state machine formalization for their definition of a Linked
System. Harth and Käfer do not differentiate between properties and actions as we do. Thus
every HTTP request is an action and consequently leads to a transition in their model. In
contrast for our model a PUT request just changes properties and does not lead to a change of
the (symbolic) state. Hence our model can use much fewer states and thus prevent a possible
state space explosion (to model a property of type xsd:integer, a finite state machine would
already need infinitely many states, an extended finite state machine can cope with just one).

Gómez-Berbís and de Amescua-Seco [5] use Knowledge Graphs to give semantics to sensor



data of a digital twin, however, they only regard parameters (properties) to measure, analyze
and monitor assets but they make no claims about how parameters to be changed in order to
control the asset.

Boje et al. [6] propose the use of a semantic digital twin for the construction sector by using
building information models. Although the authors acknowledge the need for a digital twin to
be able to control the asset through its actuators their analysis of the research landscape does
talk about sensing and monitoring, actuation, controlling, or interaction with the asset is not
even a category for their comparison of different studies (the reason might be that this aspect
of digital twins has not got much attention so far).

3. Preliminaries

3.1. Representational State Transfer (REST)

Representational State Transfer (REST) is an architecture style for distributed software systems
introduced by Fielding [7]. REST comprises a set of constraints that should be fulfilled in order
to create software systems that scale massively, like e.g. the Web. The constraints defined by
Fielding are the following:

• Client-server principle
• Stateless communication
• Cachability
• Uniform interface (Unique resource identifiers, Resource manipulation through represen-
tations, Self-descriptive messages, Hypermedia as the engine of application state)

• Layered System
• Code-on-demand

For our work, the most important point in this enumeration is resource manipulation through
representations. This means that in RESTful architectures, the state of resources cannot be
changed by some explicit operation but only by submitting its new state to the resource. Suppose,
e.g. we have a resource ”counter” that has the state ”3”. When we want to increase the counter
by one, we cannot just call an operation ”increaseByOne” that does the increment but we
explicitly have to tell the ”counter” that its new state should be ”4” (in case of HTTP often done
using a PUT request).
REST constraints are quite general and could be applied to many technologies, most of the

time, however, the REST principles are used for building scalable HTTP APIs. Because of the
popularity of HTTP-based REST APIs on the Web, we also want our interaction model for
semantic Digital twins to comply with the REST constraints. This makes it easy to interface
with existing Web-based infrastructure as well as to scale up the number of semantic digital
twins in use, as needed when using them in large-scale factories.



3.2. Extended Finite State Machines (EFSM)

Extended finite state machines (EFSMs) [8] are a generalization of the well-known finite state
machine (FSM) model1 that is being used in process of verification of soft- and hardware.

Informally, EFSMs extend FSMs by adding stateful variables to the machine, i.e. the current
state of the machine is defined by an assignment of those variables together with the current
symbolic state of the machine (which is comparable to the state in traditional FSMs). The
current assignment of the variables is also used to determine which transitions from the current
symbolic state to another one are allowed (enabled) and which are not.

The EFSM model assumes that variables are only changed when a transition happens and the
way they are changed is defined in the update function for the transition. However, as we want
our system to conform to the REST constraints, we need to take into account the fact, that the
state of an asset can be manipulated directly and arbitrarily through the use of representations.
This means that we cannot assume that the variable assignment will always stay the same
while the EFSM is in the same symbolic state (as it could be changed using e.g. an HTTP PUT
request). Nevertheless, we need to define which variable assignments are valid for a certain
symbolic state2 and thus slightly extend the EFSM model by an admissibility function.
We thus define an EFSM as a 10-tuple 𝐸 = (𝑆, 𝐼 , 𝑂, 𝐷, 𝐹 , 𝑈 , 𝑇 , 𝐴), where

• 𝑆 is the set of symbolic states,
• 𝐼 is a set of input symbols,
• 𝑂 is a set of output symbols,
• 𝐷 is an n-dimensional space 𝐷1 × ⋯ × 𝐷𝑛 (i.e. the value space of all variables),
• 𝐹 is a set of enabling functions 𝑓𝑖 such that 𝑓𝑖 ∶ 𝐷 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒},
• 𝑈 is a set of variable update transformations 𝑢𝑖 such that 𝑢𝑖 ∶ 𝐷 → 𝐷,
• 𝑇 is a transition relation such that 𝑇 ∶ 𝑆 × 𝐹 × 𝐼 → 𝑆 × 𝑈 × 𝑂 and
• 𝐴 is the admissibility function such that 𝐴 ∶ 𝑆 × 𝐷 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}.

