
A Nonparametric Contextual Bandit with Arm-level
Eligibility Control for Customer Service Routing
Ruofeng Wen1,*, Wenjun Zeng1 and Yi Liu1

1Customer Engagement Technology, Amazon

Abstract
Amazon Customer Service (CS) provides real-time support for millions of customer contacts every year. While bot-resolver
helps automate some traffic, we still see high demand for human agents, also called subject matter experts (SMEs). Customers
outreach with questions in different domains (return policy, device troubleshooting, etc.). Depending on their training,
not all SMEs are eligible to handle all contacts. Routing contacts to eligible SMEs turns out to be a non-trivial problem
because SMEs’ domain eligibility is subject to training quality and can change over time. To optimally recommend SMEs
while simultaneously learning the true eligibility status, we propose to formulate the routing problem with a nonparametric
contextual bandit algorithm (K-Boot) plus an eligibility control (EC) algorithm. K-Boot models reward with a kernel smoother
on similar past samples selected by 𝑘-NN, and Bootstrap Thompson Sampling for exploration. EC filters arms (SMEs) by the
initially system-claimed eligibility and dynamically validates the reliability of this information. The proposed K-Boot is a
general bandit algorithm, and EC is applicable to other bandits. Our simulation studies show that K-Boot performs on par
with state-of-the-art Bandit models, and EC boosts K-Boot performance when stochastic eligibility signal exists.

Keywords
Bandit, Customer Service Routing, Arm Eligibility, Nonparametric

1. Introduction
In Amazon Customer Service (CS), we dispatch human
agents, also called subject matter experts (SMEs) in real-
time to handle millions of customer contacts. The SME
routing automation process has two steps: first there is a
natural language understanding (NLU) model to process
customer’s input and identify the relevant domain (return
policy, device troubleshooting, etc.); then it dispatches an
SME who is eligible. We define eligibility when the SME
masters the required skill in the relevant domain through
training. SME routing turns out to be a non-trivial prob-
lem for four reasons. First, the NLU model is unlikely to
categorize the domain with perfect accuracy. Second, the
reliability in SME eligibility as identified by operation
team is subject to training program quality and readiness.
Third, the domain taxonomy and SMEs’ eligibility sta-
tus can change in a decentralized way. In reality, it is
difficult to keep track of all the eligibility updates, assum-
ing correctness. Finally, eligible SMEs do not guarantee
customer satisfaction, leading to noisy feedback signals.
All these uncertainties make SME routing a challenging
problem.

To tackle the complexity, we formulate CS routing
as a recommendation problem and use contextual Ban-

4th Edition of Knowledge-aware and Conversational Recommender
Systems (KaRS) Workshop @ RecSys 2022, September 18–23 2023, Seat-
tle, WA, USA.
*Corresponding author.
$ ruofeng@amazon.com (R. Wen); zengwenj@amazon.com
(W. Zeng); yiam@amazon.com (Y. Liu)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Figure 1: The CS Routing Problem. The goal of the recom-
mender is to select an agent that will result in the best outcome
of this customer contact.

dit as a solution. Bandit, a framework for sequential
decision making, has been used for online recommenda-
tion across companies such as Amazon, Google, Netflix
and Yahoo [1]. In contextual bandit, the decision maker
sequentially chooses an arm/action (SME in our case),
based on available contextual information (contact tran-
script embedding, customer profile, etc.), and observes
a reward signal (customer satisfaction, contact transfer,
etc.) [2]. The objective is to recommend arms at each

mailto:ruofeng@amazon.com
mailto:zengwenj@amazon.com
mailto:yiam@amazon.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

step to maximize the expected cumulative reward over
time. We apply bandit to the routing problem because
it can optimally explore uncertainties and adapt to dy-
namic changes [3]. Particularly, the uncertainties in SME
eligibility motivate us to formulate a new type of bandit
to utilize arm-level eligibility signals.

Our contribution. We propose K-Boot, a nonpara-
metric contextual bandit algorithm to model reward and
explore, and an Eligibility Controller (EC) algorithm
to model arm-level eligibility. K-Boot uses a 𝑘-nearest
neighbors (𝑘-NN) approach to find similar samples from
the past, applies a Nadaraya–Watson kernel regression
among the found samples to estimate the reward, and
adopts Bootstrap Thompson Sampling as the exploration
strategy. The EC component implements a dynamic top
arm filter based on its estimated Spearman’s Rank Cor-
relation Coefficient between eligibility and reward. We
are interested in this end-to-end nonparametric setup
for practicality: robustness in performance, strong inter-
pretability and simple non-technical maintenance which
is friendly to business partners. For instance, the 𝑘-NN
component makes it easy to investigate which historical
contacts support the SME recommendation, and then de-
ploy instant online fixes by trimming unwanted outliers.
While K-Boot and EC are proposed here as a suite, each
can be applied independently - K-Boot is a general Bandit
algorithm and EC can control arm-eligibility for other
bandits, such as LinUCB [4].

