
Incox – A language for XML Integrity
Constraints Description

Kateřina Opočenská, Michal Kopecký

Department of Software Engineering,
Faculty of Mathematics and Physics, Charles University, Prague
katerina.opocenska@matfyz.cz, michal.kopecky@mff.cuni.cz

Incox - A Language for XML Integrity Constraints
Description

Kateřina Opočenská, Michal Kopecký

Department of Software Engineering,
Faculty of Mathematics and Physics, Charles University, Prague

katerina.opocenska@matfyz.cz, michal.kopecky@mff.cuni.cz

Abstract. Presently, there is no specialized language for complex integrity
constraints description in XML documents. In this paper we present a language
that combines first-order logic together with XPath language to achieve needed
expressive power. Standard quantifiers of first-order logic were extended
to allow us to specify (either by count or by percentage) how many elements
of the selected set must hold given constraint. The proposed language can be
used in conjunction with any XML schema language. The Incox validator
supports both plain-text and XML variants of constraint specification. While
the first one is easily understandable for humans, the latter meets requirements
of machine processing.

Keywords: integrity constraints, XML schema language, XML semantics,
Incox

1 Introduction

Validation of an XML [1] document can be divided into two main parts – to
validation of document structure (syntax validation) and to validation of element
content and their correlation (semantics validation).

In the present there are many languages and tools for XML validation. Unfortunately,
mostly all of them deal just with the syntax aspects and do not support complex
content validation. Usually, only data types of elements and basic referential integrity
are checked.

The structure of an XML document can be well described by DTD [1] or stronger
languages like XML Schema [2] or Relax NG [3]. The specification of elements and
data types of their attributes is also worked out well and so there is no need to do it
again or in other way. On the other hand, description of relations among elements
and/or attributes content is definitely worth of closer attention. Those relations can be
often more complicated than solely uniqueness constraint.
There exist no well-established (e.g. W3C) standards for definition and validation
of integrity constraints in XML documents. The only functionally similar (ISO)

V. Snášel, K. Richta, J. Pokorný (Eds.): Dateso 2008, pp. 1–12, ISBN 978-80-248-1746-0.

2 Kateřina Opočenská, Michal Kopecký

standard is represented by the Schematron [4] language. Despite its unique approach
and strength in comparison with above mentioned XML validation languages there
still exist categories of constraints that can not be formulated in it. Such constraints
typically describe some attachment among elements/attributes content that is not
expressible in XPath [5]. Nevertheless, validation of such constraints can be useful
in many information systems.

In this paper we present the Incox1 language that is primarily designed for complex
semantics constraints description in XML documents. We suppose that all processed
XML documents were already successfully validated by one of schema language
validators. In other words, we assume that processed documents are well-formed and
that their structure matches the desired schema.

From this reason we did not design the Incox language to substitute the functionality
of any of well-known schema languages. It represents just the next step in complex
XML document validation.

First, we show some motivation examples of simple constraints that are not possible
to easily validate by the classic schema languages. Next, we describe basic aspects
of the Incox language and demonstrate how it can be used for validation of such
constraints.
Persons concerned on the topic can find more examples and further details in [6]2.
Finally, we compare the strength and limits of Incox with two most similar languages
Schematron [4] and CliX [7].

2 Motivation

Let us have an XML document describing a book that contains some <chapter>
elements. Each chapter is identified by a unique value of its numeric attribute.
The chapters do not need to be sorted by numbers. We want to check if the book is
complete. It means that it contains each chapter from the first one to the chapter with
the highest number. More precisely: to the chapter we assume to be the last. Each
chapter must be of course present once and only once.

<book>
 <chapter no="3">...</chapter>
 <chapter no="4">...</chapter>
 <chapter no="6">...</chapter>
 <chapter no="1">...</chapter>
</book>

Common schema languages can define the uniqueness constraint (no more chapters
with the same number) but they are not able to test whether some chapter is missing

1 Integrity Constraints in XML
2 The referential implementation of the Incox validator written in C# can be obtained

from http://www.ms.mff.cuni.cz/~opock4am/bc.html (in Czech language)

Incox – A language for XML Integrity Constraints Description 3

or not. In the extreme we can imagine a little bit clumsy solution that combines
computing of the total count of all <chapter> elements together with detection
of the highest chapter number and the uniqueness testing. Anyway, if we generalize
this constraint to the requirement of the occurrence of all elements from a given list,
no schema language will be able to express it.

