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Abstract  
We present a workflow for applying the SOTA in multi-view reconstruction over realistic 
images in the domain of sketches and drawn-like images. With this aim, we leverage 
NVDiffRec to study its performance over the non-realistic domain through custom use cases. 
When doing so, we will expose the challenges of using the system over a different domain and 
present our solutions. Finally, we will detail the obtained results and conclusions on the viability 
of NVDiffRec as a possible tool for fictional 3D content generation from concept art. 
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1. Introduction 

The generation of 3D shapes from 2D content 
has been widely researched. From point cloud or 
mesh generation to implicit representations using 
neural networks, a great variety of approaches are 
used to tackle this problem. However, most efforts 
have focused on reconstructing objects depicted 
in real-life images or realistically rendered 
synthetic scenes. 

Although these systems allow a wide variety 
of applications for 3D content generation, they 
have been limited to generating already existing 
objects. In many media-related tasks, the 
possibility of generating 3D versions of custom or 
fictional objects is necessary. These are usually 
defined through concept art, images depicting the 
target from multiple points of view, making it 
possible to see their three-dimensional properties. 
Therefore, multi-view reconstruction techniques 
that can work in this domain are required. 

When considering such an application, we 
must take into account the challenges of the 
medium. By nature, drawings of an object from 
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different views are not perfectly aligned or 
geometrically coherent, presenting an inherited 
looseness in the 3D shape they convey. 
Additionally, the number of available source 
samples is much more limited. 

The works in 3D reconstruction from sketches 
have been trying to solve these issues. However, 
their application has been limited to, as far as we 
know, only sketches, not considering drawings 
with color. In this regard, the joint mesh and 
texture estimation of the SOTA of reconstruction 
over realistic images could be helpful.  

As a result, we aimed to study if, using SOTA 
techniques in reconstruction with multi-view real 
images, it is possible to broaden the application 
domain to any level of developed art depictions. 
For that, we focused on the NVDiffRec system 
proposed in [4] due to its promising results and the 
capability of generating a textured 3D mesh in an 
exportable format. It is important to note that we 
will be using NVDiffRec under a different domain 
than originally intended, but by doing this, we aim 
to determine if the generalization of this kind of 
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techniques allows working on the artistic field. 
Our contributions are as follows: 

• Aiming to obtain 3D reconstructions not 
only from sketches but also from any art-like 
multi-view depiction. 
•  Finding a workflow that allows using 
NVDiffRec from images whose masks and 
viewpoints have not been provided. 
This paper will introduce the baseline works 

and review NVDiffRec in Section 2. In Section 3, 
we will detail our experiments and the use cases 
tested. Finally, Section 4 will present the results, 
Section 5 will draw our conclusions, and Section 
6 will propose the next steps for our research. 

2. Related work 

The reconstruction of 3D shapes from images 
has been the spotlight of a vast library of previous 
works. Among them, we can find a great variety 
of approaches and different reconstruction levels. 
From voxels to implicit representations going 
through point clouds and meshes, the variety of 
representations allows for many different 
techniques and strategies. Moreover, the type of 
source and the detail of the reconstruction, 
whenever only 3D shapes or materials, lighting, 
and surface are jointly targeted, add additional 
complexity to the problem. In this section, we will 
introduce the baseline works for our research and 
the main system used in our experiments. 

2.1. Sketch 3D shape estimation 

Although 3D reconstruction from images has 
received more attention, three-dimensional shape 
estimation from sketches has also been a broadly 
researched topic. However, it involves additional 
challenges due to the differences in drawing 
styles, inconsistencies between views, lack of 
shading that hints at the surface, and, in many 
cases, lack of ground truth data. As baselines for 
our research, we selected two works that aimed to 
reconstruct 3D objects directly from sketches 
represented as regular images without requiring 
user interaction to guide the reconstruction. 