In the remainder of the paper, we review related liter-
ature in Section 2, set up the formal problem in Section 3
and detail the proposed algorithms in Section 4. We then
present our model results in Section 5, and conclude the
paper last.

2. Related Work
In most bandit applications, the items to recommend are
products and webpage content (widget, news articles,
etc.). Recently, we see research efforts in using bandit for
routing recommendation in a conversation [5, 6]. In [6],
they used contextual bandit to utilize query and user fea-
tures along with the conversational context and build an
orchestration to route the dialog. In [5], they built bandit
models to assign solutions given customer’s queries on
Microsoft’s product to a chatbot. This is the most relevant
work to our problem. However, they assume an upstream
model to provide a set of plausible actions to start with
and the bandit itself does not deal with the uncertainty in
arm eligibility. Overall, comparing to the extensive ban-
dit literature existing for product and webpage content
recommendation, few bandit works are there for routing
recommendation.

Thompson Sampling (TS) is a heuristic for balanc-
ing exploration and exploitation in bandits [7]. In the

parametric manner, TS is implemented by drawing the
reward function parameter 𝜃 from a posterior distribu-
tion, calculating rewards with the sampled parameters,
and selecting the arm that maximizes the estimated re-
ward function. 𝜃 is often assumed to follow Conjugate-
Exponential Family distributions resulting closed-form
posteriors. There are also work where variational meth-
ods are used to provide an analytical approximation to
the posterior and enforce trackability [8]. Bootstrap TS
introduces volatility in a different way: it pulls the arm
with the highest bootstrap mean, estimated from reward
history in a nonparametric way [9]. One drawback of the
approach is the computational cost to train one bandit
model per Bootstrapped training set, which is difficult
for large-scale real-time problems. [10] proposed a gen-
eral nonparametric bandit algorithm but they fell back to
the parametric reward function approach when there is
context. [11] further improved the exploration efficiency
with Bayesian Bootstrap, but also only for non-contextual
bandit. We pair Bootstrap TS with a single 𝑘-NN for non-
parametric contextual exploration.

Kernel-based Bandit uses a nonparametric reward es-
timator via kernel functions, combined with an explo-
ration policy like TS or UCB. Gaussian Process (GP) has
wide applications in bandit domain, e.g. GP-UCB [12]
and GP-TS [13]. However, GP inference is expensive -
the standard approach has 𝑂(𝑁3) complexity, where 𝑁
is the number of training samples. The most efficient
sparse or low-rank GP approach still requires 𝑂(𝑁𝐷2),
where 𝐷 is a hyperparameter indicating the number of
inducing variables - see [14] for a review. We use 𝑘-NN
to enable 𝑂(𝑘 log𝑁) inference time.

3. Formulation: Contextual Bandit
with Arm Eligibility

We define two types of eligibility setup with different data
interfaces. (1) Eligibility Scores: for a given context x,
a list of eligibility scores for each arm e = (𝑒1, 𝑒2, . . .) is
observed, where 𝑒𝑗 ∈ [0, 1] is for arm 𝑎𝑗 . A larger score
means higher confidence in the arm being eligible for
the current sample/iteration. An intuitive interpretation
is that the arms are bidding for themselves. This score
setup assumes (the owner of) each arm is able to adap-
tively assess the dynamic environment in a distributed
and independent manner that can be unknown to the
bandit. Typical examples include ads bidding and voice
assistant’s skills detection - each ad/skill may be managed
via the same API, but by different clients under dynamic
competition. (2) Eligibility States: assume the system
at any time can be classified into one of 𝐿 possible states.
Each arm claims whether it is eligible under a state, rep-
resented by a constant binary vector c𝑗 of length 𝐿 for
arm 𝑎𝑗 . If the 𝑙-th element of c𝑗 is 1, arm 𝑎𝑗 claims to

be eligible under the 𝑙-th state, and 0 otherwise. Given a
context x, a stochastic distribution over the 𝐿 states is
observed, represented by a probability vector p of length
𝐿. For CS routing, the state is the type of customer issue,
the claim is SME’s corresponding skill-set, and p is the
NLU predictive distribution. Note that a score can be
computed as the inner product of the claimed eligibility
binary vector and state probability vectors: 𝑒𝑗 := c⊺𝑗p,
so the state setup converges to the score setup. The ma-
jor practical difference between the two interfaces is the
amount of effort in the claiming side: the state interface
simplifies the eligibility claims to static binary votes on
a finite set of states, while the score interface mandates
scoring with context awareness.

Consider a contextual bandit with a set of arms
{𝑎1, 𝑎2, . . . }. At the 𝑛th round, context x𝑛 is observed
and eligibility score e𝑛 is either observed (score in-
terface) or derived (state interface). After an arm is
pulled, a reward 𝑟𝑛 ∈ [0, 1] is revealed. The goal
is to minimize the expected regret over 𝑁 rounds:∑︀𝑁

𝑛=1(E[𝑟|𝑎
𝑛
* ,x𝑛, e𝑛]− E[𝑟|𝑎𝑛,x𝑛, e𝑛]), where 𝑎𝑛

* is
the optimal action for this round in hindsight.