We use (𝑥1, … , 𝑥𝑛) = 𝑥 ∈ 𝐷 for the current variable assignment andwewrite (𝑠, 𝑓 , 𝑖) → (𝑠′, 𝑢, 𝑜)
to denote that if 𝐸 is in the symbolic state 𝑠, it holds that 𝑓 (𝑥) = 𝑡𝑟𝑢𝑒 and input symbol 𝑖 is
received, then a transition to the new symbolic state 𝑠′ happens where the variables assignment
is updated 𝑥 ← 𝑢(𝑥) and the output symbol 𝑜 is sent.

For the admissibility and enabling functions we use abbreviations such as 𝑥1 < 10 ∧ 𝑥2 = 𝑡𝑟𝑢𝑒
to denote the function

𝑓 (𝑥1, 𝑥2) = {
𝑡𝑟𝑢𝑒 if 𝑥1 < 10 ∧ 𝑥2 = 𝑡𝑟𝑢𝑒
𝑓 𝑎𝑙𝑠𝑒 else.

(1)

as well as just 𝑡𝑟𝑢𝑒 and 𝑓 𝑎𝑙𝑠𝑒 for the respective constant functions.
An EFSM can be represented using a graph where the nodes represent the symbolic states

and the edges represent the transitions between them. We annotate the admissibility function

1More precisely of finite state transducers
2We need this such that nobody can send a representation with a variable assignment that is (physically) not

possible or nonsensical for the asset.



s0 
 

x1 > 3 

s1
x1 < 10 ∧
x2 = true 

(x1 > 5, A)/
(x1 := 7, P) 

(x2 = true, B)/
(x1 := 4, Q) 

Figure 1: An example of an EFSM. Note that the formulas in the nodes do not represent a variable
assignment but the admissibility functions of the symbolic state in the abbreviated notation.

for each state at the node and the enabling function and input symbol as well as the update
function and output symbol in the form (𝑓 , 𝑖)/(𝑢, 𝑜) at each transition.

Figure 1 shows an example of an EFSM with the symbolic states 𝑆 = {𝑠0, 𝑠1}, the input symbols
𝐼 = {𝐴, 𝐵}, the output symbols 𝑂 = {𝑃, 𝑄} the variable value space 𝐷 = N × {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, two
transitions (𝑠0, 𝑥1 > 5, 𝐴) → (𝑠1, 𝑥1 ∶= 7, 𝑃) and (𝑠1, 𝑥2 = 𝑡𝑟𝑢𝑒, 𝐵) → (𝑠0, 𝑥1 ∶= 4, 𝑄), and the
admissibility function 𝐴(𝑠0) = 𝑥1 > 3; 𝐴(𝑠1) = 𝑥1 < 10 ∧ 𝑥2 = 𝑡𝑟𝑢𝑒.

4. Interaction Model

We want to use a robot arm as a running example for the rest of the paper. We assume the robot
arm can have three different positions, it can sense whether an item is currently in the clamp
and it can open and close its clamp. A few of the different possible states of the robot arm can
be seen in Figure 2. Note that the two conveyor belts are other assets that can interact with the
robot arm physically (by moving items) but cannot be controlled directly using the digital twin.
During the rest of this section, we will provide an interaction model for this robot arm by

constructing a suitable EFSM. For this purpose will use the established abstractions of properties,
actions, and events and explain how these can be represented using our formal model.

We use EFSMs with admissibility functions – in contrast to normal FSMs – for our interaction
model to be able to describe the behavior of an asset in a very concise way with as few states as
possible and thus prevent a state space explosion which would most of the time lead to having
infinitely many states.