Firstly, Han et al.'s work [6] uses multi-view 
sketches to optimize a 3D voxel grid and 
generates the corresponding model. This involves 
a CGAN that predicts the geometry by generating 
attenuation maps from the sketches, followed by 
a Direct Shape Optimization algorithm to 
optimize an occupancy-based voxel grid. In this 

approach, sketches must be accompanied by their 
viewing angle, and for training, a synthetically 
generated dataset was used.  

This work differs from our experiments in 
optimizing a voxelated internal representation. As 
we use NVDiffRec, the mesh is directly 
optimized, allowing for a finer fitting when 
compared to converting the optimized voxels into 
meshes [4].  

Secondly, the work by Lun et al. [1] gets closer 
to a traditional multi-view approach to 
reconstruction. Thanks to a CNN, multi-view 
sketches can be used to generate the object's 
depth, normal, and foreground probability maps 
from 12 fixed views. With this, partial point 
clouds for each view are obtained, and a final 
point cloud is generated through optimization. 
Later, the result is converted into a mesh and 
further optimized by contour fitting with the 
sketches. 

As far as we know, this is the closest work to 
our experiments, generating a mesh from multi-
view sketches and considering the direct 
refinement of the mesh. However, a key 
difference is that it assumes fixed canonical views 
for the sketches, requiring a new network to be 
trained for every unique combination of views. By 
using NVDiffRec, we can provide any sequence 
of arbitrary views of the object. 

Finally, our experiments also present two 
additional distinctions regarding both works. On 
the one hand, we consider sketches and drawn-
like images, broadening the application domain. 
Therefore, we will estimate not only the shape but 
also the textures associated with it. On the other 
hand, the deep learning approaches used in the 
exposed works focus on training as means of 
obtaining systems that can be used by inference. 
In contrast, thanks to NVDiffRec, we model the 
reconstruction as training, being the main 
objective of this process obtaining our 3D object. 

2.2. NVDiffRec 

As the main system under our experiments, we 
will briefly expose the concepts and ideas behind 
NVDiffRec. Developed by Munkberg et al., 
NVDiffRec aims to jointly estimate an object's 3D 
shape, materials, and lighting conditions given its 
multi-view images, associated masks, and camera 
poses [4]. Thanks to directly optimizing mesh and 
materials through differentiable rendering, this 
work allows compatibility with standard existing 
3D manipulation tools. 



To accomplish this, the mesh is encoded using 
a tetrahedral grid whose vertex displacements and 
SDF values are estimated progressively through 
training. At every step, the grid is converted to 
mesh by efficient marching tetrahedra and later 
rendered, obtaining the loss when comparing the 
result with the ground truth. In turn, that loss 
modifies the grid values by backpropagation. 
Therefore, training is required for every new 
dataset we wish to reconstruct. 

For the materials, two types of representations 
are used. In the first training pass, implicit 
representation through MLP of the diffuse color, 
roughness, and metalness is used. On the second 
pass, learnable textures created from the implicit 
representation are employed. These two training 
phases allow focusing on shape estimation in the 
first pass, fixing it in the second pass for surface 
and texture refinement. 

Environmental light conditions can also be 
learned. This is thanks to a learnable cubemap 
texture encoding the specular lighting, whose 
mipmaps are obtained by filtering, and an 
additional low-resolution learnable cubemap for 
encoding the diffuse lighting. 

After training over a set of images, the 3D 
model, materials, and environment map are 
exported using standard formats. Therefore, 
compatibility with external tools is accomplished. 

3. Our experiments 

Our goal was to use NVDiffRec with non-
realistic images. To do so, first, it was necessary 
to determine the characteristics that datasets 
needed: 

• A set of multi-view images of an object. 
• A set of masks, one for each image, 
preserving the target object and hiding the rest. 
These can be represented in the alpha channel. 
• A set of view matrices, one for each 
image, describing the position and orientation 
of the camera used to capture the image. 
In our application with non-realistic images, 

the masks could be easily generated if we take the 
concept art developed by a digital artist. However, 
this is a challenge when sketches are already 
rendered or made traditionally. Moreover, the 
need for camera information can be an even more 
challenging problem to overcome in these 
situations. Next, we will present the workflow of 
our experiments for masks and camera 
information generation. Figure 1 shows a 
summary of the said workflow. 