4. Methodology
The proposed algorithms run in order: Eligibility Con-
troller (EC) to filter out ineligible arms, and K-Boot to find
the optimal one within the rest. Below, we first introduce
K-Boot to set the base and then EC.

4.1. K-Boot
K-Boot is a nonparametric bandit model. For a given con-
text x, it estimates the reward for arm 𝑎 as the Nadaraya-
Watson kernel weighted average over the observed re-
wards of the 𝑘 nearest neighbors of x from all historical
samples where arm 𝑎 was pulled. We use Bootstrap TS
as the exploration strategy. 𝑘-NN regression was known
to fit well with Bootstrap-Aggregation, with an analyt-
ical form of smoothed conditional mean estimate that
does not require actual resampling [15, 16]. However,
sampling from the confidence distribution of the mean
estimate has little discussion. We devise a trick to shrink
the resampling range from all historical samples to a local
wrapper around the 𝑘-NN.

K-Boot is detailed in Algorithm 1. At iteration 𝑛 with
context x𝑛, for the 𝑚th arm 𝑎𝑚, let 𝒟𝑚 be the set of his-
torical samples where 𝑎𝑚 was pulled, and 𝑁𝑚 = |𝒟𝑚|.
If 𝑁𝑚 is zero, we sample reward from a standard uni-
form distribution (Line 6). If 𝑁𝑚 is greater than 𝐾 , we
first build an influential subset 𝒟′

𝑚 containing the 𝐾′-
NN of x𝑛 (𝐾 < 𝐾′). Intuitively, the 𝐾′-NN serves as
a buffer to cover enough sample variance around the
𝐾-NN, so that a Bootstrap on the influential samples is

a good approximate of that on all samples. Formally, a
sample is considered influential to make inference about
x𝑛, if its probability of being in the 𝐾-NN of x𝑛 after a
Bootstrap on 𝒟𝑚 is greater than 𝜀. This probability is
computed analytically on Line 9, based on the derived
equation (6) in [15]. Here the tolerance hyperparameter
𝜀 controls the risk of missing influential samples and thus
the fidelity of approximated Bootstrap TS. In our experi-
ments with 𝑁𝑚 ≤ 104 and 𝜀 = 0.01, 𝐾′ is empirically
well bounded by 2𝐾 . This process shrinks all later com-
putation to 𝐾′ samples, with the overhead neighbors
search cost 𝑂(log𝑁𝑚) per sample (we used Hnswlib
[17] for approximated search). If 𝑁𝑚 is less than 𝐾 , 𝒟𝑚

itself is the influential set. We then add two pseudo sam-
ples to 𝒟′

𝑚 on Line 14-15, in order to expand reward’s
empirical range for Bootstrap exploration [10]. To give
pseudo-samples proper contexts thus kernel weights, we
set their distance to x as that of a random observation
in 𝒟′

𝑚, so its weight shrinks as more data seen. On Line
16-18, we then draw a Bootstrap resample and select 𝐾
nearest samples from it to calculate the estimated reward
for 𝑎𝑚 as the kernel weighted average. we implement
𝐾ℎ(·, ·) as the simplest 𝑂(𝐾) Nadaraya-Watson kernel
estimator with automatic bandwidth selection [20] - more
advanced models can be plugged in.

As we model reward for each arm separately as a com-
mon practice, K-Boot is flexible to add and removal of
arms. This benefits applications like ours with decen-
tralized and independent arms management. In addition,
K-Boot has simple maintenance: (1) the nonparametric
model has minimal assumption in data and only a single
important hyperparameter 𝐾 to balance between accu-
racy and computation. 𝜀 = 0.01 works well across our
experiments. (2) the algorithm is business friendly in
terms of decision interpretability by neighboring exam-
ples and allowing intuitive online instant modification
of model behaviors. For example, CS business owners
may hide contacts with undesired trending patterns dur-
ing a specific period (e.g. under a legacy policy), or let
newly available SMEs "inherit" past example contacts or
eligibility claims (next section) via domain knowledge
(e.g. a rehired agent or additional training programs).
The changes on data visibility will instantly and pre-
dictably affect the bandit model in production, with clear
attribution. This data-driven while human-in-the-loop
fungibility is essential to fast-paced operational business
like customer service.

4.2. Eligibility Control
EC is used to recognize arm-eligibility and the associated
uncertainties, for optimized bandit exploration. In an
ordinary contextual bandit model, the eligibility infor-
mation can be trivially considered as part of the context
x - it is assumed to be positively correlated with 𝑟, thus

Algorithm 1: K-Boot: a fully nonparametric contextual bandit
Input :Number of iterations 𝑁 , number of arms 𝑀 , number of nearest neighbors 𝐾 , kernel function with

bandwidth 𝐾ℎ(·, ·), regularized incomplete beta function 𝐹𝛼,𝛽(·), approximation tolerance 𝜀.

