
Explainable Classification of Medical Documents
Through a Text-to-Text Transformer
Mihai Horia Popescu1, Kevin Roitero1 and Vincenzo Della Mea1

1Dept. of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy

Abstract
Death certificates are important medical records which are collected for the purpose of public healthcare
and statistics by multiple organizations around the globe. Due to their importance, those certificates
are compiled by experienced medical practitioner according to a standard defined by the World Health
Organization including rules to select an underlying cause of death (UCOD). For this reason, the coding
of death certificates is a slow and costly process. To overcome these issues, the scientific community
proposed deep learning approaches to perform such a task. Despite those systems achieve high accuracy
scores (close to 1), their complexity makes the obscure to the final user, making it unfeasible the adoption
as a decision support system.

In this paper, we propose a model based on text-to-text transformers which is able to provide a UCOD
as well as to generate a human-readable explanation for its classification. We compare the proposed
approach to state-of-the-art interpretable rule-based systems.
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1. Introduction

Traditionally, natural language processing (NLP) applications have been built on techniques that
are natively explainable. Such techniques are generally referred to as “white box” techniques,
and are mainly implemented using rule-based heuristics, decision trees, hidden Markov models,
etc. [1]. Recent advances in Deep Learning (DL), a “black box” machine learning technique, have
dramatically improved Neural Network (NNs) accuracy and increasingly gained interest from
stakeholders. As a result, DL became the dominant approach in NLP and have seen wide adoption
in a large amount of applications [2, 3]. Such a popularity of DL based approaches have been
pursued by focusing merely on effectiveness on such a systems and thus resulting in effective
models lacking of interpretability. Hence, concerns have been raised on the adoption of such
black box methodologies in specific sensitive applications such as healthcare, decision making,
and finance, in which settings it is fundamental to rely on interpretable models [4, 5]. As a result,
for sensitive domains and real-world decision-making systems, the mere effectiveness of the
system is not enough; those systems also need to support the reliability of the produced result and

HC@AIxIA 2022: 1st AIxIA Workshop on Artificial Intelligence For Healthcare, November 28 – December 2, 2022, Udine,
It
Envelope-Open mihaihoria.popescu@uniud.it (M. H. Popescu); kevin.roitero@uniud.it (K. Roitero); vincenzo.dellamea@uniud.it
(V. Della Mea)
Orcid 0000-0003-3378-0368 (M. H. Popescu); 0000-0002-9191-3280 (K. Roitero); 0000-0002-0144-3802 (V. Della Mea)

© 2022 Copyright © 2022 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:mihaihoria.popescu@uniud.it
mailto:kevin.roitero@uniud.it
mailto:vincenzo.dellamea@uniud.it
https://orcid.org/0000-0003-3378-0368
https://orcid.org/0000-0002-9191-3280
https://orcid.org/0000-0002-0144-3802
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


thus provide a feedback e.g., in the form of a confidence score or a human-readable explanation
to inform the final user if the produced result is likely to be correct and/or trustworthy or
to explain the rationale behind the model decisions [6]. For these reasons, in recent times
we observed an increase of interest from the community to develop and improve methods
for the interpretability of DL models, especially towards the generation of human-readable
explanations generated using explainable artificial intelligence (XAI) models [1, 3, 7].

Recently, many works have been developed to produce natural language explanations for DL
systems [8, 9]. While diverse approaches that can be used to generate explanation exist, most of
these methods can be categorized as producing post-hoc explanations. Such kind of techniques
target models that are not interpretable by design and are used to enhance the interpretability
of the underlying model choices [7].

In this paper we propose a methodology able to generate a human readable explanation for
the predictions produced by a model designed in the context of select the underlying cause
of death from death certificates with, which achieves very high accuracy scores (close to 1)
[10, 11, 12], but it is not being adopted in practice due to its lack of interoperability.

2. Background and Related Work

In general, XAI approaches can be categorized from different perspectives: local versus global
[13], transparent models versus post-hoc explainability [7], based on XAI goals (such as trustwor-
thiness, causality, transferability, etc.) [7]. Our work is based on local and post-hoc explainability,
given that from the exlanations generated it is possible only to understand the reason for the
predicted UCOD. We have identified two major goals that the users may desire and which those
explanations can support;trustworthiness and informativeness.