Another challenge brings to us a validation of documents in which we do not require
the constraint to be held by all specified elements but only by a particular part
of them. A simple example: we have an XML document containing a list of persons
and we want to check, if there is approximately the same count of men and women.
Particularly it means that neither men nor women make less than 45% or more than
55% of all persons registered within the document.

<people>
 <person sex="M">...</person>
 <person sex="F">...</person>
 <person sex="M">...</person>

...
</people>

This example can be further generalized to use of more specific ranges or absolute
numbers of elements. For example “Is there at least 10% of women listed
in the document, but not more than 150 women at all?” etc.

3 Simplified Incox language specification

The Incox language is based on first-order logic and uses quantifiers as its main
expressive means. One constraint corresponds to one logical formula in prenex form.
XPath 1.0 language is then used for navigation in the XML document and
for the selection of tested elements.

The Incox language was inspired by CliX, but unlike this language the plain-text
syntax of Incox reminds rather XQuery [8] or SQL. The intention is to let
the constraints copy sentences of natural language to be easily expressible and
writable for a human. In the cases when XML form of constraint specification is more
suitable it is possible to use it as well. Detailed description of XML format can be
found in [6].

The plain-text file with constraint definitions starts with the optional declaration
section followed by a sequence of constraint sections. Constraints are evaluated
independently one by one.

4 Kateřina Opočenská, Michal Kopecký

3.1 Declaration section

Four types of global declarations for constants, sets of constants, intervals and
namespaces can appear in the declaration section in any count and order. Such
declarations can be written in the following form:

CONST[:] constname = expr
ENUM[:] constname = (expr1, ... , exprN)
INTERVAL[:] constname = (start, end [, step])
NAMESPACE[:] px = "ns"

A number (either integer or real), string or Xpath [5] expression can be assigned
to the identifier of a constant in the CONST declaration. Incox built-in conversion
functions str(), int() and real() can appear in the expr statements – see section 3.2.4
for more details. If an XPath expression returns the node-set containing exactly one
node, the result can be passed as an argument to the conversion function. The
converted value is then assigned to the constant name. If we try to convert a node-set
that contains more nodes (or no node), a run-time error is raised.

Examples

CONST pi = 3.14
CONST maxChap =
int('//book/chapter[not(../chapter/@no > @no)][1]/@no')

By XPath we can extract the set of the highest chapter numbers and then select only
the first one to cover the case that there are more chapters with the same highest
number. We assume there is at least one chapter in the book, so the set is never
empty. Evaluated XPath expression is then converted by int() function and the result
number is stored in the constant with identifier maxChap.

ENUM and INTERVAL declarations determine the sets whose identifiers can be used
in constraints sections whenever a set is expected. If the XPath expression returns
a node-set then the relevant constant is typed as a set and its identifier can occur
in a constraint section at the place of set determination.

Examples

ENUM weekDays = ("mo","tu","we","th","fr","sa","su")
INTERVAL chapNums = (1, maxChap, 1)

The chapNums interval contains integers from 1 (inclusive) to the number that is
stored in (previously evaluated) maxChap constant. The step of the interval,
represented by the third argument, is of length 1. So the interval contains all
the integers between the two mentioned.

Incox – A language for XML Integrity Constraints Description 5

3.2 Constraint section

The constraint section begins with the keyword CONSTRAINT followed by the name
of the constraint in quotation marks. Except from the FORMULA some other optional
blocks can occur here. They usually specify how the constraint is evaluated and some
details for the output form. In this paper we present just the simplified version:

CONSTRAINT "Name of the constraint"
{
 FORMULA[:]

select1
…
selectN
(predicate)

}

The logical formula after FORMULA keyword comprises of selections in form
of FOR { ALL | AT LEAST | AT MOST } or EXISTS [!] quantifiers and the
predicate section wrapped in round brackets. These selections and the predicate clause
correspond to the logical formula in prenex form.

In selections we define names of (local) variables and determine their domains (sets
of allowed values). In the predicate we bind these variables together and declare
relations we want to be fulfilled by all (at least one, exactly one, given count, given
percentage etc.) elements of the specified set.

3.2.1 Elements selection

The clauses for elements selection copy the use of either existential or universal
quantifier in first-order logic. The last one is available also in the extended form.