1 Initialize sample pool 𝒟𝑚 := ∅ and its size 𝑁𝑚 := 0, for each arm 𝑚 = 1, . . . ,𝑀
2 for 𝑛 = 1, · · · , 𝑁 do
3 Observe context x𝑛

4 for 𝑚 = 1, · · · ,𝑀 do
5 if 𝑁𝑚 = 0 then
6 Estimate reward: �̂�𝑚,𝑛 ∼ 𝒰(0, 1)
7 else
8 if 𝑁𝑚 > 𝐾 then
9 𝐾′ := min(𝑘′), s.t.

∑︀𝐾
𝑖=1 [𝐹𝑖,𝑁𝑚−𝑖+1(

𝑘′

𝑁𝑚
)− 𝐹𝑖,𝑁𝑚−𝑖+1(

𝑘′−1
𝑁𝑚

)] > 1− 𝜀

10 Find influential neighbors 𝒟′
𝑚 := the top 𝐾′ samples in 𝒟𝑚, with the largest 𝐾ℎ(x𝑛, ·)

11 else
12 Set 𝒟′

𝑚 := 𝒟𝑚

13 end
14 Draw a random sample (x⋆, 𝑟⋆) from 𝒟′

𝑚

15 Add pseudo-samples: 𝒟′
𝑚 := 𝒟′

𝑚 ∪ {(x⋆, 0), (x⋆, 1)}
16 Draw a Bootstrap sample 𝒟⋆

𝑚 from 𝒟′
𝑚

17 Find neighbors 𝒟⋆
𝑚,𝐾 := the top min(𝐾, |𝒟⋆

𝑚|) samples in 𝒟⋆
𝑚, with the largest 𝐾ℎ(x𝑛, ·)

18 Estimate reward: �̂�𝑚,𝑛 :=
∑︀

𝑖 𝑟𝑖𝐾ℎ(x𝑛,x𝑖)/
∑︀

𝑖 𝐾ℎ(x𝑛,x𝑖), summing over 𝒟⋆
𝑚,𝐾

19 end
20 end
21 Pull arm 𝑚⋆ := argmax𝑚 �̂�𝑚,𝑛, and observe true reward 𝑟𝑛 ∈ [0, 1]
22 Update 𝒟𝑚⋆ := 𝒟𝑚⋆ ∪ {(x𝑛, 𝑟𝑛)} and 𝑁𝑚⋆ := 𝑁𝑚⋆ + 1

23 end

predictive as a plain input to a reward estimator. This
assumes the reward model is able to eventually learn
the relation between 𝑟 and 𝑒 after enough rounds. This
trivial approach does not directly utilize eligibility to
limit the range of arm exploration, and may unneces-
sarily explore inappropriate actions with catastrophic
regret during cold-starts. The other extreme is to strictly
follow the eligibility information and ignore the reward
feedback: for the eligibility score interface, this could
be simply pulling the arm with the highest score as if
it were an oracle; for the eligibility state interface, this
could be finding the state with the highest probability
then remove arms that did not claim that state. Therefore,
the empirical data would never be used to validate and
correct the potentially biased business logic - a common
pitfall in practice.

The main idea of EC is to leave only the top-𝑘 arms
with the highest eligibility scores before applying a nor-
mal bandit, and adjust 𝑘 periodically based on the empiri-
cal correlation between eligibility scores and rewards. We
use Spearman’s Rank Correlation Coefficient, denoted
as 𝜌. Using top-𝑘 arms is a heuristic trade-off between
𝑘 = 𝑀 (the trivial case; 𝑀 is the total number of arms),
and 𝑘 = 1 (the strict rule case). Intuitively, for the case
of perfect correlation between score and reward (𝜌 = 1),

𝑘 = 1 is the oracle solution. If eligibility score has zero or
even negative correlation (𝜌 ≤ 0) with reward, 𝑘 = 𝑀
is the optimal solution - otherwise the arm exploration
is restricted adverserially or randomly for no benefits. In
the no-correlation case, the probability of “the best arm
by reward is not in the top-𝑘 by score”, defined as a leak,
is linear in 𝑘: 𝑃 (leak|𝑘, 𝜌 = 0) = 1 − 𝑘/𝑀 . It is ob-
vious 𝑃 (leak|𝑘, 0 < 𝜌 < 1) < 𝑃 (leak|𝑘, 𝜌 = 0). This
observation reveals two insights: (1) 𝛼 := 𝑃 (leak|𝑘, 𝜌)
characterizes a type of risk in applying a top-𝑘 score
filter to arms; (2) when controlling the risk of a leak at
certain level, e.g. 𝛼 = 0.01, 𝑘 is a function of 𝜌. The true
correlation 𝜌 between reward 𝑟 and eligibility score 𝑒 is
unknown, but can be estimated from historical observa-
tions: {(𝑟𝑖, 𝑒𝑖)}𝑖. Therefore, EC essentially calculates 𝑘
such that the risk 𝑃 (leak|𝑘, �̂�) is controlled at a given
level.