Different approaches to enhance interpretability exists in the literature. Ribeiro et al. [14]
studied the explainability of a model’s predictions using feature importance-based explanations.
Other approaches, such as the one proposed by Camburu et al. [15], first generate a free-form
natural language explanation, then use such an explanations to infer the classification prediction.
Similarly, Brand et al. [16, 17] shown that one can jointly predict and generate an explanation
for classifying the veracity of statements. From a different perspective, some other works used
the confidence of the model as a reliability measure for the correctness of the predictions by
computing a calibrated confidence score [6]. Finally, other works such as the one proposed by
Agarwal et al. [18] leveraged alternative measures like the variance of gradients to measure
model reliability and instance difficulty.

3. Data

3.1. The Death Certificate

The death certificate is the main source of mortality data. Such data is supposed to be collected
in compliance with the standard death certificate format defined in [19] and [20].

The death certificate contains: administrative details, a part called Frame A, and a part called
Frame B. Frame A is used to record the sequence of events leading directly to death, and may



contain conditions that do not belong to the sequence but their presence contributed to death.
Conversely, Frame B contains additional health conditions, such as previous surgery, mode
of death, or place of occurrence. It should be noted that while Frame A contains the textual
expression of conditions as filled by physicians, their corresponding ICD-10 codes are generally
provided by experts coders. The coded version of the certificate is the format used for the
selection of the UCOD.

The UCOD is the most important information extracted from mortality data, and it is used
for statistical comparison and public health data. It is defined as ’(a) the disease or injury which
initiated the train of morbid events leading directly to death, or (b) the circumstances of the accident
or violence which produced the fatal injury’ [19]. The UCOD is selected according to the coding
rules defined in the reference guide. The chosen code is usually one of the conditions present
in the chains reported by the certifying doctor in Frame A.

3.2. Generation of Ground Truth Explanations

The system used for the generation of the gold explanations is called DORIS [21], a prototype
rule-based system for mortality coding-based ICD-10 and ICD-11. Those rules can be subdivided
into 2 categories; selection and modification rules. Currently, the system fully supports 18 out
of 38 selection rules, and about 95% of the modification rules. The remaining rules are only
partially implemented. The system was evaluated on datasets for both ICD-10 and ICD-11.
DORIS is unable to code 8.2% of the total certificates and has an accuracy of 78% for ICD-10
[21].

The explanation generated by DORIS describes the coding instructions used to reach the
selection of the UCOD and the conditions on which the rule is applied. In Table 1 we have pre-
sented two cases of explanations used by DORIS for two coding instructions and the associated
description used in the reference guide. To select the UCOD multiple coding instructions may
be used, as a result the explanations are concatenated.

3.3. Data Source and Preparation

The death certificates data files were collected from the U.S. National Center for Health Statistics
(NCHS)1. The dataset contains a total of 12, 919, 268 records for the years 2014–2017 including
administrative data, coded conditions for frames A and B, and the UCOD that we used as ground
truth. From the full dataset, we extracted 510, 000 records for which the rule-based system
presented in the Section 3.2 was able to correctly select the UCOD. The data then have been
pre-processed to select only the data needed for our experiment. For this task, we choose to use
the sex and age features from the administrative data and conditions from the Frame A. The
dataset has been split into three smaller parts using randomization and stratified sampling by
target UCOD. For the train set, we have selected 400, 000 records, 100, 000 records for the test
set, and the remaining 10, 000 certificates for the validation set. The dataset contains the same
records, dataset split, and reverse coding format used for the NLP model used for the selection
of the underlying cause of death using reverse coding as proposed by Della Mea et al. [10] and
detailed in the following.

1https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm
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Table 1
Example explanation generated by DORIS.

Coding Explanation Rule
instruction used description
SP1 Malignant neoplasm of prostate is the

unique condition reported in the certifi-
cate and is the new tentative starting
point (TUC).

If there is only one condition reported
on the certificate, this is the new TUC.

SP2 Unspecified injury of head is the first
condition reported on the single used
line, which is selected as the new ten-
tative starting point.

If only one line is used but multiple
conditions are preset, select the first
condition as the new TUC.

