
3D shape reconstruction from non-realistic multiple-view
depictions using NVDiffRec
Joan Colom 1,2,*, and Hideo Saito 1

1 Keio University, Hiyoshi Kohoku-ku, Yokohama, 223-8522, Japan
2 Universitat Politècnica de València, Camino de Vera, Valencia, 46022, Spain

Abstract
We present a workflow for applying the SOTA in multi-view reconstruction over realistic
images in the domain of sketches and drawn-like images. With this aim, we leverage
NVDiffRec to study its performance over the non-realistic domain through custom use cases.
When doing so, we will expose the challenges of using the system over a different domain and
present our solutions. Finally, we will detail the obtained results and conclusions on the viability
of NVDiffRec as a possible tool for fictional 3D content generation from concept art.

Keywords 1
Computer Vision and Pattern Recognition, Graphics, Machine Learning, Image and Video
Processing, 3D Reconstruction, Inverse Rendering

1. Introduction

The generation of 3D shapes from 2D content
has been widely researched. From point cloud or
mesh generation to implicit representations using
neural networks, a great variety of approaches are
used to tackle this problem. However, most efforts
have focused on reconstructing objects depicted
in real-life images or realistically rendered
synthetic scenes.

Although these systems allow a wide variety
of applications for 3D content generation, they
have been limited to generating already existing
objects. In many media-related tasks, the
possibility of generating 3D versions of custom or
fictional objects is necessary. These are usually
defined through concept art, images depicting the
target from multiple points of view, making it
possible to see their three-dimensional properties.
Therefore, multi-view reconstruction techniques
that can work in this domain are required.

When considering such an application, we
must take into account the challenges of the
medium. By nature, drawings of an object from

APMAR’22: Asia-Pacific Workshop on Mixed and Augmented
Reality, Dec. 02-03, 2022, Yokohama, Japan
*Corresponding author.
EMAIL: joacoco@inf.upv.es (Joan Colom); hs@keio.jp (Hideo
Saito)
ORCID: 0000-0001-7577-0657 (Joan Colom); 0000-0002-2421-
9862 (Hideo Saito)

© 2022 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

different views are not perfectly aligned or
geometrically coherent, presenting an inherited
looseness in the 3D shape they convey.
Additionally, the number of available source
samples is much more limited.

The works in 3D reconstruction from sketches
have been trying to solve these issues. However,
their application has been limited to, as far as we
know, only sketches, not considering drawings
with color. In this regard, the joint mesh and
texture estimation of the SOTA of reconstruction
over realistic images could be helpful.

As a result, we aimed to study if, using SOTA
techniques in reconstruction with multi-view real
images, it is possible to broaden the application
domain to any level of developed art depictions.
For that, we focused on the NVDiffRec system
proposed in [4] due to its promising results and the
capability of generating a textured 3D mesh in an
exportable format. It is important to note that we
will be using NVDiffRec under a different domain
than originally intended, but by doing this, we aim
to determine if the generalization of this kind of

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

techniques allows working on the artistic field.
Our contributions are as follows:

• Aiming to obtain 3D reconstructions not
only from sketches but also from any art-like
multi-view depiction.
• Finding a workflow that allows using
NVDiffRec from images whose masks and
viewpoints have not been provided.
This paper will introduce the baseline works

and review NVDiffRec in Section 2. In Section 3,
we will detail our experiments and the use cases
tested. Finally, Section 4 will present the results,
Section 5 will draw our conclusions, and Section
6 will propose the next steps for our research.

2. Related work

The reconstruction of 3D shapes from images
has been the spotlight of a vast library of previous
works. Among them, we can find a great variety
of approaches and different reconstruction levels.
From voxels to implicit representations going
through point clouds and meshes, the variety of
representations allows for many different
techniques and strategies. Moreover, the type of
source and the detail of the reconstruction,
whenever only 3D shapes or materials, lighting,
and surface are jointly targeted, add additional
complexity to the problem. In this section, we will
introduce the baseline works for our research and
the main system used in our experiments.