To pair with K-Boot, EC also models 𝑃 (leak|𝑘, 𝜌) in a
nonparametric fashion to avoid extra assumptions. Per 𝜌,
although Spearman’s rank correlation coefficient is used
for estimation, Kendall’s 𝜏 or any other rank-based cor-
relation measure applies similarly. Across the arms and
rounds, we assume the rank of 𝑒 is a noisy perturbation
of the rank of 𝑟, and parameterize this perturbation as
“performing 𝑝 random neighbor inversions”. An inver-

Algorithm 2: Eligibility Control
Input :Number of iterations 𝑁 , number of arms 𝑀 , risk level 𝛼, score initial threshold 𝑘0, a pre-computed

empirical dictionary 𝐺(𝑛, 𝛼, 𝜌) → 𝑘

1 Initialize threshold 𝑘 := 𝑘0 and observation pool 𝒟𝑒 := ∅
2 for 𝑛 = 1, . . . , 𝑁 do
3 Observe context x𝑛, and eligibility scores {𝑒1, · · · , 𝑒𝑀}, for each arm
4 Find the 𝑘th largest element 𝑒[𝑘] among the scores
5 Sample reward for each arm if 𝑒𝑚 ≥ 𝑒[𝑘] (Algorithm 1, Line 5-18)
6 Pull the 𝑚⋆th arm with highest reward estimate (Algorithm 1, Line 21-22)
7 Observe true reward 𝑟𝑛, and update 𝒟𝑒 := 𝒟𝑒 ∪ {(𝑟𝑛, 𝑒𝑚⋆)}
8 (Periodically) compute �̂� from 𝒟𝑒 and set 𝑘 := 𝐺(𝑛, 𝛼, �̂�)
9 Set 𝑘 := 𝑀 if 𝑘 ≥ (1− 𝛼)𝑀

10 end

sion is simply switching two elements in a sequence, and
a neighbor inversion switches two neighboring elements.
Note 𝑝 = 0 indicates 𝜌 = 1 because the perturbed rank
sequence is identical to the original one; 𝑝 → ∞ is ef-
fectively a random permutation thus 𝜌 = 0. This setup
provides a generative process to simulate the joint dis-
tribution of all parameters for a rank sequence of length
𝑛: (1) do 𝑝 random neighbor inversions on the sorted
sequence of ranks (1, · · · , 𝑛); (2) see if there is a leak,
namely if the element 1 is now at or beyond the 𝑘th po-
sition; (3) compute �̂� between the original and current
sequences. The three steps can be replicated for a suf-
ficient number of times, to obtain the final correlation
coefficient �̂� and risk level �̂� by averaging individual �̂�
and counting the frequency of leaks. For different combi-
nations of (𝑘, 𝑝, 𝑛), as the above process does not depend
on any actual data, it can be performed offline in batch
to get the corresponding (�̂�, �̂�). The resulting empirical
dictionary 𝐺 : (𝑛, 𝛼, 𝜌) → 𝑘 is stored, and later queried
during online inference. To avoid unnecessary control in
the edge case where eligibility score turns out to be pure
noise, 𝑘 is reset to 𝑀 (no EC) if 𝐺 outputs a 𝑘 that is
greater than the trivial value (1−𝛼)𝑀 . Finally note the
generative distribution of random neighbor inversions is
assumed to be uniform along the whole sequence, yield-
ing the unbiasedness of the estimator �̂� even if the ob-
served data points {(𝑟𝑖, 𝑒𝑖)}𝑖 are censored by the top-𝑘
filter policy.

The full online EC process is described in Algorithm 2
(excluding the offline dictionary generation). The eligi-
bility state interface is converted into the score interface
before EC, so the scores are the only required inputs.
The algorithm takes K-Boot (Algorithm 1) as the bandit
counterpart just for demonstration, and applies to any
bandit that has arm-independent reward models. EC has
a single hyperparameter: the controlled risk of a leak 𝛼.
Note 𝛼 is the risk of missing the best arm, so its influence
on cumulative rewards depends on the arm reward distri-

bution, specifically the gap between the first and second
best arm. We leave other types of risk control mechanism
with distributional assumptions to future work.

5. Experiments
In this section, we evaluate the performance of K-Boot
with two benchmarks: LinUCB [4] and NeuralUCB [21].
The experiment setup mostly follows the methodology
reported in [21] with 4 synthetic simulations and 4 re-
alworld datasets. EC is tested on synthetic data with
an eligibility score setup, then on an Amazon Customer
Service routing dataset. Datasets are introduced below.