 
Figure 1: summary of the proposed workflow. 
Dashed arrows are conditional paths. Multi-view 
drawings and sketches represented as images are 
taken. First, mask generation is applied, either 
manually or automatically. Then view poses are 
generated either with prior information or 
automatically using Colmap and adapting the 
results. Finally, images, masks, and views are 
used in NVDiffRec to obtain a textured model. 

3.1. Generating masks 

Masks are required to identify the target object 
that we want to reconstruct. Given a set of 2D 
images that are not masked, we can follow two 
possible approaches to mask them: 

• Process them manually with software 
such as Gimp or Photoshop. This allows more 
accurate results but is much more costly. For 
big amounts of data, it becomes unfeasible. 
• Automatically analyze them to identify 
the target object and mask it. This is also 
known as object segmentation and constitutes 
an open problem. Depending on the target, this 
method can produce faulty masks that can 
mislead the reconstruction. However, it allows 
the generation of masks for big volumes of 
samples with a much lower cost. 
 
 
 



3.2. Generating view information 

NVDiffRec uses rendering to obtain feedback 
from the samples. Therefore, knowing the view 
matrix associated with each sample is necessary 
to render it correctly from the same viewpoint 
relative to the object. 

Given a set of multi-view images with no 
camera information, we need to generate the view 
matrices in a way that is consistent with the target 
object and between shots. In this case, we can also 
identify two different approaches: 

• If the images follow a known uniform 
transformation, we can simulate this 
transformation and generate the view matrices. 
• When the images do not follow a known 
uniform transformation, estimating the view 
matrices is challenging. This falls under the 
umbrella of research areas such as Structure-
from-Motion (SfM) [7] and camera pose 
regression [8]. Therefore, we must recur to the 
developed tools in this area. 
Choosing the approach to follow depends on 

the use case we face. The next section will present 
three examples we used with NVDiffRec and the 
proposed workflow. 

3.3. Use cases studied 

We experimented with NVDiffRec over three 
use cases. Firstly, a drawn depiction of a sphere. 
Secondly, dog sketches corresponding to a turning 
animation. And finally, a recording of a character 
in a cell-shaded game. 

3.3.1. Sphere 

We introduce a simpler base case by 
presenting a digitally drawn circle, already 
masked and seen in Figure 4, from various points 
of view, simulating multi-view samples of a 
sphere. Two approaches were used to generate the 
view matrices: 

• Simulating a turn-around of 28 frames 
around the vertical axis, like in Section 3.3.2. 
• Generating completely random rotations 
around the scene's center at a fixed distance. 

3.3.2. Dog sketches 

In this use case, sketches of a dog like the ones 
in Figure 2 are available, corresponding with the 

28 frames of a complete turn-around animation. 
To use them, we generated the masks of the dog, 
and the camera poses for each frame. 

Due to the reduced number of images, we 
opted for generating the masks manually using 
Gimp, alpha masking outside the black outline, 
and erasing the ground line. 

 

 
Figure 2: Sketches depicting the partial turn-
around of a fictional dog. The complete set, 
created by Anja Regnery, can be found in [3]. 

 
The view matrices for each frame were 

estimated thanks to the turn-around nature of the 
source. Knowing that the 28 frames describe a 
turn of 360 degrees around the vertical axis, we 
can start at an arbitrary distance from the origin 
on the first frame and rotate 15 additional degrees 
around the vertical axis for each next frame. 

3.3.3. Game character 

The last use case we propose consists of 
reconstructing the character of a third-person 
view game in which the camera can freely move 
around it. However, some remarks must be made.  