As input, the model proposed takes the version encoded as text of the certificates. Since the
certificates do not have the original textual conditions present, we had to reverse the work done
by coders because it brings the certificate back to text. The certificate encoded as text needs to
encode both administrative data and conditions. The administrative data were put in an explicit
form (e.g., Female, 39y old). Each line is encoded with the title entity, while for multiple codes
per line, the titles are merged using ”or” expression and the entire line go between parentheses.
The sequence of lines then is concatenated with the expression “due to”, where Part 2 if present,
is concatenated using “in the context of” between the last line of Part 1 and Part 2.

4. Methods

4.1. Generating Explanations

We develop and train our models by relying on both the PyTorch2 and HuggingFace3 frameworks.
The experiments have been carried put on a Linux server equipped with 16x Intel(R) Core(TM)
i7-10700 CPU @ 2.90GHz, 70GB of RAM, and 2x Nvidia Geforce RTX 3090 GPUs. We make the
trained model available to the community.4

T5 [22] is a transformer based model trained on a mixture of both supervised and unsupervised
tasks (i.e., summarization, translation, etc.) [22, Appendix Section]. In this work, we rely on the
T5-base model5, which is a 220million parameters model composed of an encoder-decoder stack
involving 12 blocks, each of those implementing a self-attention mechanism, an encoder-decoder
attention one, and a feed forward network.

Many available transformer-based architectures leverage separate transformer models for
either discriminative (e.g., classification) or generative (e.g., text-generation) tasks. As opposed
to this approach, we take inspiration from E-BART [16, 17], a model designed in the context

2https://pytorch.org/
3https://huggingface.co/
4To request access to the model, send an email to the paper authors.
5https://huggingface.co/t5-base
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Figure 1: Model training (above) and inference (below).

of misinformation and veracity assessment to perform a discriminative task (i.e., classify the
truthfulness of statements) and a generative one (i.e., generate a human-readable explanation
for the former step) at the same time. In a similar fashion, we develop a model which is capable
of classifying the UCOD of a certificate and generate a human-readable explanation for such a
task. The model training and inference phases are detailed in the following, and summarized in
Figure 1. Given that the focus of this work is on the generated explanations, in the following
we omit the description of the discriminative model (which is anyway a standard BERT-based
model equipped with a classification head) and we focus only on the generative one.

To generate the explanations, the model takes in input, separated by the [SEP] token, the
death certificate encoded as text described in Section 3.3, the string generated as a report
by the rule based system presented in Section 3.2, and the UCOD, the code predicted by the
discriminative model representing the underlying cause of death. The model is then trained
in a causal fashion, thus trained to auto-regressively predict the gold explanation (shifted),
which is the description generated by the rule based system detailed in previous sections. The
model loss is computed by considering the conventional multi-class cross-entropy loss function,
where the number of classes is equal to the size of the vocabulary, defined as

ℒ = −1
𝐵

𝐵
∑
𝑏=1

|𝑉 |
∑
𝑘=1

𝑦 𝑏𝑘 log( ̂𝑦𝑏𝑘 )

where 𝑏 is the batch and 𝐵 the batch size, |𝑉 | is the vocabulary size, 𝑦 is the true token to be
predicted be the model, and ̂𝑦𝑘 is the output probability distribution over the vocabulary at each
time-step.



Table 2
Effectiveness of the model on the generated explanations.

Rouge–1 Rouge–2 Rouge–L
Dataset Prec Rec F1 Prec Rec F1 Prec Rec F1

CDC-Test 100K 0.9988 0.9985 0.9986 0.9983 0.9980 0.9981 0.9986 0.9983 0.9983

During the inference step, the model generates the text by leveraging beam search, thus
generating the explanation token-by-token by feeding the input tokens via the cross-attention
layers to the decoder, and then auto-regressively generating the decoder output. To optimize
the generation process, we set the early stopping parameter to the value of true so that the beam
generation is stopped when all beam hypotheses reach the EOS token. Experimentally, we found
that such generation procedure is suitable for the task, and generates relevant explanations for
each input string, thus we found no need to implement constrained search techniques or try
alternatives to beam search. For the same reason, we always select the output sequence with
the highest likelihood as computed by the model.