The x variable acquires one–by-one individual values of elements in the specified set.
The quantifiers differ only in the rate of how many of the elements in the set must
satisfy the predicate to consider the constraint to be fulfilled.

FOR ALL x IN set All the elements in the set set must satisfy the predicate.

If the set is empty, the following predicate is always considered as satisfied; hence
the constraint is evaluated as true.

FOR AT LEAST m [%], AT MOST n [%] x IN set By this clause we can specify
more precisely how many elements in the set set must satisfy the predicate. It is not
necessary to set the both AT LEAST and AT MOST boundaries. The selection can
contain only one of them as well. The desired count can be expressed either by
the absolute number or by the percentage of the whole set cardinality. It is allowed
to combine absolute number and percentage within one selection.

6 Kateřina Opočenská, Michal Kopecký

EXISTS [!] x IN set At least one element or exactly one element (exclamation mark)
in the set set must satisfy the predicate.

If the resulting set is empty, the following predicate is never satisfied, hence
the constraint is evaluated as false.

3.2.2 Set Specification

For all types of selections a set of items can be defined either by an XPath expression
or by a constant set declared as ENUM or INTERVAL. If the set is defined by the
XPath expression, the expression must satisfy the following restrictions:

 The XPath expression returns set of elements not a value. For example it is not
possible to use XPath expression ‘count(//num)’, because a number, not set, would
be returned.

 Unless stated differently the root of the document is considered to be an implicit
context.

 Referenced variable var from previous selection can be used in the XPath
expression in form $var. If used, this variable must have already set its value (see
example 4.3).

 The expression contains at most one referenced variable for context specification.

Any XPath expression used in the place of function parameter in the predicate section
must fulfill all above mentioned restrictions except the first one. Such expressions can
use XPath functions (version 1.0) and can return also numbers, Boolean values and
strings.

3.2.3 Predicate

Each predicate is written in the form

 (boolval1 logop boolval2 logop ... logop boolvalN)

Allowed logical operators are either OR or AND respectively operator -> that
represents a logical implication. The result of the predicate evaluation is a Boolean
value. Individual operands can represent results of comparison of comparable
expressions or values computed by some function.

If there is no function applied on the selection variable then it is considered
to represent a node – a specified place in the document. If the selection variable
is used as a parameter of some conversion function proposed in Incox language as
str(), int() or real() – see section 3.2.4 – the validator tries to interpret the value
of given XML node as the appropriate type.

The string value of the node is defined as a concatenation (in order
of sequential reading) of all textual content of the node. For example the value
of the node <a><num>1</num><num>2</num> is ‘12’. If the resulting type

Incox – A language for XML Integrity Constraints Description 7

of the used function differs from string, the value is further converted to appropriate
type.

Because the variable contains at each time some element from given set, there can not
arise the problem originating from conversion of set to value. Errors can still arise
from unsuccessful conversion of string value to other type, i.e. number or Boolean.

3.2.4 Basic auxiliary functions

To allow adequate constraint validation, the Incox language introduces following
auxiliary functions. Their parameters and return data types are written in C syntax
to increase the comprehensibility. Data types are written in italics.

bool not (bool b) Function negates any condition that can be
evaluated as Boolean value.

string str (expr expr)

int int (expr expr)

float real (expr expr)

Listed functions convert given expression
to string, integer, respectively float value. The
expression can be either a constant name,
variable, string, number or XPath expression.

If the XPath returns set of values, this set must
have exactly one element. In this case the
result contains conversion of this element.
In other cases the run-time error is raised.

int length (string s) This function returns the length of given
string.

string tolower (string s) This function converts all upper case letters in
the string to lower case.

string toupper (string s) This function converts all lower case letters in
the string to upper case.

string trim (string s) It trims all white space characters from the
beginning and the end of given string.

string trimall (string s) It removes all white space characters from the
given string.

bool match (string s,
string regexp)

This function returns the information if the
given string s matches to given regular
expression.

8 Kateřina Opočenská, Michal Kopecký

4 Implementation of Examples

Having the formal apparatus, we can show the implementation of examples
mentioned at the beginning of the paper.