The reason for this example resides in the non-
realistic-looking nature of the content, like a 
painting, and the ease of generating samples. 
Nonetheless, its similarity to real drawings is only 
partial due to the high geometrical consistency 
that it presents through views given its synthetic 
origin. Additionally, it allowed us to obtain many 
samples, which is unfeasible with drawings. 
Despite these issues, we still consider it a valuable 
example that allowed us to deal with challenging 
mask generation, view estimation, and study their 
effects in the reconstruction. 

We took a screen recording of a game, 
depicting the camera moving around the standing 
character to obtain the samples. By extracting all 
the frames, we gained 921 images of the character.  

For masking them, we opted for generating 
masks automatically. This was achieved using 



Detectron2’s API and the PointRend model [5] to 
identify recognizable objects and their 
segmentation masks. By joining all the 
segmentations, we generated the mask of the 
image. This approach has the inconvenience of 
occasionally introducing outlier objects in the 
masks or masking out the target. We removed 
from the set those images that, after masking, 
were empty. 

As the camera was controlled manually, we 
cannot assume uniformity in its movements. 
Furthermore, the camera’s movement is random 
and cannot be either assumed. Therefore, 
computing the camera for each frame like in 
Section 3.3.2 seemed unfeasible. We opted to use 
Colmap to tackle the problem [24]. 

This tool allows processing large amounts of 
images and using their key points to find the 
spatial relations between them, estimating a point 
cloud representation of the scene. As a result, 
from multi-view images, Colmap estimates the 
camera pose of each image. However, the 
compatibility between Colmap and NVDiffRec is 
not direct. 

Firstly, Colmap and NVDiffRec have different 
coordinate systems, with the Z and Y axis 
inversed in one respect to the other. Secondly, 
Colmap also estimates the origin of coordinates of 
the scene. Given that this point depends on the 
camera distribution, as shown in Figure 3, the 
center generally does not match the target's center 
unless a very uniform view distribution is given. 
This causes a disparity between the render and the 
ground truth because NVDiffRec places the mesh 
in the origin, but in the estimated view by Colmap, 
the target is not in the origin. 

Therefore, we must determine the object's 
center in the coordinates estimated by Colmap and 
use it as a new origin to solve it. We explored two 
solutions. 

On the one hand, if we do not know the nature 
of the object and its location in the different views, 
we consider only the view poses to estimate the 
real origin. To do so, we can assume that, as the 
samples capture a single object from different 
viewpoints, the camera positions are 
approximately distributed on the surface of a 
sphere of radius R around the target. 

Given these considerations, we can locate the 
new origin by finding the sphere that most closely 
explains the camera positions. Moreover, we can 
also guide our decision by considering the 
cameras' looking directions. To solve this 
problem, we designed a GRASP algorithm that, 
given camera positions and looking directions, 

tries to approximate the desired sphere by 
heuristically generating solutions and saving the 
best one. Further details on this algorithm are 
given in the Appendix. 

 

 

 
Figure 3: Above, Colmap estimation of a 
uniformly distributed scene view. The origin falls 
at the center of the object. Below, estimation of 
a non-uniformly distributed view in a different 
scene. The origin does not fall in the object. 

 
On the other hand, we can use additional 

information to get a better estimation. As we 
know that in our use case the target is always in 
the center of the screen, we can assume a known 
bounding box inside the images that always 
contains it. This is reasonable as, when taking 
multi-view samples of an object, it is usually kept 
in the same area of the image. Moreover, a 
bounding box could be easily defined by a user. 

With this bounding box (BB), we can use the 
information generated by Colmap to filter the 
point cloud of the scene and then compute the 
center of this filtered version. Filtering is archived 
by applying a voting scheme such that each key 
point inside the BB in an image receives one vote. 
After analyzing all the samples, we can preserve 
only the K most voted key points. Therefore, the 
center can be computed as the weighted average 
using the votes as weights. 