Synthetic Datasets. The bandit has 𝑀 = 10 arms,
and runs on 𝑁 = 5000 samples/rounds. It observes
context with 𝑑 = 20 dimensions, each following inde-
pendent 𝒩 (0, 1). Four types of true reward functions
are tested - (1) linear: ℎ0(x) = 0.1x𝑇a; (2) quadratic:
ℎ1(x) = 0.05(x𝑇a)2; (3) inner-product: ℎ2(x) =
0.002x𝑇A𝑇Ax; (4) cosine: ℎ3(x) = cos(3x𝑇a); where
each entry of the parameters A ∈ R𝑑×𝑑 and a ∈ R𝑑 is
drawn from an independent 𝒩 (0, 1), different for each
arm. The observed reward has noise: 𝑟 := ℎ(x) + 𝜀,
where 𝜀 ∼ 𝒩 (0, 𝜎2

𝑟) and 𝜎𝑟 is drawn from 𝒰(0.01, 0.5)
independently for each arm. 20 runs are replicated by
random seeds.

Synthetic Datasets with Eligibility. Given above,
the eligibility scores are further simulated by perturbing
the counter-factual reward of each arm: 𝑒 := 𝑤𝑟+ 𝜀′, to
induce the correlation. Here 𝑤 is an arm-specific scaling
coefficient draw from 𝒰(−0.1, 1). It has a small chance
to leave 𝑒 and 𝑟 negatively correlated, as tolerating eligi-
bility claim error in systems under the overall positive
correlation - the only assumption of EC. The noise term
𝜀′ ∼ 𝒩 (0, 𝜎2

𝑒) controls the correlation effect size. By
setting a proper 𝜎𝑒, the Spearman’s rank correlation co-
efficient 𝜌 between reward and eligibility score can be
fixed at an arbitrary positive value.

Figure 2: Benchmarking K-Boot, LinUCB and NeuralUCB. Left half: synthetic datasets; right half: UCI datasets. Model
hyperparameters are set as the best on synthetic datasets. Metric is averaged across 10 runs with an 80% confidence band.

UCI Classification. Four real-world datasets from
UCI Machine Learning Repository [22] are gathered:
covertype, magic, statlog, and mnist. These multi-class
classification datasets are converted into multi-arm con-
textual bandits problems, following the method in [4]:
each class is treated as an arm, and reward is 1 if ban-
dit pulls the correct arm (identify the correct class) and
0 otherwise. Each dataset is shuffled and split into 10
mutually exclusive runs with 5000 samples each, and fed
to bandit one in each round (magic has less than 50000
samples so resampling is performed).

CS Routing with Eligibility. Agent skill-level rout-
ing is considered: CS agents are assigned to different skill
groups by operation teams, and the routing system deter-
mines which skill is required to resolve a given customer
contact based on the customer profile, policy rules and
natural language understanding. As a proof of concept
before any online experiments, we formulate an offline
bandit dataset with historical observations. About 2 mil-
lion Amazon US customer service text chats with bot-to-
agent routing are gathered. To introduce stochasticity,
a historical routing policy emulator is trained on a 95%
random subset of the chats, by taking the customer-bot
transcripts before the routing action as input to predict
which skill the system chose. Specifically, the emulator
consists of a pretrained GPT-2 transformer encoder [23],
with a multi-class sequence classifier head to predict the
top 20 skill groups. The model is trained (fine-tuned)
for one epoch with learning rate 10−4 and batch size 32.
For the bandit simulation, the final actual resolving skill,
after all the potential agent-to-agent transfers since the
initial routing, serves as the ground truth - if the routed
skill agrees with the final skill, the action is considered
as accurate and having avoided a potential transfer. At
each round, the bandit receives a 256-dimensional text
embedding from the same GPT-2 encoder as observed

context, and a 20-dimensional probabilistic prediction
from the emulator as eligibility scores for each arm/skill.
If the bandit chooses a skill matching the final one, re-
ward is 1 and otherwise 0. In this case, the cumulative
regret is an upper bound for the number of transferred
contacts, because agents assigned to different skills may
resolve the contact regardless (e.g. digital order agents
are often equipped to resolve retail order issues, so they
may not transfer an incorrectly routed contact). The rest
5% chats are used to generate 10 bandit runs with 8000
samples each1. We observe that the empirical 𝜌 across
the runs is 0.3492. We leave the below to future work: (1)
online experiments to measure real transfers and positive
customer reviews as the reward metric; (2) agent-level
routing given agent profiles and finer grain eligibility
definitions than skill groups.

5.1. K-Boot Benchmarks
We compare K-Boot with LinUCB and NeuralUCB on
both synthetic and UCI classification datasets. With
the 4 synthetic datasets, we first select the following
hyperparameters for each Bandit algorithm of interest
(1) number of nearest neighbors 𝑘 ∈ {20, 50, 100}
for K-Boot; (2) weight parameter for exploration 𝛼 ∈
{0.1, 1.0, 10} for LinUCB; (3) regularization parame-
ter 𝜆 ∈ {0.1, 0.01, 0.001} and exploration parameter
𝜈 ∈ {0.2, 0.02, 0.002} for NeuralUCB - other hyperpa-
rameters such as learning rate, batch settings and number
of layers are set the same as in the original code base2.
We settle on 𝑘 = 100, 𝛼 = 10, (𝜆, 𝜈) = (0.001, 0.002)
per having the lowest cumulative regret averaged across
ℎ0 ∼ ℎ3 and 10 replicated runs, and carry these values
1From another perspective, this offline bandit-with-eligibility simu-
lation setup is equivalent to "using a bandit for online improvement
of a black-box probabilistic classifier with unknown accuracy".