4.1. Properties

In our model properties are represented using the variables of an EFSM where every variable
models a distinct property. An EFSM with the variable value space 𝐷 = {1, 2, 3} × {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} ×
{𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} thus could be used to describe the properties of the robot arm. We will use the
following variable names: (𝑝𝑜𝑠, 𝑖𝑡𝑒𝑚, 𝑐𝑙𝑜𝑠𝑒𝑑) ∈ 𝐷 in the following.
As all variables of an EFSM always have a clearly defined value assignment, properties can

always be read (by using HTTP GET requests) and return a value.
Writing properties on the other side is subject to some restrictions, as the admissibility

function for the current symbolic state needs to allow the new variable assignment that is to be
written. This way properties can be made read-only (and thus not be changed from the outside
directly) by fixing the value through the admissibility function. If e.g. our EFSM currently is



Figure 2: A robot arms in different states: 1. The arm is at position 1, opened and senses no item - 2.
The arm is at position 2, opened and senses no item - 3. The arm is at position 3, opened and senses an
item - 4. The arm is at position 3, closed and senses an item

s0 
item = true 

s1 
(pos = 2 ∧

closed = false ∧
item = false) ∨

(closed = true) ∨
(pos != 2)

Figure 3: EFSM for the robot arm with only two symbolic states, the first having a variable that models
a read-only property, the second modeling an interdependency between two properties.

in the symbolic state 𝑠0 and 𝐴(𝑠0) = (𝑖𝑡𝑒𝑚 = 𝑡𝑟𝑢𝑒), then 𝑖𝑡𝑒𝑚 can not be changed to any other
value than 𝑡𝑟𝑢𝑒, i.e. it is read-only (in the current symbolic state). This would reflect the fact
that in the physical world there currently is an item under the sensor, and sensors are read-only
devices (that cannot make an item disappear). The admissibility function can thus be seen as an
invariant over the variables for the current symbolic state.

Also complex interdependencies between different variables can be modeled, e.g. by assuming
𝐴(𝑠1) = (𝑝𝑜𝑠 = 2 ∧ 𝑐𝑙𝑜𝑠𝑒𝑑 = 𝑓 𝑎𝑙𝑠𝑒 ∧ 𝑖𝑡𝑒𝑚 = 𝑓 𝑎𝑙𝑠𝑒) ∨ (𝑐𝑙𝑜𝑠𝑒𝑑 = 𝑡𝑟𝑢𝑒) ∨ (𝑝𝑜𝑠! = 2). Here the possible
value for 𝑖𝑡𝑒𝑚 depends on the current value of 𝑝𝑜𝑠 and 𝑐𝑙𝑜𝑠𝑒𝑑 which means that when 𝑝𝑜𝑠 or
𝑐𝑙𝑜𝑠𝑒𝑑 is changed, 𝑖𝑡𝑒𝑚 also might need to be changed3. We need a property interdependency in
this case because a state of the robot arm where the clamp is open in position 2 and an item is
sensed at the same time is physically impossible (the item would fall down) and thus must be
prohibited. The two states we gave as an example can be seen in Figure 3.

3Note that we do not need transactions or anything similar – the REST principle of resource manipulation
through representations makes this possible as we always set the new value for all of our properties.



s0 
 

pos = 1 ∧
item = false

s1 
 

pos = 2 ∧
item = false

(true, A)/
(pos := 2, ε)

(true, B)/
(pos := 1, ε)

Figure 4: EFSM for the robot arm with only two symbolic states representing different positions and a
transition between them.

An important characteristic of properties is that a change of the same must always happen
instantaneously. If there is some process in the physical world behind the change of a property,
then such a change is often not possible instantaneously. For e.g. the position of a robot arm
can not change instantaneously because the arm has to move to the given position first which
takes some time; the position of a robot, therefore, is not suitable to be modeled as a property
and actions should be used for this purpose instead.

4.2. Actions

Because there are interactions with an asset (or more specifically with its digital twin) that
cannot be modeled using simple properties – namely those where changes to the state do not
happen instantaneously but only over a longer period of time, we need to introduce a possibility
to execute those interactions. We will call this type of interaction a action.
In the case of the robot arm, such an action would be the movement of the arm between

different positions. Although there is a property that signals the current position of the robot
arm, we cannot use it for setting a new position as the arm would take some time (maybe several
seconds) to move there4. We model an action in an EFSM with one or multiple transitions.
When an action can be modeled by a single transition the action can be identified with an input
symbol of the EFSM.