4.2. Metrics

We evaluate the generated summaries using the Rouge score [23], a recall-oriented measure
designed to compare a generated textual summary to an ideal one, usually generated by a human
[24, 25]. More in detail, Rouge-N denoted an n-gram metric between a candidate summary and
the reference summary. In this work we consider Rouge–1 (uni-gram based metric), Rouge–2
(bi-gram based), and Rouge–L, that is computed by considering the Longest Common Sub-
sequence (LCS). More in detail, Rouge precision is defined as the number of overlapping n-grams
between the candidate and the reference summary divided by the number of n-grams in the
candidate summary, Rouge recall is defined as the number of overlapping n-grams between
the candidate and the reference summary divided by the number of n-grams in the reference
summary, and Rouge F1 is the harmonic mean of precision and recall.

5. Results and Discussion

Table 2 shows the Rouge scores for the considered datasets. As we can see, we have reached an
overall score near to 1 for all the evaluated n-grams. Each has a high score of precision and recall
and F1 values. The recall shows that in almost all cases the n-grams in the gold explanation
are also present in the generated explanation, while the precision shows that almost all the
n-grams in the generated explanations are present in the reference explanation. Comparing the
n-grams proposed, the bi-grams (Rogue-2 score) has the lowest F1 score with a value of 0.9981.

Since the overall scores are very high, most of the generated explanations have a perfect
match with the gold explanation. For the remaining cases we also perform a qualitative analysis
of the generated explanations, by comparing them to the rule-based system, considering the
structure of the rule, the conditions involved and terminology. Table 3 shows the certificate, as
well as the gold and generated explanation for a sample of the instance present in the datasets.



As we can see from the table, the explanation generated is not fully correct. In particular, the
error occurs in both cases on the obvious cases selection, where multiple causes are obvious
causes of the TUC, but the generated description was not able to identify one. In the first case
the explanation lead to an error for the selection of the UCOD, while in the second did not
influence the final result. In all the cases where the description was incorrect, we have noticed
that the terminology used was always consistent. The rules structure was correctly applied, and
the conditions used were always consistent with those of the certificate. The errors were mainly
for SP6 obvious causes and M1 special instructions, where categories were not recognized as
part of the rule. While those cases are not recognized, is most likely that they were not part of
the training set.

6. Conclusions

We have presented a system that is able to enhance the interpretability of a classification model
by generating explanations using as reference a rule-based system. The model was not only
able to generate appropriate explanations consistently (about 0.998 F1 score), but it was able to
correctly learn and use the structure of the rules and their terminology. The proposed model has
the ability to predict the UCOD, since the last sentence always specifies the category suggested;
this feature is very important since the rule-based system used to learn the explanations do not
reach the same accuracy of the classification model, and the suggested UCOD of the explanation
can be used to crosscheck the classification model UCOD to understand when the explanation is
likely to be incorrect. Some limitations of this preliminary experiment comes from the dataset
used. In fact, for this experiment, we have used a dataset as big as the preliminary evaluation of
the classification model, while the certificates used needed to be encoded as text as a reverse
encoding from coded conditions. Those limitations come from a lack of certificates with natural
textual conditions, which were still sufficient to evaluate the feasibility of this approach.

This paper opens for plenty of future work. More in detail, for future experimentation and
evaluation, we plan to retrieve and use a dataset with original textual conditions, that is where
plain text is available natively. Furthermore, we plan to evaluate and compare the generated
explanations with the death certificates for which DORIS fails, that is where DORIS is not able
to correctly predict the underlying cause of death; extrapolating from the results discussed in
this paper, we expect those explanation to be well structured, with an incorrect rule applied,
but this needs to be proven with further experimentation. We also plan to use an extend the
dataset for the training and evaluation phases by employing the full dataset used by the model
that selects the UCOD [11], also by including the cases originated after 2017, where recent cases
of COVID-19 may have changed the data distribution and patterns. Finally, we plan to extend
the training dataset for generating the explanations with hand written explanations generated
by trained experts to be able to compare and support cases where DORIS is not able to correctly
identify the UCOD.



Table 3
Qualitative evaluation of the generated explanations for the datasets.