2.1. Sketch 3D shape estimation

Although 3D reconstruction from images has
received more attention, three-dimensional shape
estimation from sketches has also been a broadly
researched topic. However, it involves additional
challenges due to the differences in drawing
styles, inconsistencies between views, lack of
shading that hints at the surface, and, in many
cases, lack of ground truth data. As baselines for
our research, we selected two works that aimed to
reconstruct 3D objects directly from sketches
represented as regular images without requiring
user interaction to guide the reconstruction.

Firstly, Han et al.'s work [6] uses multi-view
sketches to optimize a 3D voxel grid and
generates the corresponding model. This involves
a CGAN that predicts the geometry by generating
attenuation maps from the sketches, followed by
a Direct Shape Optimization algorithm to
optimize an occupancy-based voxel grid. In this

approach, sketches must be accompanied by their
viewing angle, and for training, a synthetically
generated dataset was used.

This work differs from our experiments in
optimizing a voxelated internal representation. As
we use NVDiffRec, the mesh is directly
optimized, allowing for a finer fitting when
compared to converting the optimized voxels into
meshes [4].

Secondly, the work by Lun et al. [1] gets closer
to a traditional multi-view approach to
reconstruction. Thanks to a CNN, multi-view
sketches can be used to generate the object's
depth, normal, and foreground probability maps
from 12 fixed views. With this, partial point
clouds for each view are obtained, and a final
point cloud is generated through optimization.
Later, the result is converted into a mesh and
further optimized by contour fitting with the
sketches.

As far as we know, this is the closest work to
our experiments, generating a mesh from multi-
view sketches and considering the direct
refinement of the mesh. However, a key
difference is that it assumes fixed canonical views
for the sketches, requiring a new network to be
trained for every unique combination of views. By
using NVDiffRec, we can provide any sequence
of arbitrary views of the object.

Finally, our experiments also present two
additional distinctions regarding both works. On
the one hand, we consider sketches and drawn-
like images, broadening the application domain.
Therefore, we will estimate not only the shape but
also the textures associated with it. On the other
hand, the deep learning approaches used in the
exposed works focus on training as means of
obtaining systems that can be used by inference.
In contrast, thanks to NVDiffRec, we model the
reconstruction as training, being the main
objective of this process obtaining our 3D object.

2.2. NVDiffRec

As the main system under our experiments, we
will briefly expose the concepts and ideas behind
NVDiffRec. Developed by Munkberg et al.,
NVDiffRec aims to jointly estimate an object's 3D
shape, materials, and lighting conditions given its
multi-view images, associated masks, and camera
poses [4]. Thanks to directly optimizing mesh and
materials through differentiable rendering, this
work allows compatibility with standard existing
3D manipulation tools.

To accomplish this, the mesh is encoded using
a tetrahedral grid whose vertex displacements and
SDF values are estimated progressively through
training. At every step, the grid is converted to
mesh by efficient marching tetrahedra and later
rendered, obtaining the loss when comparing the
result with the ground truth. In turn, that loss
modifies the grid values by backpropagation.
Therefore, training is required for every new
dataset we wish to reconstruct.

For the materials, two types of representations
are used. In the first training pass, implicit
representation through MLP of the diffuse color,
roughness, and metalness is used. On the second
pass, learnable textures created from the implicit
representation are employed. These two training
phases allow focusing on shape estimation in the
first pass, fixing it in the second pass for surface
and texture refinement.

Environmental light conditions can also be
learned. This is thanks to a learnable cubemap
texture encoding the specular lighting, whose
mipmaps are obtained by filtering, and an
additional low-resolution learnable cubemap for
encoding the diffuse lighting.

After training over a set of images, the 3D
model, materials, and environment map are
exported using standard formats. Therefore,
compatibility with external tools is accomplished.