Let us look at the EFSM that can be seen in Figure 4: We have two symbolic states, 𝑠0 that fixes
the position to ”1” and 𝑠1 that fixes the position to ”2” (while making 𝑖𝑡𝑒𝑚 read-only and making
no restrictions about the clamp, both). As already mentioned it would not be appropriate to
change the position directly by manipulating the property, but we need a transition for this.
The transition going from 𝑠0 to 𝑠! that can be seen in the figure has the enabling function

𝑡𝑟𝑢𝑒 (i.e. it is always enabled), the input symbol 𝐴, the update function 𝑝𝑜𝑠 ∶= 2 which sets the
variable 𝑝𝑜𝑠 to ”2” (which coincides with the allowed value in symbolic state 𝑠1) and the empty
output symbol 𝜖 (i.e. it has no output). We can now identify the action ”moveFromPos1ToPos2”
with the input symbol 𝐴, i.e. when an agent wants to execute this action, the input symbol
𝐴 is sent to the EFSM and the corresponding transition is eventually executed (updating the
variables among other things). It is important to note that we make no assumption about when
the transition is executed after the input symbol is sent because we do not know how long

4Note that we assume a robot arm that moves slowly (moving cannot be modeled using a property) but can
close and open its clamp very fast (we assume it happens instantaneously and use a property for it). In practice, it
always will depend on the scenario whether ”several seconds” can be treated as instantaneous change or change
over a longer period of time.



s0 
pos = 2 

item = false 

s1 
pos = 3 

item = false 

s3 
pos = 3 

item = true 

(true, A)/
(pos := 3, ε)

(closed = false, ε)/
(item := true, ε)

(closed = false, B)/
(closed := true, ε)

Figure 5: EFSM for the robot arm with only three symbolic states containing an epsilon transition. Note
that state 𝑠3 has a loop transition here that just changes the value of a variable but not the symbolic
state. We could also introduce another symbolic state as a target for the transition, however, this is not
necessary as both states would have the same admissibility function as well as the same ingoing and
outgoing transitions.

the robot arm will take to move, however, we know the transition will eventually be executed
before processing the next input symbol.

The transition from 𝑠1 to 𝑠0 on the other hand takes the input symbol 𝐵 and sets the position
back to ”1”, so the action behind 𝐵 could be seen as the inverse action to the action behind 𝐴.
However, we can also imagine that actions can be parametrized. Then we could have just one
action ”moveArm” and depending on the parameter (e.g. a boolean flag for the direction) it is
chosen which input symbol is submitted to the EFSM (i.e. there needs to be a mapping from the
parameter value space to the set of input symbols).
An action can not always be mapped to just one single transition and consequently not to

one single input symbol. This is always the case when there is some interaction with processes
in the physical environment. For our robot arm, we could want to make an action ”pickUp”
available that picks up a new item when there currently is no item in the clamp. However, the
robot arm cannot just spawn items but it needs to go to position ”1”, open its clamp and wait
for the conveyor belt to bring an item (we assume that this will always happen if we wait long
enough).
To solve this issue we need to introduce the possibility to have transitions that do not need

an input symbol to be executed (we then write 𝜖 instead of an input symbol, similar to what
we have seen for output symbols and call that transition epsilon or empty transition) but can
just happen spontaneously as long as their enabling function is fulfilled. This type of transition
can be used to model processes that happen in the environment and which the asset cannot
influence directly.
In Figure 5 we can see an EFSM with three transitions: the first one with input symbol 𝐴

moving the arm to position ”3”, the second one being an epsilon transition modeling the fact
that an item has arrived at the item sensor and the third one having input symbol 𝐵 closing the
clamp. We can now model the action ”pickUp” as the sequence of input symbols [𝐴, 𝐵]. When
an agent wants to execute this action, the symbols 𝐴 and 𝐵 are submitted to the input queue of
the EFSM. First, the 𝐴 transition is executed and the robot arm moves to position ”3”. Then it
waits for the epsilon transition to happen (for the item to appear) and afterward the 𝐵 transition
is executed and the clamp is closed.



s0 
pos = 1 

s1
pos = 1 

(closed = false ∧ item = true, ε)/
(item := false, P) 

Figure 6: EFSM for the robot arm with only three symbolic states containing an epsilon transition that
has an output.