This approach is intuitive as key points of the 
target should be more commonly seen. However, 
it can be limited depending on the use case by the 
requirement of specifying a bounding box. 

Finally, we can use both estimations to obtain 
a new averaged center. We also tried this 
approach by weight averaging. The weights were 
computed using Equation 1, where 𝐶 is the set of 
all cameras with look at vector �⃗�	and position �̇�. 



Therefore, we give a higher weight to the points 
better aligned with the views. 
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4. Results 

For all the experiments detailed with 
NVDiffRec, we used 5000 iterations, random 
initial textures, texture resolution of 1024 by 1024 
pixels, batch size 4, grid resolution of 128, and 
reconstruction in two phases with learning rates of 
0.03 and 0.003, respectively. When Colmap 
estimation was needed, we used all the full-
resolution images without masking. Shared 
parameters were used for the cameras and default 
configuration for the remaining attributes.  

4.1. Sphere 

In this case, we modified the camera used in 
NVDiffRec to be orthographic to match the 
ground truth. As far as we know, this is the first 
time it has been used with this type of camera. 

 

 
Figure 4: Left to right, ground truth, estimation 
by NVDiffRec with turn-around, estimation with 
random rotations, and estimation with Visual 
Hull [9] with turn-around.  

 
Figure 4 shows the meshes obtained with 

NVDiffRec when estimating the simulated 
sphere. The same estimation obtained through the 
Visual Hull algorithm provided in [9] is also 
presented as a reference in this comparison. For 
the Visual Hull, 28 turn-around images of the 
ground truth outline were used. 

4.2. Dog sketches 

The first experiment with the dog sketches was 
executed using a perspective camera projection, 
environment light optimization, and 550 by 550 
pixels training resolution. All images were used 

for training. The progress result saved during the 
last iteration can be seen in Figure 5. 

 

 
Figure 5: Results saved on the last training 
iteration in NVDiffRec (initial experiment). From 
top to bottom, left to right, rendered mesh, 
ground truth, environment map, diffuse texture, 
specular texture, and normal map. 
 

NVDiffRec tries to approximate the silhouette 
of the dog and the general shape obtained when 
rendering. However, the lower parts of the body, 
such as the tail and paws, are missing. This can be 
attributed to the inconsistency between the views 
and the projection used. Reference sketches tend 
to avoid perspective deformation; therefore, they 
are usually more closely explained by an 
orthographic projection. Furthermore, we can also 
appreciate how the grey lines are tried to 
reproduce with the lighting instead of the textures. 

We repeated the same training, using an 
orthographic projection, and fixed white 
environment light. The result can be found in 
Figure 6. It can be observed that orthographic 
projection allows for a closer similarity of 
silhouettes and outlines between reconstruction 
and sketches. Moreover, the tail and paws are now 
included. 

Finally, we increased the number of samples. 
This was possible through interpolation between 
frames using AnimeInterp [2] to generate two 
additional frames between the existing ones. With 
this technique, the number of samples was 
increased to 84, and the experiment was repeated 
using all of them. Figure 7 shows a comparison of 
the meshes obtained with each experiment. Again, 
the reconstruction obtained via Visual Hull [9] 
with the 28 samples has also been added for 
reference.  

 



 
Figure 6: Results saved on the last training 
iteration in NVDiffRec (second experiment). From 
top to bottom, left to right, rendered mesh, 
ground truth, environment map, diffuse texture, 
specular texture, and normal map. 
 

 
Figure 7: Reconstructed meshes for the dog from 
the front and top. Left to right, perspective, 
orthographic, orthographic interpolated, and 
Visual Hull estimations. 

4.3. Game character 

A total of 921 images of 1920 by 1342 pixels 
were obtained by extracting all the frames from 
the source video. All of them were used for the 
Colmap estimation, while 737 formed the training 
split and 184 formed the validation split. These 
splits were masked, filtered to remove the empty 
images, and resized to half size. 