2https://github.com/uclaml/NeuralUCB

Figure 3: EC under different Spearman’s Correlation 𝜌 between eligibility score and reward, with different risk level 𝛼. The
bandit part is K-Boot and eligibility scores are not in context.

over to compare the actual model performance on the 4
UCI datasets. We believe this setup is more realistic be-
cause most bandit applications do not have the luxury for
intensive hyperparameter tuning due to small sample size
or non-stationary environment. Finally, all experiments
in this paper implement online, single-sample model up-
dates. Figure 2 left shows the performance of the models
with final selected hyperparameters. Except for the linear
reward scenario where LinUCB/NeuralUCB has advan-
tage in correct/close model specification, there is no sig-
nificant performance difference between K-Boot and Neu-
ralUCB while LinUCB is inferior. Figure 2 right shows the
performance comparison on the UCI real-world datasets.
K-Boot and NeuralUCB have a tie of winning on two
datasets each, and LinUCB is consistently the worst. By
examing the 80% confidence band (P10-P90 across 10
runs), we find NeuralUCB has larger performance volatil-
ity (wider bands) on real data than the other two models,
due to learning instability in certain runs.

5.2. Eligibility Control Testing
For the synthetic data, we control 𝜎𝑒 to sim-
ulate different levels of reward-reflecting reliabil-
ity in eligibility scores, with resulting 𝜌(𝑟, 𝑒) ∈
{0.05, 0.15, 0.3, 0.45, 0.6, 0.75}, for each true reward
function ℎ0 - ℎ3. In the algorithm, we set different risk
level 𝛼 in EC. Note 𝛼 = 0 is effectively not using EC, and
we abuse the notation 𝛼 → 1 to denote the strict top-1

policy: pull the arm with the highest eligibility score.
Figure 3 shows the results of applying EC to K-Boot,

with eligibility scores used by EC only (explained later).
When the signal in 𝑒 is weak (low 𝜌), EC adaptively
raises the top-𝑘 threshold close to 𝑀 , achieving the same
performance as no EC. As 𝜌 grows, the advantage reveals
- using EC is consistently better than not. The dynamic
thresholding may dominate the top-1 policy even under
strong eligibility signals, with the right 𝛼. EC performs
the best for 𝛼 = 0.5 across all synthetic datasets, and
the same value is carried over to the next experiment on
CS Routing data.

EC can be applied to other bandits. Figure 4 shows
the same synthetic data results but with EC + LinUCB.
Here eligibility scores are also added to bandit context.
The reason why the previous experiment did not take
scores as K-Boot input is because 𝑘-NN has no native
feature selection mechanism. If eligibility score is close
to white noise (low 𝜌), model struggles to fit the reward,
leading to a distraction from other presented visual pat-
terns. For LinUCB, such side-effect is minimal for the
simulated noise is Gaussian, so it is a better condition to
test the difference between the trivial way versus the EC
way of utilizing eligibility. EC still dominates no-EC in
most cases. There are a few exceptions for the linear true
reward function ℎ0, where 𝛼 = 0.5 is worse because
LinUCB learns so well that taking a high risk of missing
the best arm is not cost-effective. An interesting obser-
vation is that, while the strict top-1 rule was dominated

Figure 4: EC under different Spearman’s Correlation 𝜌 between eligibility score and reward, with different risk level 𝛼. The
bandit part is LinUCB and eligibility scores are part of context.

by K-Boot + EC (Figure 3), it actually beats LinUCB + EC
for nonlinear true reward functions even at 𝜌 = 0.15.
This indicates the power of the bandit model is still a key
driver for ML to out-perform static rules.

Figure 5 shows the result on CS Routing data, where
EC significantly improves routing accuracy. Routing to
the skill with the highest probability from the emulator
serves a stochastic surrogate of the existing policy. Pure
K-Boot result without knowing the emulator outputs is
set as a baseline. With only 8000 samples, the average
accuracy of the emulator policy is improved by K-Boot +
EC from 53.37% to 57.78%.

6. Conclusions
We proposed a nonparametric contextual Bandit algo-
rithm K-Boot with arm-level eligibility control (EC) for
routing customer contacts to eligible SMEs in real-time.
While K-Boot and EC are proposed here as a suite, each
can be applied independently - K-Boot is a general Bandit
algorithm and EC can control arm-eligibility for other
bandits. We compared K-Boot with LinUCB and Neu-
ralUCB. When looking at average regret performance
over simulation runs, K-Boot and NeuralUCB had a tie
in winning scenarios and were comparable in terms of
robustness to different data distributions. Both worked
better than LinUCB. However, we observe larger perfor-
mance variability for NeuralUCB as opposed to K-Boot.