4.3. Events

For the interaction with an asset not only the current state could be of interest but also what has
happened in the past. For e.g. one could want to do something (increasing a counter, etc.) every
time the robot arm delivers an item successfully to the conveyor belt at position ”1”. Every type
of event can be identified with an output symbol in the EFSM. Thus every time a transition is
executed, an event (of the event type belonging to the output symbol) is emitted (𝜖 means there
is no event to emit).
In Figure 6 we can see an EFSM that represents exactly this case. We have two symbolic

states that fix the position to ”1” and an epsilon transition between them that is active when
there is an item in the clamp and it is open. As soon as the transition is executed it outputs the
symbol 𝑃. This occurrence of an event can be made available (together with a timestamp) to
agents over the HTTP interface.

5. Interface

In the previous section, we explained how properties, actions, and events of an asset can be
modeled using an EFSM, i.e. what effects interaction can have, but we only touched on the topic
of how the interactions between HTTP agents and the asset themselves work. We now want to
describe those interactions more extensively in the following.

The HTTP interface that can be derived from the EFSM is based on the Linked Data Platform
(LDP) [9] standard.

5.1. Properties

As explained before the current values of the properties can be read all the time. This can be
done using an HTTP GET request to an endpoint representing the robot arm (i.e. its digital
twin). An example of an RDF graph the endpoint could return can be seen in Figure 7 where we
can see the current value of all the properties. The RDF predicates :pos, :item, and :closed
map directly to the variables of the EFSM with the respective name and are used to display the
property values as RDF.

If an agent now wants to change a property it must send an HTTP PUT request against the
endpoint with the RDF representing the new desired state, e.g. could the ”closed” property be
changed to ”false”. The request can either be accepted by the digital twin, then it returns a 204
status code and changes the property, or it can be denied. The denial can have multiple reasons
(e.g. could the server be overloaded and return a 503 status code) but the important reason for



@prefix : <http://example.org/robotArm#> .

</> a :RobotArm ;
:pos 1 ;
:item false ;
:closed true ;
:tasks </tasks/> ;
:events </events/> .

Figure 7: Example RDF to describe the robot arm.

us is when the new property (and thus EFSM variable) assignment is not allowed for the current
symbolic state by the admissibility function. In that case, the digital twin would return a ”409
Conflict” status code.

5.2. Actions

Agents could submit actions to the digital twin by sending a POST request with the needed
parameter to an endpoint for the action (e.g. ”/pickUp”). However, this would not be in
accordance with the REST principles where we always want to manipulate the state of a
resource by sending a representation5. To comply with the REST constraints we create an
explicit resource every time an agent wants to execute an action and call that resource a task.
A task specifies which actions should be executed with which parameters (i.e. it can be

directly mapped to a sequence of input symbols for the EFSM) and tasks can also specify an
order among them (when there are multiple tasks submitted by agents at the same time or
shortly after each other, the asset needs to decide which one should be executed next, e.g. using
a priority for the tasks).
In Figure 8 we can see the RDF that we get when referencing the task endpoint (which is

an LDP container) of the robot arm and all tasks that are listed under this endpoint. We see
that the robot arm currently has two tasks, the first being the task ”pickUp”, the second being a
move task with a parameter6. ”PickUpTask”, as well as ”MoveTask”, can be directly mapped to a
sequence of input symbols for the EFSM (possibly of size one). If an agent wants to create a
new task, it can send a POST request against the task container endpoint according to the LDP
standard.

5.3. Events

Events that are created by assets are read-only for agents, thus we can just deference the event
endpoint (again an LDP container) of the robot arm and get a list of events. How these events
could look like can be seen in Figure 9. As we have a RESTful architecture events are not

5A POST request to an action-specific endpoint has more similarities with a Remote Procedure Call – an
architecture for distributed applications opposing REST.

6As already mentioned we can treat tasks with parameters as equivalent to multiple tasks without parameters,
i.e. instead of :MoveTask with a :toPos parameter we could have :MoveToPos1Task, :MoveToPos2Task, etc.



@prefix : <http://example.org/robotArm#> .
@prefix ldp: <http://www.w3.org/ns/ldp#> .

</tasks/> a ldp:BasicContainer ;
ldp:contains </tasks/1>,

</tasks/2> .

</tasks/1> a :PickUpTask ;
:priority 3 .

</tasks/2> a :MoveTask ;
:toPos 1
:priority 2 .

Figure 8: Example RDF to describe tasks of the robot arm.