We divided the experiments into two groups. 
On the one hand, the experiments in which the 
different strategies for center estimation were 
applied with automatic masks. On the other hand, 
the experiments with improved masks. In all 
cases, perspective was used, the training 
resolution was 960 by 671 pixels, and the lighting 
was learned. 

4.3.1. Origin estimation 

We applied the NVDiffRec reconstruction 
training separately for each of the proposed center 
estimations: by GRAPS, BB projection, and 
averaging both. Table 1 presents the numeric 
results obtained in validation, while Figures 8 and 
9 visually show the obtained reconstruction. After 
the masking and filtering, the dataset was reduced 
to 517 samples for training and 132 for validation. 

We can see that, for all center estimation 
techniques, the results look similar. Looking at 
Table 1, the averaged and BB estimations obtain 
slightly better PSNR, although the MSE is similar 
in all cases. Figure 9 shows that the differences 
are found in details like the hair shaping and the 
surface texture. It is worth noting that all cases fail 
to recover the hands and the foot are very roughly 
reconstructed. It also shows that the main 
difference between the models is where the center 
of the resulting mesh is placed. It is important to 
note that the models have an implicit rotation. 
This is due to the Colmap estimation of the system 
of coordinates. Even though we displaced it, we 
did not modify its orientation. 

 
Table 1 

Average MSE and PSNR in validation of the 
reconstruction of the game character for different 
center estimations with automatic masks. 

Estimation MSE ¯ PSNR ­ 
GRASP 0.008 23.77 
Bounding box 0.008 23.90 
Averaged 0.008 23.93 

 

4.3.2. Masks improvement  

Given that we had assumed the availability of 
the BB containing the target, we used this 
information to improve the masks. This was 
archived by automatically masking anything 
located outside the bounding box. Moreover, the 
filtering was also improved by removing those 
samples whose bounding box interior was empty. 
This method allowed for more refined masks, 
obtaining 501 training samples and 124 
evaluation samples. 

We tested the reconstruction for the BB and 
the averaged origin estimations again with the 
improved masks. Table 2 shows the metrics 
obtained in validation, while Figure 10 shows a 
visual comparison of the estimated 3D models.  



 
Table 2 

Average MSE and PSNR in validation over 
improved samples with the obtained models from 
automatic and improved masks. 

Estimation MSE ¯ PSNR ­ 
Bounding box 0.004 25.03 
Averaged 0.006 23.85 
Bounding box+ 0.003 27.73 
Averaged+ 0.003 27.77 

 

 
Figure 8: Validation results over the first sample 
for different center estimations on the game 
character. Left to right, GRASP, BB, and averaged. 
Top to bottom, ground truth, rendered 
reconstruction, diffuse texture, specular texture, 
and normal map. Images have been cropped for 
visibility. 

 

 
Figure 9: Captures of the generated 3D models of 
the game character during the first experiment 
viewed from the front and back. Left to right, 
GRASP, BB, and averaged estimations. 

 

 
Figure 10: Models obtained for the game 
character without and with improved masks 
viewed from front and back. In each set, left to 
right, estimation with normal and improved 
masks, top to bottom, average, and BB 
estimations. All models have been rotated for the 
comparison; the original orientations were as in 
Figure 9. 

 
The reconstructions with the improved masks 

are visually similar to the initially obtained ones. 
Looking at Figure 10, we can see a slight increase 
in the sharpness of the textures. Regarding the 3D 



shape, we can observe small improvements in the 
shaping of the hair. In Table 2, we can see that, 
when evaluated over the more refined validation 
set, the models trained with improved masks 
perform better than those trained with fully 
automatic masks. 

5. Conclusions 

Through all the experiments and results 
presented, we can see it is possible to obtain 
promising results using NVDiffRec. However, it 
is not ready to be applied by users in this domain. 