Certificate Explanation Generated Explanation

Male, 79y old: Un-
specified dementia in
the context of (Other
specified degenerative
diseases of nervous
system or Alzheimer
disease, unspecified
or Cerebrovascular
disease, unspecified or
Mental and behavioural
disorders due to use of
tobacco: Unspecified
mental and behavioural
disorder). code: G318

Unspecified dementia is the first
condition reported on the single
used line, which is selected as
the new tentative starting point.
Other specified degenerative dis-
eases of nervous system,Alzheimer
disease, unspecified,Cerebrovascu-
lar disease, unspecified (HIV) is an
obvious cause of the current TUC
Unspecified dementia (Infectious
Diseases). Other specified degen-
erative diseases of nervous system
is the underlying cause of death.

Unspecified dementia is the
first condition reported on the
single used line, which is selected
as the new tentative starting
point. Alzheimer disease, un-
specified,Cerebrovascular disease,
unspecified (HIV) is an obvious
cause of the current TUC Unspeci-
fied dementia (Infectious Diseases).
Alzheimer disease, unspecified is
the underlying cause of death.

Male, 69y old: Cardiac
arrest, unspecified due
to Atherosclerotic heart
disease due to Essential
(primary) hypertension
in the context of (Res-
piratory failure, unspec-
ified or Subarachnoid
haemorrhage, unspeci-
fied or Subdural haem-
orrhage (acute)(nontrau-
matic) or Epilepsy, un-
specified or Immobility).
code: I251

Essential (primary) hypertension
present on last used line causes
all the conditions reported on the
lines above, which is selected as the
new tentative starting point (TUC).
Special instruction apply where Es-
sential (primary) hypertension is
with mention of Atherosclerotic
heart disease,Subarachnoid haem-
orrhage, unspecified,Nontraumatic
subdural haemorrhage. Atheroscle-
rotic heart disease is selected using
priority order. Atherosclerotic heart
disease is the underlying cause of
death.

Essential (primary) hypertension
present on last used line causes
all the conditions reported on the
lines above, which is selected as
the new tentative starting point
(TUC). Special instruction apply
where Essential (primary) hyperten-
sion is with mention of Atheroscle-
rotic heart disease,Nontraumatic
subdural haemorrhage. Atheroscle-
rotic heart disease is selected using
priority order. Atherosclerotic heart
disease is the underlying cause of
death.

Male, 54y old: Car-
diomegaly due to
Atherosclerotic heart dis-
ease due to Myocarditis,
unspecified due to Gen-
eralized and unspecified
atherosclerosis in the
context of Atheroscle-
rotic cardiovascular
disease, so described.
code: I251

Generalized and unspecified
atherosclerosis present on last
used line causes all the conditions
reported on the lines above, which
is selected as the new tentative
starting point (TUC). Special in-
struction apply where Generalized
and unspecified atherosclerosis is
with mention of Atherosclerotic
heart disease,Myocarditis, unspeci-
fied,Atherosclerotic cardiovascular
disease, so described. Myocarditis,
unspecified is selected using prior-
ity order. Special instruction apply
where Myocarditis, unspecified is
with mention of Atherosclerotic
heart disease,Atherosclerotic car-
diovascular disease, so described.
Atherosclerotic heart disease
is selected using priority order.
Atherosclerotic heart disease is the
underlying cause of death.

Generalized and unspecified
atherosclerosis present on last
used line causes all the conditions
reported on the lines above, which
is selected as the new tentative
starting point (TUC). Special in-
struction apply where Generalized
and unspecified atherosclerosis is
with mention of Atherosclerotic
heart disease,Atherosclerotic car-
diovascular disease, so described.
Atherosclerotic heart disease
is selected using priority order.
Atherosclerotic heart disease is the
underlying cause of death.



References

[1] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García,
S. Gil-López, D. Molina, R. Benjamins, R. Chatila, F. Herrera, Explainable artificial intelli-
gence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai,
2019. URL: https://arxiv.org/abs/1910.10045. doi:10.48550/ARXIV.1910.10045.

[2] M. Danilevsky, K. Qian, R. Aharonov, Y. Katsis, B. Kawas, P. Sen, A survey of the state of
explainable ai for natural language processing, arXiv (2020). URL: https://arxiv.org/abs/
2010.00711. doi:10.48550/ARXIV.2010.00711.