3. Our experiments

Our goal was to use NVDiffRec with non-
realistic images. To do so, first, it was necessary
to determine the characteristics that datasets
needed:

• A set of multi-view images of an object.
• A set of masks, one for each image,
preserving the target object and hiding the rest.
These can be represented in the alpha channel.
• A set of view matrices, one for each
image, describing the position and orientation
of the camera used to capture the image.
In our application with non-realistic images,

the masks could be easily generated if we take the
concept art developed by a digital artist. However,
this is a challenge when sketches are already
rendered or made traditionally. Moreover, the
need for camera information can be an even more
challenging problem to overcome in these
situations. Next, we will present the workflow of
our experiments for masks and camera
information generation. Figure 1 shows a
summary of the said workflow.

Figure 1: summary of the proposed workflow.
Dashed arrows are conditional paths. Multi-view
drawings and sketches represented as images are
taken. First, mask generation is applied, either
manually or automatically. Then view poses are
generated either with prior information or
automatically using Colmap and adapting the
results. Finally, images, masks, and views are
used in NVDiffRec to obtain a textured model.

3.1. Generating masks

Masks are required to identify the target object
that we want to reconstruct. Given a set of 2D
images that are not masked, we can follow two
possible approaches to mask them:

• Process them manually with software
such as Gimp or Photoshop. This allows more
accurate results but is much more costly. For
big amounts of data, it becomes unfeasible.
• Automatically analyze them to identify
the target object and mask it. This is also
known as object segmentation and constitutes
an open problem. Depending on the target, this
method can produce faulty masks that can
mislead the reconstruction. However, it allows
the generation of masks for big volumes of
samples with a much lower cost.

3.2. Generating view information

NVDiffRec uses rendering to obtain feedback
from the samples. Therefore, knowing the view
matrix associated with each sample is necessary
to render it correctly from the same viewpoint
relative to the object.

Given a set of multi-view images with no
camera information, we need to generate the view
matrices in a way that is consistent with the target
object and between shots. In this case, we can also
identify two different approaches:

• If the images follow a known uniform
transformation, we can simulate this
transformation and generate the view matrices.
• When the images do not follow a known
uniform transformation, estimating the view
matrices is challenging. This falls under the
umbrella of research areas such as Structure-
from-Motion (SfM) [7] and camera pose
regression [8]. Therefore, we must recur to the
developed tools in this area.
Choosing the approach to follow depends on

the use case we face. The next section will present
three examples we used with NVDiffRec and the
proposed workflow.

3.3. Use cases studied

We experimented with NVDiffRec over three
use cases. Firstly, a drawn depiction of a sphere.
Secondly, dog sketches corresponding to a turning
animation. And finally, a recording of a character
in a cell-shaded game.

3.3.1. Sphere

We introduce a simpler base case by
presenting a digitally drawn circle, already
masked and seen in Figure 4, from various points
of view, simulating multi-view samples of a
sphere. Two approaches were used to generate the
view matrices:

• Simulating a turn-around of 28 frames
around the vertical axis, like in Section 3.3.2.
• Generating completely random rotations
around the scene's center at a fixed distance.

3.3.2. Dog sketches

In this use case, sketches of a dog like the ones
in Figure 2 are available, corresponding with the

28 frames of a complete turn-around animation.
To use them, we generated the masks of the dog,
and the camera poses for each frame.

Due to the reduced number of images, we
opted for generating the masks manually using
Gimp, alpha masking outside the black outline,
and erasing the ground line.

Figure 2: Sketches depicting the partial turn-
around of a fictional dog. The complete set,
created by Anja Regnery, can be found in [3].

The view matrices for each frame were

estimated thanks to the turn-around nature of the
source. Knowing that the 28 frames describe a
turn of 360 degrees around the vertical axis, we
can start at an arbitrary distance from the origin
on the first frame and rotate 15 additional degrees
around the vertical axis for each next frame.

3.3.3. Game character

The last use case we propose consists of
reconstructing the character of a third-person
view game in which the camera can freely move
around it. However, some remarks must be made.

The reason for this example resides in the non-
realistic-looking nature of the content, like a
painting, and the ease of generating samples.
Nonetheless, its similarity to real drawings is only
partial due to the high geometrical consistency
that it presents through views given its synthetic
origin. Additionally, it allowed us to obtain many
samples, which is unfeasible with drawings.
Despite these issues, we still consider it a valuable
example that allowed us to deal with challenging
mask generation, view estimation, and study their
effects in the reconstruction.