Figure 5: CS Routing Results. Metric is averaged across 10
runs with an 80% confidence band.

We further found the EC component improved K-Boot’s
performance on both synthetic datasets and a simulation
scenario in CS routing when eligibility exists.

References
[1] G. Elena, K. Milos, I. Eugene, Survey of multiarmed

bandit algorithms applied to recommendation sys-
tems, International Journal of Open Information
Technologies 9 (2021) 12–27.

[2] Y. Liu, L. Li, A map of bandits for e-commerce,
arXiv preprint arXiv:2107.00680 (2021).

[3] T. Lattimore, C. Szepesvári, Bandit algorithms, Cam-
bridge University Press, 2020.

[4] L. Li, W. Chu, J. Langford, R. E. Schapire, A
contextual-bandit approach to personalized news
article recommendation, in: Proceedings of the
19th international conference on World wide web,
2010, pp. 661–670.

[5] S. Sajeev, J. Huang, N. Karampatziakis, M. Hall,
S. Kochman, W. Chen, Contextual bandit applica-
tions in a customer support bot, in: Proceedings of
the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 2021, pp. 3522–3530.

[6] S. Upadhyay, M. Agarwal, D. Bounneffouf, Y. Khaz-
aeni, A bandit approach to posterior dialog
orchestration under a budget, arXiv preprint
arXiv:1906.09384 (2019).

[7] O. Chapelle, L. Li, An empirical evaluation of
thompson sampling, Advances in neural informa-
tion processing systems 24 (2011).

[8] T. Graepel, J. Quiñonero Candela, T. Borchert,
R. Herbrich, Web-scale bayesian click-through rate
prediction for sponsored search advertising in mi-
crosoft’s bing search engine, in: Proceedings of the
27th International Conference on Machine Learn-
ing ICML 2010, Invited Applications Track (unre-
viewed, to appear), 2010.

[9] I. Osband, B. Van Roy, Bootstrapped thompson
sampling and deep exploration, arXiv preprint
arXiv:1507.00300 (2015).

[10] B. Kveton, C. Szepesvari, S. Vaswani, Z. Wen, T. Lat-
timore, M. Ghavamzadeh, Garbage in, reward out:
Bootstrapping exploration in multi-armed bandits,
in: International Conference on Machine Learning,
PMLR, 2019, pp. 3601–3610.

[11] C. Riou, J. Honda, Bandit algorithms based on
thompson sampling for bounded reward distribu-
tions, in: Algorithmic Learning Theory, PMLR,
2020, pp. 777–826.

[12] N. Srinivas, A. Krause, S. M. Kakade, M. Seeger,
Gaussian process optimization in the bandit setting:
No regret and experimental design, arXiv preprint
arXiv:0912.3995 (2009).

[13] S. R. Chowdhury, A. Gopalan, On kernelized multi-
armed bandits, in: International Conference on
Machine Learning, PMLR, 2017, pp. 844–853.

[14] J. Hensman, N. Fusi, N. D. Lawrence, Gaussian pro-
cesses for big data, arXiv preprint arXiv:1309.6835
(2013).

[15] B. M. Steele, Exact bootstrap k-nearest neighbor
learners, Machine Learning 74 (2009) 235–255.

[16] G. Biau, F. Cérou, A. Guyader, On the rate of con-
vergence of the bagged nearest neighbor estimate.,
Journal of Machine Learning Research 11 (2010).

[17] Y. A. Malkov, D. A. Yashunin, Efficient and robust
approximate nearest neighbor search using hierar-
chical navigable small world graphs, IEEE transac-
tions on pattern analysis and machine intelligence
42 (2018) 824–836.

[18] J. Johnson, M. Douze, H. Jégou, Billion-scale simi-
larity search with GPUs, IEEE Transactions on Big
Data 7 (2019) 535–547.

[19] R. Guo, P. Sun, E. Lindgren, Q. Geng, D. Simcha,
F. Chern, S. Kumar, Accelerating large-scale infer-
ence with anisotropic vector quantization, in: Inter-
national Conference on Machine Learning, PMLR,
2020, pp. 3887–3896.

[20] B. W. Silverman, Density estimation for statistics
and data analysis, Routledge, 2018.

[21] D. Zhou, L. Li, Q. Gu, Neuralucb: Contextual ban-
dits with neural network-based exploration (2019).

[22] D. Dua, C. Graff, UCI machine learning repository,
2017. URL: http://archive.ics.uci.edu/ml.

[23] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, et al., Language models are unsuper-
vised multitask learners, OpenAI blog 1 (2019) 9.

http://archive.ics.uci.edu/ml

	1 Introduction
	2 Related Work
	3 Formulation: Contextual Bandit with Arm Eligibility
	4 Methodology
	4.1 K-Boot
	4.2 Eligibility Control

	5 Experiments
	5.1 K-Boot Benchmarks
	5.2 Eligibility Control Testing

	6 Conclusions
	Reference