4.1 Chapters in the book

CONST maxChap =
int('/book/chapter[not(../chapter/@no > @no)][1]/@no')

INTERVAL chapNums = (1, maxChap, 1)

CONSTRAINT "Chapters in the book"
{
 FORMULA:

FOR ALL chap IN chapNums
 EXISTS ! rec IN '/book/chapter'

 (int('$rec/@no') = chap)
}

First, we store the highest number of the chapter found in the document in constant
maxChap. Then we declare an interval chapNums containing all numbers from 1
to this maximal chapter number.

In the formula inside constraint "Chapters in the book" we go through all possible
chapter numbers and check if there exists exactly one chapter '/book/chapter' whose
attribute no converted to integer is equal to required value chap in the XML
document.

Let suppose we will check the constraint against XML document shown in section 2.
The highest number of the chapter is equal to six, but chapters number two and five
are missing. The result of the referential implementation Icval (Integrity constraints
validator) [6] invoked with options -c (counts) –f (fuzzy truth) –v (verbose)
is displayed in the first column. If the option –x (XML) is added then the output
is provided in XML format as it is shown in the second column.

The output informs us that corresponding elements were not found for two chapter
numbers (two and five). I.e. the condition “For each (chapter) number from one to six
exists exactly one matching element” is fulfilled for 66.7% of chapter numbers only.

Incox – A language for XML Integrity Constraints Description 9

Plain-text output:

CONSTRAINT: "Chapters in the book"

OVERALL RESULT : FALSE
Conversion errors resolved as INVALID
True/All for quantifier FOR ALL : 4/6
Fuzzy truth: 0,667

XML output:

<icval>
 <constraints>
 <constraint>
 <name>Chapters in the book</name>
 <overall_result>0</overall_result>
 <additional_info>
 <first_quantifier>FOR ALL
 </first_quantifier>
 <true_count>4</true_count>
 <all_count>6</all_count>
 <fuzzy_truth>0,667</fuzzy_truth>
 </additional_info>
 </constraint>
 </constraints>
</icval>

4.2 Approximately same number of men and women

The condition that checks if 45% to 55 % of persons registered in the document are
men (women) can be written in form:

CONSTRAINT "Almost the same count"
{
 FORMULA:
 FOR AT LEAST 45%, AT MOST 55%
 x IN '/people/person/@sex'
 (str(x) = "M")
}

4.3 Referenced variable

The following example checks the document for fulfilling the condition "There is
exactly one employee having function ‘boss’ in each department".

CONSTRAINT "One boss in each department"
{
 FORMULA:
 FOR ALL dep IN '//department'
 EXISTS ! emp IN '$dep/emplyoee'
 (string('$emp/position') = "boss")
}

This example shows the usage of the current node value for evaluation of nested
conditions. In time of evaluation of expression '$dep/emplyoee' the value of variable
dep is already set to particular node <department>. The expression

10 Kateřina Opočenská, Michal Kopecký

$dep/emplyoee' then selects element(s) <employee> belonging to the sub-tree
specified by this node.

5 Comparison of Incox with Similar Languages

5.1 Schematron and Incox

In Schematron [4], the validation of each condition consists of three steps:

1. Selection of required set of nodes, specified by given XPath expression
(the context attribute of the rule element)

2. Verification of the truthfulness of others XPath expressions (test attributes
of the report/assert elements) in the context of selected node.

3. Output of given text. If the condition is met then the element report is written out.
Else the output is defined by the assert element.

<pattern name="name">
 <rule context="context">

<report test="test">
Passed.

</report>
 </rule>
</pattern>

Each condition defined in Schematron says: all nodes selected by the XPath
expression fulfills the condition defined by the attribute test of the report/assert
element. Thus, the condition in Schematron has fixed structure and the expression
power of the language is based mainly on XPath.

Anyway, it is sufficient in most cases. XPath expressions can reference to the whole
document and so elements and attributes from different parts of the document can be
associated in the condition. It is possible to formulate lot of conditions even those that
seems to be quite complicated as for example validation of heaps, search trees
or consistency of insurance numbers (records can repeat inside the document, but
whenever two persons have the same insurance number, they have to have also
the same name).

Nevertheless, there exist complex constraints that are unfeasible or even impossible
to express in Schematron. Typically complex semantic constraints used in business
applications, where the Schematron’s author recommends using rather CliX [7] or
OASIS CAM [9].
Among indefinable constraints belong those in the form „Each element A has (at
least) one sub-element B such that all its sub-elements C satisfy the condition P“.
In this case the corresponding logical formula is too complex and it is not possible to
write it down in XPath. In contrary it is not problem to write such a constraint
in Incox.