[3] J. Yu, A. I. Cristea, A. Harit, Z. Sun, O. T. Aduragba, L. Shi, N. A. Moubayed, Interaction:
A generative xai framework for natural language inference explanations, 2022. URL:
https://arxiv.org/abs/2209.01061. doi:10.48550/ARXIV.2209.01061.

[4] R. McAllister, Y. Gal, A. Kendall, M. van der Wilk, A. Shah, R. Cipolla, A. Weller, Concrete
problems for autonomous vehicle safety: Advantages of bayesian deep learning, in:
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI-17, 2017, pp. 4745–4753. URL: https://doi.org/10.24963/ijcai.2017/661. doi:10.24963/
ijcai.2017/661.

[5] R. Challen, J. Denny, M. Pitt, L. Gompels, T. Edwards, K. Tsaneva-Atanasova, Artificial
intelligence, bias and clinical safety, BMJ Quality & Safety 28 (2019) 231–237. URL:
https://qualitysafety.bmj.com/content/28/3/231. doi:10.1136/bmjqs-2018-008370.

[6] C. Guo, G. Pleiss, Y. Sun, K. Q. Weinberger, On calibration of modern neural networks,
2017. URL: https://arxiv.org/abs/1706.04599. doi:10.48550/ARXIV.1706.04599.

[7] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García,
S. Gil-López, D. Molina, R. Benjamins, R. Chatila, F. Herrera, Explainable artificial intelli-
gence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai,
2019. URL: https://arxiv.org/abs/1910.10045. doi:10.48550/ARXIV.1910.10045.

[8] D. H. Park, L. A. Hendricks, Z. Akata, A. Rohrbach, B. Schiele, T. Darrell, M. Rohrbach,
Multimodal explanations: Justifying decisions and pointing to the evidence, 2018. URL:
https://arxiv.org/abs/1802.08129. doi:10.48550/ARXIV.1802.08129.

[9] S. Kumar, P. Talukdar, Nile : Natural language inference with faithful natural language
explanations, 2020. URL: https://arxiv.org/abs/2005.12116. doi:10.48550/ARXIV.2005.
12116.

[10] V. Della Mea, M. H. Popescu, K. Roitero, Underlying cause of death identification from death
certificates using reverse coding to text and a nlp based deep learning approach, Informatics
in Medicine Unlocked 21 (2020) 100456. URL: https://www.sciencedirect.com/science/
article/pii/S2352914820306067. doi:https://doi.org/10.1016/j.imu.2020.100456.

[11] K. Roitero, B. Portelli, M. H. Popescu, V. D. Mea, Dilbert: Cheap embeddings for disease
related medical nlp, IEEE Access 9 (2021) 159714–159723. doi:10.1109/ACCESS.2021.
3131386.

[12] M. H. Popescu, K. Roitero, S. Travasci, V. Della Mea, Automatic assignment of icd-10 codes
to diagnostic texts using transformers based techniques, in: 2021 IEEE 9th International
Conference on Healthcare Informatics (ICHI), 2021, pp. 188–192. doi:10.1109/ICHI52183.
2021.00037.

[13] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, A survey of

https://arxiv.org/abs/1910.10045
http://dx.doi.org/10.48550/ARXIV.1910.10045
https://arxiv.org/abs/2010.00711
https://arxiv.org/abs/2010.00711
http://dx.doi.org/10.48550/ARXIV.2010.00711
https://arxiv.org/abs/2209.01061
http://dx.doi.org/10.48550/ARXIV.2209.01061
https://doi.org/10.24963/ijcai.2017/661
http://dx.doi.org/10.24963/ijcai.2017/661
http://dx.doi.org/10.24963/ijcai.2017/661
https://qualitysafety.bmj.com/content/28/3/231
http://dx.doi.org/10.1136/bmjqs-2018-008370
https://arxiv.org/abs/1706.04599
http://dx.doi.org/10.48550/ARXIV.1706.04599
https://arxiv.org/abs/1910.10045
http://dx.doi.org/10.48550/ARXIV.1910.10045
https://arxiv.org/abs/1802.08129
http://dx.doi.org/10.48550/ARXIV.1802.08129
https://arxiv.org/abs/2005.12116
http://dx.doi.org/10.48550/ARXIV.2005.12116
http://dx.doi.org/10.48550/ARXIV.2005.12116
https://www.sciencedirect.com/science/article/pii/S2352914820306067
https://www.sciencedirect.com/science/article/pii/S2352914820306067
http://dx.doi.org/https://doi.org/10.1016/j.imu.2020.100456
http://dx.doi.org/10.1109/ACCESS.2021.3131386
http://dx.doi.org/10.1109/ACCESS.2021.3131386
http://dx.doi.org/10.1109/ICHI52183.2021.00037
http://dx.doi.org/10.1109/ICHI52183.2021.00037