With the sphere and dog cases, we can see that 
extracting mesh information from only sketches is 
highly difficult, considering the inconsistencies of 
the outlines between views and the lack of 
shading. In the case of the sphere, a reconstruction 
through Visual Hull gives a perfect result with 
only a turn-around. Meanwhile, NVDiffRec has 
difficulties filling the surface thoroughly, even 
with a wide variety of random views, producing 
small holes in the surface. The main reason is that 
NVDiffRec only uses direct lighting without 
shadows; therefore, these holes do not produce 
visual feedback when rendered. That causes 
NVDiffRec to optimize the shape based on the 
outlines of the views without diffuse or specular 
shading. In this way, the higher the number of 
viewpoints, the more consistent the mesh is with 
all possible outlines. 

Nonetheless, the results obtained with the dog 
sketches show that, in challenging situations, 
NVDiffRec allows more detailed results than 
Visual Hull, providing higher silhouette fitting. 
This is thanks to all the samples contributing to 
the optimization. Even though some may be faulty 
or misaligned, the rest still contribute. This also 
explains the robustness seen with the game 
character, even with the defective masks. 
However, Visual Hull requires a higher 
consistency, which can also be seen in the 
algorithm failing to generate any mesh for the 
game character dataset. 

With all this, the dog sketch results are still 
inadequate for a real user, failing to generate the 
surface properly. If additional views were 
provided from the top and bottom as in the sphere, 
we theorize that better results would be possible, 
but we have not been able to try it.  

We can therefore identify components in 
NVDiffRec that are not suitable for drawn-like 
images: 

• Lighting estimation. In most concept arts, 
objects are depicted without strong shadows, 
with soft shading, or with no lighting. Like 
with the dog sketches, using fixed lighting may 
be more beneficial. 
• Specular texture estimation. In drawings 
and sketches, specularities are rare and mostly 
depicted in a non-realistic way. Therefore, the 
texture details are more desirable to be wholly 
integrated into the diffuse map, avoiding 
results such as Figure 6. 
• Camera inputs. Defining the viewpoints 
for drawings or sketches can be extremely 
difficult. 
• Perspective camera. As we have shown, 
an orthographic camera can be more suitable 
in some cases. 
• Local lighting. 
Despite all this, there are still suitable 

components in NVDiffRec for drawing 
reconstruction. The direct optimization of the 
mesh, as well as the normal map and the diffuse 
map estimations based on rendering are relevant. 

With the game character, we have seen the 
importance of the view estimation for a good 
reconstruction, as it will directly affect the render 
and the consistency with the ground truth. Colmap 
and the need for many key points limit our 
workflow for automatic view estimation. This 
makes its application on actual drawings difficult, 
especially in the absence of any background 
scenery in the depiction. However, the 
experiments with the game character show that 
the results improve if enough detailed samples in 
a drawn style are provided. 

In conclusion, our workflow application is 
currently limited by the difficulty of dealing with 
small amounts of viewpoints for drawn objects 
and the limitations of local lighting. Therefore, 
using NVDiffRec does not solve the applications 
we aimed to tackle, which we presented in Section 
1. We theorize that, with differential ray tracing 
techniques that confer global illumination, the 
estimations would improve significantly as the 
holes would reveal themselves and the more 
robust nature of deep learning approaches could 
deal with the outline inconsistencies. 

6. Future work 

Even though NVDiffRec is not ready to use by 
our intended use cases, we consider the results 
promising. Therefore, we aim to continue our 
research by finding ways to tackle the limited set 



of viewpoints and explore alternative render 
pipelines. 
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Appendix 

Finding the sphere that best describes the view 
distribution of a set of cameras constitutes an 
optimization problem for which exact methods 
would be unfeasible in big datasets. Therefore, we 
try to find an approximation in a reasonable time 
by using a Greedy Randomized Adaptive Search 
Procedure (GRASP) algorithm. 