We took a screen recording of a game,
depicting the camera moving around the standing
character to obtain the samples. By extracting all
the frames, we gained 921 images of the character.

For masking them, we opted for generating
masks automatically. This was achieved using

Detectron2’s API and the PointRend model [5] to
identify recognizable objects and their
segmentation masks. By joining all the
segmentations, we generated the mask of the
image. This approach has the inconvenience of
occasionally introducing outlier objects in the
masks or masking out the target. We removed
from the set those images that, after masking,
were empty.

As the camera was controlled manually, we
cannot assume uniformity in its movements.
Furthermore, the camera’s movement is random
and cannot be either assumed. Therefore,
computing the camera for each frame like in
Section 3.3.2 seemed unfeasible. We opted to use
Colmap to tackle the problem [24].

This tool allows processing large amounts of
images and using their key points to find the
spatial relations between them, estimating a point
cloud representation of the scene. As a result,
from multi-view images, Colmap estimates the
camera pose of each image. However, the
compatibility between Colmap and NVDiffRec is
not direct.

Firstly, Colmap and NVDiffRec have different
coordinate systems, with the Z and Y axis
inversed in one respect to the other. Secondly,
Colmap also estimates the origin of coordinates of
the scene. Given that this point depends on the
camera distribution, as shown in Figure 3, the
center generally does not match the target's center
unless a very uniform view distribution is given.
This causes a disparity between the render and the
ground truth because NVDiffRec places the mesh
in the origin, but in the estimated view by Colmap,
the target is not in the origin.

Therefore, we must determine the object's
center in the coordinates estimated by Colmap and
use it as a new origin to solve it. We explored two
solutions.

On the one hand, if we do not know the nature
of the object and its location in the different views,
we consider only the view poses to estimate the
real origin. To do so, we can assume that, as the
samples capture a single object from different
viewpoints, the camera positions are
approximately distributed on the surface of a
sphere of radius R around the target.

Given these considerations, we can locate the
new origin by finding the sphere that most closely
explains the camera positions. Moreover, we can
also guide our decision by considering the
cameras' looking directions. To solve this
problem, we designed a GRASP algorithm that,
given camera positions and looking directions,

tries to approximate the desired sphere by
heuristically generating solutions and saving the
best one. Further details on this algorithm are
given in the Appendix.

Figure 3: Above, Colmap estimation of a
uniformly distributed scene view. The origin falls
at the center of the object. Below, estimation of
a non-uniformly distributed view in a different
scene. The origin does not fall in the object.

On the other hand, we can use additional

information to get a better estimation. As we
know that in our use case the target is always in
the center of the screen, we can assume a known
bounding box inside the images that always
contains it. This is reasonable as, when taking
multi-view samples of an object, it is usually kept
in the same area of the image. Moreover, a
bounding box could be easily defined by a user.

With this bounding box (BB), we can use the
information generated by Colmap to filter the
point cloud of the scene and then compute the
center of this filtered version. Filtering is archived
by applying a voting scheme such that each key
point inside the BB in an image receives one vote.
After analyzing all the samples, we can preserve
only the K most voted key points. Therefore, the
center can be computed as the weighted average
using the votes as weights.

This approach is intuitive as key points of the
target should be more commonly seen. However,
it can be limited depending on the use case by the
requirement of specifying a bounding box.

Finally, we can use both estimations to obtain
a new averaged center. We also tried this
approach by weight averaging. The weights were
computed using Equation 1, where 𝐶 is the set of
all cameras with look at vector �⃗�	and position �̇�.

Therefore, we give a higher weight to the points
better aligned with the views.