methods for explaining black box models, ACM Comput. Surv. 51 (2018). URL: https:
//doi.org/10.1145/3236009. doi:10.1145/3236009.

[14] M. T. Ribeiro, S. Singh, C. Guestrin, ”why should i trust you?”: Explaining the predictions
of any classifier, in: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, Association for Computing Machinery,
New York, NY, USA, 2016, p. 1135–1144. URL: https://doi.org/10.1145/2939672.2939778.
doi:10.1145/2939672.2939778.

[15] O.-M. Camburu, T. Rocktäschel, T. Lukasiewicz, P. Blunsom, e-snli: Natural language
inference with natural language explanations, in: S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing
Systems, volume 31, Curran Associates, Inc., 2018. URL: https://proceedings.neurips.cc/
paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf.

[16] E. Brand, K. Roitero, M. Soprano, G. Demartini, E-bart: Jointly predicting and explaining
truthfulness., in: TTO, 2021, pp. 18–27.

[17] E. Brand, K. Roitero, M. Soprano, A. Rahimi, G. Demartini, A neural model to jointly
predict and explain truthfulness of statements, J. Data and Information Quality (2022).
URL: https://doi.org/10.1145/3546917. doi:10.1145/3546917.

[18] C. Agarwal, D. D’souza, S. Hooker, Estimating example difficulty using variance of gradi-
ents, 2020. URL: https://arxiv.org/abs/2008.11600. doi:10.48550/ARXIV.2008.11600.

[19] World Health Organization, International statistical classification of diseases and related
health problems, 10th revision, Volume 2, https://icd.who.int/browse10/Content/statichtml/
ICD10Volume2_en_2016.pdf, 2016. [Online; accessed 21-September-2022].

[20] World Health Organization, International statistical classification of diseases and re-
lated health problems, 11th revision, https://icd.who.int/en, 2022. [Online; accessed 21-
September-2022].

[21] M. H. Popescu, C. Celik, V. Della Mea, R. Jakob, Preliminary validation of a rule-based
system for mortality coding using ICD-11, Stud. Health Technol. Inform. 294 (2022)
679–683.

[22] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu,
et al., Exploring the limits of transfer learning with a unified text-to-text transformer.,
Journal of Machine Learning Research 21 (2020) 1–67.

[23] C.-Y. Lin, Rouge: A package for automatic evaluation of summaries, in: Text summarization
branches out, 2004, pp. 74–81.

[24] C.-Y. Lin, F. Och, Looking for a few good metrics: Rouge and its evaluation, in: Ntcir
workshop, 2004.

[25] F. Liu, Y. Liu, Correlation between rouge and human evaluation of extractive meeting
summaries, in: Proceedings of ACL-08: HLT, short papers, 2008, pp. 201–204.

https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
http://dx.doi.org/10.1145/3236009
https://doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1145/2939672.2939778
https://proceedings.neurips.cc/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://doi.org/10.1145/3546917
http://dx.doi.org/10.1145/3546917
https://arxiv.org/abs/2008.11600
http://dx.doi.org/10.48550/ARXIV.2008.11600
https://icd.who.int/browse10/Content/statichtml/ICD10Volume2_en_2016.pdf
https://icd.who.int/browse10/Content/statichtml/ICD10Volume2_en_2016.pdf
https://icd.who.int/en

	1 Introduction
	2 Background and Related Work
	3 Data
	3.1 The Death Certificate
	3.2 Generation of Ground Truth Explanations
	3.3 Data Source and Preparation

	4 Methods
	4.1 Generating Explanations
	4.2 Metrics

	5 Results and Discussion
	6 Conclusions