Our implementation reduces the sphere 
estimation problem to the task of finding four 
cameras whose positions describe a sphere that 
approximates the distribution of all the views. 
Consequently, our GRASP can focus on 
generating solutions formed by a sequence of four 
camera positions. After obtaining these points, the 
center and radius of the sphere can be obtained by 
applying the general equation of the sphere. 

Algorithm 1 presents our GRASP proposal for 
sphere estimation. Following the general scheme 
of this kind of algorithm, every iteration has two 
phases: 

• A constructive phase in which N 
solutions are generated. Each solution is built 
step by step, adding progressively new 
elements (camera positions). The first element 
is picked randomly among all the points. Then, 
every subsequent element is added semi-
randomly, considering the cost of every 
remaining option. The cost of adding an 
element is defined by the inverse of the sum of 
the distances to each point in the current 
solution. In this way, we favor a more 
dispersed set of points. The best solution of the 
N generations will be stored if it improves the 
current best solution. 
• A local search phase in which the 
algorithm tries to improve the current best 
solution by exploring its neighborhood of 
solutions. For generating the neighborhood, 
we take the indices of each point in the current 
solution and displace them randomly and 
circularly, one value up, down or maintaining 
the value. With the new indices, we can find a 
neighboring set of points. In all iterations, M 
local solutions are generated. If none is better 
than the current solution, the search stops. 
Else, the best replaces the present, and the 
exploration continues up to the maximum 
depth. 
Once the algorithm reaches the maximum 

number of iterations, the center and radius of the 
sphere described by the best solution can be 
obtained. Note that we define the best solution as 

the one that allows obtaining a sphere that 
minimizes Equation 2, where �̇� is the center of the 
sphere, 𝑟 is the radius, 𝐶 is the set of all cameras 
described by a look at vector �⃗�	and a position �̇�, 
and 𝑤 is defined in Equation 1. It is important to 
point out that, to avoid the sphere growing 
excessively, the radius of any solution is limited 
to be considered a valid solution. In our 
experiments, we have fixed the number of 
iterations to 1000, N to 20, M to 60, max depth to 
50, a to 0.6, and the maximum allowed radius to 
double the maximum distance between cameras. 

 
𝑐(�̇�, 𝑟) = 0.4 ⋅ - |∥ �̇� − �̇� ∥ −	𝑟|

("#⃗ ,&̇)∈*

+𝑤(�̇�)+, (2) 

 
Algorithm 1 GRASP Sphere Estimation 
01: function sphereEstimation(points, dirs) 
02:     distances ¬ distanceMatrix(points) 
03:     max_r ¬ 2 · max(distances) 
04:     best_sol ¬ Æ, best_cost¬¥ 
05:     for _ ¬ 1 to max_iterations: 
06:           for _ ¬ 1 to N: 
07:                  sol ¬ {random(points)} 
08:                  for _ ¬ 1 to 3: 
09:                         cands ¬ points Ï sol 
10:                         costs ¬ dists(cands, points)-1 

11:                         cmin ¬ min(costs) 
12:                         cmax ¬ max(costs) 
13:                         cands ¬ {c Î cands | costs[c] 
£ cmin + a · (cmax–cmin)} 
14:                          sol ¬ sol È {random(cands)} 
15:                          if cost(sol) < best_cost and 
radius(sol) < max_r:  
16:                          best_sol ¬ sol 
17:                          best_cost ¬ cost(sol) 
15:           for _ ¬ 1 to max_depth: 
16:                  neighs ¬ getNeighbors(best_sol) 
17:                   for sol in neighs: 
19:                          if cost(sol) < best_cost and 
radius(sol) < max_r: 
20:                                  best_sol ¬ sol 
21:                                  best_cost ¬ cost(sol) 
22:                          else:  
23:                                  break 
24:     return sphere(best_sol) 

 


