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Abstract
Formal Concept Analysis (FCA) and Rough Set Theory (RST) are two useful mathematical tools for
extracting information, which have different philosophies. One important issue in data science is to
obtain relationships among the main variables in the considered data set. Both theories, FCA and RST,
independently study these relations by means of attribute implications in FCA and decision rules in RST.
This paper introduces a preliminary comparison between these approaches, focused on the notions of
valid attribute implication in FCA and true decision rule in RST.
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1. Introduction

Formal Concept Analysis (FCA) was introduced by Wille [19] in the eighties, as a mathematical
tool for the extraction of knowledge from datasets, interpreted as a context composed by objects,
attributes and a binary relation between them. From this relation and the derivation operators,
pieces of information called concepts are obtained, which are pairs composed of a subset of
objects and a subset of attributes, where each subset unequivocally determines the other one.
An interesting topic in FCA is the study of attribute implications [5, 6, 7, 8, 9, 16] relating the
attributes in the dataset (context) for obtaining information from the context, which has a
different philosophy from decision rules in Rough Set Theory (RST).

RST was proposed by Pawlak [12, 13] also in the eighties as a formal tool to analyze datasets
with imprecise or incomplete information. This theory interprets a relational dataset as a
decision table, which contains a collection of objects, attributes and mappings characterizing
the objects by using the attributes. In RST, the notion of decision rule [10, 14, 15, 18, 20] arises
as a useful tool for the management of information from relational datasets, characterizing
decision tables and allowing the extraction of significant conclusions thanks to their logical
terms. Different measures have been defined in order to describe decision rules and provide
useful information, such as, the certainty which represents a conditional probability.

Both theories, FCA and RST, have been related in diverse papers [1, 4, 3, 11, 21]. However, to
the best of our knowledge, none of them have studied the relationship among decision rules and
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attribute implications. This paper introduces a preliminary comparison between these notions
in order to establish new bridges allowing that the developments in FCA can enrich RST, and
vice versa. Moreover, an example to illustrate the obtained relation and some particularities is
introduced. The main conclusions and next steps are introduced at the end of the paper.

2. Preliminaries

This section includes some preliminary definitions of Formal Concept Analysis [7, 8] and Rough
Set Theory [14, 15] in order to make the paper self-contained.

2.1. Formal Concept Analysis

Datasets are represented as formal contexts in FCA. From a formal context, derivation operators
are defined in order to characterize a subset of attributes by using a subset of objects and vice
versa. These derivation operators are essential to determine the basic units of knowledge of the
contexts, that is, the concepts.

Definition 1. A context is a tuple (𝐴, 𝐵,ℛ) such that 𝐴 and 𝐵 are non-empty sets of attributes
and objects, respectively, and ℛ is a relation between them.

Definition 2. Given a context (𝐴, 𝐵,ℛ), the derivation operators (↑,↓ ) are the mappings
↑∶ 2𝐵 → 2𝐴 and ↓∶ 2𝐴 → 2𝐵 defined, for each 𝑋 ⊆ 𝐵 and 𝑌 ⊆ 𝐴, as:

𝑋 ↑ = {𝑎 ∈ 𝐴 ∣ 𝑎ℛ𝑏 for each 𝑏 ∈ 𝑋}

𝑌 ↓ = {𝑏 ∈ 𝐵 ∣ 𝑎ℛ𝑏 for each 𝑎 ∈ 𝑌 }

The set 𝑋 ↑ is called intension of 𝑋 and 𝑌 ↓ is called extension of 𝑌. Given 𝑋 ⊆ 𝐵 and 𝑌 ⊆ 𝐴, we
will say that (𝑋 , 𝑌 ) is a concept if 𝑋 = 𝑌 ↓ and 𝑌 = 𝑋 ↑.

From now on, the set of concepts of a given context (𝐴, 𝐵,ℛ) will be denoted as 𝔅(𝐴, 𝐵,ℛ).
In the following, we recall some important notions related to attribute implications and their
validity.