𝑤(�̇�) = , - 1− 0�⃗� ⋅
(�̇� − �̇�)
∥ �̇� − �̇� ∥

3
("#⃗ ,&̇)∈*

4

+,

(1)

4. Results

For all the experiments detailed with
NVDiffRec, we used 5000 iterations, random
initial textures, texture resolution of 1024 by 1024
pixels, batch size 4, grid resolution of 128, and
reconstruction in two phases with learning rates of
0.03 and 0.003, respectively. When Colmap
estimation was needed, we used all the full-
resolution images without masking. Shared
parameters were used for the cameras and default
configuration for the remaining attributes.

4.1. Sphere

In this case, we modified the camera used in
NVDiffRec to be orthographic to match the
ground truth. As far as we know, this is the first
time it has been used with this type of camera.

Figure 4: Left to right, ground truth, estimation
by NVDiffRec with turn-around, estimation with
random rotations, and estimation with Visual
Hull [9] with turn-around.

Figure 4 shows the meshes obtained with

NVDiffRec when estimating the simulated
sphere. The same estimation obtained through the
Visual Hull algorithm provided in [9] is also
presented as a reference in this comparison. For
the Visual Hull, 28 turn-around images of the
ground truth outline were used.

4.2. Dog sketches

The first experiment with the dog sketches was
executed using a perspective camera projection,
environment light optimization, and 550 by 550
pixels training resolution. All images were used

for training. The progress result saved during the
last iteration can be seen in Figure 5.

Figure 5: Results saved on the last training
iteration in NVDiffRec (initial experiment). From
top to bottom, left to right, rendered mesh,
ground truth, environment map, diffuse texture,
specular texture, and normal map.

NVDiffRec tries to approximate the silhouette
of the dog and the general shape obtained when
rendering. However, the lower parts of the body,
such as the tail and paws, are missing. This can be
attributed to the inconsistency between the views
and the projection used. Reference sketches tend
to avoid perspective deformation; therefore, they
are usually more closely explained by an
orthographic projection. Furthermore, we can also
appreciate how the grey lines are tried to
reproduce with the lighting instead of the textures.

We repeated the same training, using an
orthographic projection, and fixed white
environment light. The result can be found in
Figure 6. It can be observed that orthographic
projection allows for a closer similarity of
silhouettes and outlines between reconstruction
and sketches. Moreover, the tail and paws are now
included.

Finally, we increased the number of samples.
This was possible through interpolation between
frames using AnimeInterp [2] to generate two
additional frames between the existing ones. With
this technique, the number of samples was
increased to 84, and the experiment was repeated
using all of them. Figure 7 shows a comparison of
the meshes obtained with each experiment. Again,
the reconstruction obtained via Visual Hull [9]
with the 28 samples has also been added for
reference.

Figure 6: Results saved on the last training
iteration in NVDiffRec (second experiment). From
top to bottom, left to right, rendered mesh,
ground truth, environment map, diffuse texture,
specular texture, and normal map.

Figure 7: Reconstructed meshes for the dog from
the front and top. Left to right, perspective,
orthographic, orthographic interpolated, and
Visual Hull estimations.

4.3. Game character

A total of 921 images of 1920 by 1342 pixels
were obtained by extracting all the frames from
the source video. All of them were used for the
Colmap estimation, while 737 formed the training
split and 184 formed the validation split. These
splits were masked, filtered to remove the empty
images, and resized to half size.

We divided the experiments into two groups.
On the one hand, the experiments in which the
different strategies for center estimation were
applied with automatic masks. On the other hand,
the experiments with improved masks. In all
cases, perspective was used, the training
resolution was 960 by 671 pixels, and the lighting
was learned.

4.3.1. Origin estimation

We applied the NVDiffRec reconstruction
training separately for each of the proposed center
estimations: by GRAPS, BB projection, and
averaging both. Table 1 presents the numeric
results obtained in validation, while Figures 8 and
9 visually show the obtained reconstruction. After
the masking and filtering, the dataset was reduced
to 517 samples for training and 132 for validation.