Incox – A language for XML Integrity Constraints Description 11

CONSTRAINT "Constraint schema"
{
 FORMULA:
 FOR ALL a in '//a'
 EXISTS b in '$a/b'
 FOR ALL c IN '$b/c'

(constraint_p($c))
}

5.2 CliX and Incox

The Incox language describes conditions similarly to CliX [7] and so it has at least the
same expression power. In comparison with its competitor the Incox language offers
further extensions that increase its power and simplify its usage.

Constants. Above mentioned constraint that checks for missing chapters is not
expressible in CliX. The set of chapter numbers – set of integer numbers from one to
maxChap – can not be defined in this language. In contrary to Incox the CliX can
describe sets only by XPath expressions.

Constants can be used not only for higher effectiveness (we have not to select the
same data from the document repeatedly), but together with ENUM and INTERVAL
constructs also for validating conditions in form „For each of defined values exists
element / given number of elements that …”. It is useful mainly in situations where
the set is not defined somewhere in the XML document and/or the evaluation
of needed expression would be impractical.

Extended quantifiers. The usage of extended quantifiers FOR AT LEAST, AT
MOST allows us to validate data while tolerating some exceptions (a fraction
of elements can fail to satisfy the condition). Thanks to the definable boundaries
inside the quantifier we have the amount of abnormal elements under our control.

Built-in functions. Thanks to implemented built-in function for data type conversion
and manipulation with strings we can easily express lot of quite complex conditions.
For example, function match() compares given node value against given regular
expression. That can often replace necessity to define complex data types. Following
constraint tests if the value of all selected elements corresponds to a roman number.

CONSTRAINT "Roman numbers"
{
 FORMULA:
 FOR ALL r IN '//romnum'
 (match(trim(str(r)),
"^m*(d?c{0,3}|c[dm])(l?x{0,3}|x[lc])(v?i{0,3}|i[vx])$"

)
)
}

12 Kateřina Opočenská, Michal Kopecký

6 Conclusion

The Incox language represents simple yet powerful language for XML constraint
validation that outperforms their current competitors Schematron and CliX. Its
extended quantifiers can easily validate exact requirements as well as requirements
allowing certain level of incorrectness. This feature together with the possibility to
define constants, sets and intervals allows us to formulate and validate more complex
constraints than existing languages.

The Incox language recognizes the constraint definition in two forms. The textual one
is easily readable for human beings while the XML format is easily treatable by the
computers. The same approach was chosen in case of output. The Incox validator can
generate either plain text output or XML output that can be further processed by XML
enabled programs and scripts.

Hence we believe that this language represents the way towards the future of XML
content validation.

References

1. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau.
Extensible markup language (XML) 1.0 (third edition), W3C. February 2004.
http://www.w3.org/TR/2004/REC-xml-20040204/.

2. D. C. Fallside, P. Walmsley. XML Schema Part 0: Primer Second Edition, W3C. October
2004. http://www.w3.org/XML/Schema.

3. J. Clark, M. Murata. RELAX NG Specification, OASIS Committee Specification, December
2001. http://relaxng.org/spec-20011203.html.

4. International Organization for Standardization. Information Technology Document Schema
Definition Languages (DSDL) Part 3: Rule-based Validation Schematron, ISO/IEC 19757-3.
February 2005. http://www.schematron.com.

5. J. Clark, S. DeRose. XML Path Language (XPath) Version 1.0., W3C. November 1999.
http://www.w3.org/TR/xpath.

6. K. Opočenská. Integrity Constraints in XML (bachelor thesis). MFF UK, Prague, September
2007. http://www.ms.mff.cuni.cz/~opock4am/incox.pdf.

7. M. Marconi, C. Nentwich. CLiX Language Specification Version 1.0. January 2004.
http://www.clixml.org/clix/1.0/.

8. S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Simeon. XQuery 1.0: An
XML Query Language, W3C. January 2007. http://www.w3.org/TR/xquery/.

9. D. Webber, J. B. Clark. OASIS Content Assembly Mechanism Specification Version 1.1.
February 2007. http://www.oasis-open.org/committees/cam/.