@prefix : <http://example.org/robotArm#> .
@prefix ldp: <http://www.w3.org/ns/ldp#> .

</events/> a ldp:BasicContainer ;
ldp:contains </event/1>,

</event/2> .

</events/1> a :DeliveredItemEvent ;
:time 43971 .

</events/2> a :DeliveredItemEvent ;
:time 43987 .

Figure 9: Example RDF to describe events of the robot arm.

proactively pushed to agents but instead have to be retrieved regularly by polling them7. By
looking at the type of the event, an agent can determine the output symbol which maps to the
type and thus which transition has been executed in the past.

6. Discussion

In the previous two sections, we described in accordance with [2][3] three basic types of
interactions with assets that can be provided by semantic digital twins: properties, actions, and
events. We showed that properties can be modeled using the variables of an EFSM and that the
manipulation of those properties can be restricted using the admissibility function.

We defined a soft criterion (instantaneous change) for deciding whether a given capability of
an asset should be modeled as a property or as a process defined by an action. We also gave
a clear semantic to those actions by mapping them to a sequence of input symbols that can
execute transitions – if necessary thereby also interacting with processes from the physical
environment.
Events have been defined as the output of a transition, i.e. the result of a state change that

can be recorded and made accessible in a RESTful way.
To verify that all of our requirements for the robot arm (moving is not instantaneous, items

do appear only at the conveyor belt at position ”3”, etc.) can be expressed using our EFSM
model, we give the complete model of the robot arm in Figure 10. We can see that there are
different symbolic states for every position, such that the position can only be changed using an
action. We also have the two epsilon transitions when an item appears at the conveyor belt or
is delivered to the other conveyor belt; this is the only way the ”item” property can be changed.

We have four distinct input symbols 𝐴, 𝐵, 𝐶, and 𝐷 each on mapping directly to a move action
(e.g. ”moveToPos1”, etc.). There exists one event, namely the already mentioned ”delivery”

7If a use case requires it, pushing events (e.g. using WebSockets) would however not be a problem from our
conceptual point of view.



s0 
pos = 1

item = false 

s1 
pos = 2 

item = false 

s2 
pos = 3 

item = false 

s3 
pos = 1

item = true 

s4 
pos = 2 

item = true 

s5 
pos = 3 

item = true 

(true, A)/
(pos := 2, ε)

(true, B)/
(pos := 3, ε)

(true, C)/
(pos := 1, ε)

(true, D)/
(pos := 2, ε)

(true, A)/
(pos := 2, ε)

(true, C)/
(pos := 1, ε)

(closed = true, D)/
(pos := 2, ε)

(true, B)/
(pos := 3, ε)

(closed = false, ε)/
(item := true, ε)

(closed = false, ε)/
(item := false, P)

(closed = false, D)/
(pos := 2 ∧ item := false, ε)

Figure 10: Complete EFSM for the robot arm.

represented by the output symbol 𝑃. Also, note the two transitions that go out of 𝑠5 for input
symbol 𝐷: They have two mutually exclusive activation functions as the item is dropped when
the clamp is not closed while moving to position ”2” which leads to symbolic state 𝑠1 and to
symbolic state 𝑠4 otherwise when the clamp is closed.

7. Conclusion & Future Work

We provided a formal model in the form of EFSMs extended by admissibility functions for the
interaction of HTTP agents with the digital twins of arbitrary assets and described a RESTful
interface that can be directly derived from the EFSM. This formal model can on the one hand be
used to understand the interactions between different agents and assets better, on the other
hand, it could be communicated to the agent to help it to decide how to interact with the asset.
If an agent knows e.g. that it wants to transport an item from one conveyor belt to the other,
it could use the EFSM to deduce which properties to change, which tasks to submit, and for
which events to wait in which order.

We think that our formal model is general enough, to also have applications outside the field
of digital twins, e.g. for describing the semantics of properties, actions, and events for the Web
of Things or interactions of general RESTful interfaces. A formal interaction model could be
used in these cases for model checking certain properties of an asset’s behavior, e.g. whether
there exists a sequence of HTTP requests that leads the asset to a deadlocked state and thus
makes it unusable.

In the future, we also plan to investigate the connection between different EFSM that can be
used to model the same asset. A still open question is if there is a way to transform different
EFSMs modeling the same asset into each other and if we can define some canonical form.
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