We can see that, for all center estimation
techniques, the results look similar. Looking at
Table 1, the averaged and BB estimations obtain
slightly better PSNR, although the MSE is similar
in all cases. Figure 9 shows that the differences
are found in details like the hair shaping and the
surface texture. It is worth noting that all cases fail
to recover the hands and the foot are very roughly
reconstructed. It also shows that the main
difference between the models is where the center
of the resulting mesh is placed. It is important to
note that the models have an implicit rotation.
This is due to the Colmap estimation of the system
of coordinates. Even though we displaced it, we
did not modify its orientation.

Table 1

Average MSE and PSNR in validation of the
reconstruction of the game character for different
center estimations with automatic masks.

Estimation MSE ¯ PSNR ­
GRASP 0.008 23.77
Bounding box 0.008 23.90
Averaged 0.008 23.93

4.3.2. Masks improvement

Given that we had assumed the availability of
the BB containing the target, we used this
information to improve the masks. This was
archived by automatically masking anything
located outside the bounding box. Moreover, the
filtering was also improved by removing those
samples whose bounding box interior was empty.
This method allowed for more refined masks,
obtaining 501 training samples and 124
evaluation samples.

We tested the reconstruction for the BB and
the averaged origin estimations again with the
improved masks. Table 2 shows the metrics
obtained in validation, while Figure 10 shows a
visual comparison of the estimated 3D models.

Table 2

Average MSE and PSNR in validation over
improved samples with the obtained models from
automatic and improved masks.

Estimation MSE ¯ PSNR ­
Bounding box 0.004 25.03
Averaged 0.006 23.85
Bounding box+ 0.003 27.73
Averaged+ 0.003 27.77

Figure 8: Validation results over the first sample
for different center estimations on the game
character. Left to right, GRASP, BB, and averaged.
Top to bottom, ground truth, rendered
reconstruction, diffuse texture, specular texture,
and normal map. Images have been cropped for
visibility.

Figure 9: Captures of the generated 3D models of
the game character during the first experiment
viewed from the front and back. Left to right,
GRASP, BB, and averaged estimations.

Figure 10: Models obtained for the game
character without and with improved masks
viewed from front and back. In each set, left to
right, estimation with normal and improved
masks, top to bottom, average, and BB
estimations. All models have been rotated for the
comparison; the original orientations were as in
Figure 9.

The reconstructions with the improved masks

are visually similar to the initially obtained ones.
Looking at Figure 10, we can see a slight increase
in the sharpness of the textures. Regarding the 3D

shape, we can observe small improvements in the
shaping of the hair. In Table 2, we can see that,
when evaluated over the more refined validation
set, the models trained with improved masks
perform better than those trained with fully
automatic masks.

5. Conclusions

Through all the experiments and results
presented, we can see it is possible to obtain
promising results using NVDiffRec. However, it
is not ready to be applied by users in this domain.

With the sphere and dog cases, we can see that
extracting mesh information from only sketches is
highly difficult, considering the inconsistencies of
the outlines between views and the lack of
shading. In the case of the sphere, a reconstruction
through Visual Hull gives a perfect result with
only a turn-around. Meanwhile, NVDiffRec has
difficulties filling the surface thoroughly, even
with a wide variety of random views, producing
small holes in the surface. The main reason is that
NVDiffRec only uses direct lighting without
shadows; therefore, these holes do not produce
visual feedback when rendered. That causes
NVDiffRec to optimize the shape based on the
outlines of the views without diffuse or specular
shading. In this way, the higher the number of
viewpoints, the more consistent the mesh is with
all possible outlines.

Nonetheless, the results obtained with the dog
sketches show that, in challenging situations,
NVDiffRec allows more detailed results than
Visual Hull, providing higher silhouette fitting.
This is thanks to all the samples contributing to
the optimization. Even though some may be faulty
or misaligned, the rest still contribute. This also
explains the robustness seen with the game
character, even with the defective masks.
However, Visual Hull requires a higher
consistency, which can also be seen in the
algorithm failing to generate any mesh for the
game character dataset.

With all this, the dog sketch results are still
inadequate for a real user, failing to generate the
surface properly. If additional views were
provided from the top and bottom as in the sphere,
we theorize that better results would be possible,
but we have not been able to try it.

We can therefore identify components in
NVDiffRec that are not suitable for drawn-like
images:

• Lighting estimation. In most concept arts,
objects are depicted without strong shadows,
with soft shading, or with no lighting. Like
with the dog sketches, using fixed lighting may
be more beneficial.
• Specular texture estimation. In drawings
and sketches, specularities are rare and mostly
depicted in a non-realistic way. Therefore, the
texture details are more desirable to be wholly
integrated into the diffuse map, avoiding
results such as Figure 6.
• Camera inputs. Defining the viewpoints
for drawings or sketches can be extremely
difficult.
• Perspective camera. As we have shown,
an orthographic camera can be more suitable
in some cases.
• Local lighting.
Despite all this, there are still suitable

components in NVDiffRec for drawing
reconstruction. The direct optimization of the
mesh, as well as the normal map and the diffuse
map estimations based on rendering are relevant.

With the game character, we have seen the
importance of the view estimation for a good
reconstruction, as it will directly affect the render
and the consistency with the ground truth. Colmap
and the need for many key points limit our
workflow for automatic view estimation. This
makes its application on actual drawings difficult,
especially in the absence of any background
scenery in the depiction. However, the
experiments with the game character show that
the results improve if enough detailed samples in
a drawn style are provided.

In conclusion, our workflow application is
currently limited by the difficulty of dealing with
small amounts of viewpoints for drawn objects
and the limitations of local lighting. Therefore,
using NVDiffRec does not solve the applications
we aimed to tackle, which we presented in Section
1. We theorize that, with differential ray tracing
techniques that confer global illumination, the
estimations would improve significantly as the
holes would reveal themselves and the more
robust nature of deep learning approaches could
deal with the outline inconsistencies.

6. Future work

Even though NVDiffRec is not ready to use by
our intended use cases, we consider the results
promising. Therefore, we aim to continue our
research by finding ways to tackle the limited set

of viewpoints and explore alternative render
pipelines.

Acknowledgments

Special thanks to Anja Regnery for allowing
us to use her dog turn-around animation sketches
in our experiments [3]. All the materials for this
project have been used under Fair Use. The game
character images were obtained from a screen
recording made by us of the game Genshin
Impact.

7. References

[1] Z. Lun, M. Gadelha, E. Kalogerakis, S. Maji
and R. Wang. “3D Shape Reconstruction
from Sketches via Multi-view Convolutional
Networks”. CoRR, vol. abs/1707.06375
(2017). URL:
http://arxiv.org/abs/1707.06375

[2] S. Li, S. Zhao, W. Yu, W. Sun, D.N.
Metaxas, C.C. Loy, and Z. Liu. “Deep
Animation Video Interpolation in the Wild”.
CoRR, vol. abs/2104.0249 (2021). URL:
https://arxiv.org/abs/2104.02495

[3] A. Regnery, Dog Turnaround Animation,
2020. URL:
https://www.behance.net/gallery/95032661/
Dog-Turnaround-Animation

[4] J. Munkberg, J. Hasselgren, T. Shen, J. Gao,
W. Chen, A. Evans, T. Müller and S. Fidler.
“Extracting Triangular 3D Models,
Materials, and Lighting From Images”. arXiv
(2021). doi:10.48550/ARXIV.2111.12503.

[5] A. Kirillov, Y. Wu, K. He, and R. Girshick,
“PointRend: Image Segmentation as
Rendering”. arXiv (2019).
doi:10.48550/ARXIV.1912.08193.

[6] Z. Han, B. Ma, Y.-S. Liu and M. Zwicker,
Reconstructing 3D Shapes From Multiple
Sketches Using Direct Shape Optimization,
IEEE Transactions on Image Processing, vol.
29 (2020) 8721-8734.
doi:10.1109/TIP.2020.3018865.

[7] J. L. Schönberger and J.-M. Frahm,
Structure-from-Motion Revisited, in: 2016
IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp.
4104-4113. doi:10.1109/CVPR.2016.445.

[8] T. Sattler, Q. Zhou, M. Pollefeys and L. Leal-
Taixe. “Understanding the Limitations of
CNN-based Absolute Camera Pose

Regression”. arXiv (2019).
doi:10.48550/ARXIV.1903.07504.

[9] keith2000, VisualHullMesh, 2021. URL:
https://github.com/keith2000/VisualHullMe
sh

Appendix

Finding the sphere that best describes the view
distribution of a set of cameras constitutes an
optimization problem for which exact methods
would be unfeasible in big datasets. Therefore, we
try to find an approximation in a reasonable time
by using a Greedy Randomized Adaptive Search
Procedure (GRASP) algorithm.

Our implementation reduces the sphere
estimation problem to the task of finding four
cameras whose positions describe a sphere that
approximates the distribution of all the views.
Consequently, our GRASP can focus on
generating solutions formed by a sequence of four
camera positions. After obtaining these points, the
center and radius of the sphere can be obtained by
applying the general equation of the sphere.

Algorithm 1 presents our GRASP proposal for
sphere estimation. Following the general scheme
of this kind of algorithm, every iteration has two
phases:

• A constructive phase in which N
solutions are generated. Each solution is built
step by step, adding progressively new
elements (camera positions). The first element
is picked randomly among all the points. Then,
every subsequent element is added semi-
randomly, considering the cost of every
remaining option. The cost of adding an
element is defined by the inverse of the sum of
the distances to each point in the current
solution. In this way, we favor a more
dispersed set of points. The best solution of the
N generations will be stored if it improves the
current best solution.
• A local search phase in which the
algorithm tries to improve the current best
solution by exploring its neighborhood of
solutions. For generating the neighborhood,
we take the indices of each point in the current
solution and displace them randomly and
circularly, one value up, down or maintaining
the value. With the new indices, we can find a
neighboring set of points. In all iterations, M
local solutions are generated. If none is better
than the current solution, the search stops.
Else, the best replaces the present, and the
exploration continues up to the maximum
depth.
Once the algorithm reaches the maximum

number of iterations, the center and radius of the
sphere described by the best solution can be
obtained. Note that we define the best solution as

the one that allows obtaining a sphere that
minimizes Equation 2, where �̇� is the center of the
sphere, 𝑟 is the radius, 𝐶 is the set of all cameras
described by a look at vector �⃗�	and a position �̇�,
and 𝑤 is defined in Equation 1. It is important to
point out that, to avoid the sphere growing
excessively, the radius of any solution is limited
to be considered a valid solution. In our
experiments, we have fixed the number of
iterations to 1000, N to 20, M to 60, max depth to
50, a to 0.6, and the maximum allowed radius to
double the maximum distance between cameras.

𝑐(�̇�, 𝑟) = 0.4 ⋅ - |∥ �̇� − �̇� ∥ −	𝑟|

("#⃗ ,&̇)∈*

+𝑤(�̇�)+, (2)

Algorithm 1 GRASP Sphere Estimation
01: function sphereEstimation(points, dirs)
02: distances ¬ distanceMatrix(points)
03: max_r ¬ 2 · max(distances)
04: best_sol ¬ Æ, best_cost¬¥
05: for _ ¬ 1 to max_iterations:
06: for _ ¬ 1 to N:
07: sol ¬ {random(points)}
08: for _ ¬ 1 to 3:
09: cands ¬ points Ï sol
10: costs ¬ dists(cands, points)-1

11: cmin ¬ min(costs)
12: cmax ¬ max(costs)
13: cands ¬ {c Î cands | costs[c]
£ cmin + a · (cmax–cmin)}
14: sol ¬ sol È {random(cands)}
15: if cost(sol) < best_cost and
radius(sol) < max_r:
16: best_sol ¬ sol
17: best_cost ¬ cost(sol)
15: for _ ¬ 1 to max_depth:
16: neighs ¬ getNeighbors(best_sol)
17: for sol in neighs:
19: if cost(sol) < best_cost and
radius(sol) < max_r:
20: best_sol ¬ sol
21: best_cost ¬ cost(sol)
22: else:
23: break
24: return sphere(best_sol)