Definition 3. Let Λ be an index set, (𝐴, 𝐵,ℛ) be a context and 𝐶, 𝐷, 𝑇 ⊆ 𝐴.

• An attribute implication is denoted as 𝐶 ⇒ 𝐷. The set 𝐶 is called antecedent of the attribute
implication and the set 𝐷 is called consequent.

• 𝑇 respects an attribute implication 𝐶 ⇒ 𝐷, if 𝐶 ⊈ 𝑇 or 𝐷 ⊆ 𝑇.
• 𝐶 ⇒ 𝐷 is a valid attribute implication in {𝑇𝑖 ⊆ 𝐴 ∣ 𝑖 ∈ Λ}, if each 𝑇𝑖 respects the attribute
implication 𝐶 ⇒ 𝐷.

The notion of valid attribute implication is extended to formal contexts as it is shown below.

Definition 4. Let (𝐴, 𝐵,ℛ) be a context and 𝐶, 𝐷 ⊆ 𝐴. We say that 𝐶 ⇒ 𝐷 is
a valid attribute implication in (𝐴, 𝐵,ℛ), if 𝐶 ⇒ 𝐷 is a valid attribute implication in
{𝑏↑ ∣ 𝑏 ∈ 𝐵, (𝑏↑↓, 𝑏↑) ∈ 𝔅(𝐴, 𝐵,ℛ)}.



Finally, we recall a useful property that allows us to obtain valid attribute implications in a
context.

Proposition 1. Let (𝐴, 𝐵,ℛ) be a context and 𝐶, 𝐷 ⊆ 𝐴. Then, 𝐶 ⇒ 𝐷 is a valid attribute
implication in (𝐴, 𝐵,ℛ) if and only if 𝐷 ⊆ 𝐶↓↑.

2.2. Rough Set Theory

Datasets are represented as decision tables in RST. Although we will only consider one decision
attribute in decision tables, similar studies can be carried out in an analogous way when more
than one decision attribute is considered.

Definition 5. Let 𝑈 and 𝒜 be non-empty sets of objects and attributes, respectively. A decision
table is a tuple (𝑈 , 𝒜𝑑, 𝒱𝒜𝑑 , 𝒜𝑑) such that𝒜𝑑 = 𝒜 ∪{𝑑} with 𝑑 ∉ 𝒜, 𝒱𝒜𝑑 = {𝑉𝑎 ∣ 𝑎 ∈ 𝒜𝑑}, where 𝑉𝑎
is the set of values associated with the attribute 𝑎 ∈ 𝒜𝑑 over 𝑈, and 𝒜𝑑 = { ̄𝑎 ∣ 𝑎 ∈ 𝒜𝑑, ̄𝑎 ∶ 𝑈 → 𝑉𝑎}.
In this case, the attributes of 𝒜 are called condition attributes and 𝑑 is called a decision attribute.

Decision tables describe decisions in terms of conditions that must be satisfied in order to
carry out the decision specified in the decision table [15]. In this way, decision tables can be
seen as a logical description of approximation of decisions. Furthermore, a set of decision rules
can be associated with every decision table, describing the decision table in logical terms. Hence,
decision rules allow an easier interpretation of decision tables. In the following, we recall the
formal language in which decision rules are based on.

Definition 6. Let 𝑆 = (𝑈 ,𝒜𝑑, 𝒱𝒜𝑑 , 𝒜𝑑) be a decision table and 𝐵 ⊆ 𝒜. The set of formulas
associated with 𝐵, denoted as 𝐹𝑜𝑟(𝐵), is built from attribute-value pairs (𝑎, 𝑣), where 𝑎 ∈ 𝐵 and
𝑣 ∈ 𝑉𝑎, by means of the conjunction and disjunction logical connectives, ∧ and ∨, respectively.
For each Φ ∈ 𝐹𝑜𝑟(𝐵), with Φ = (𝑎, 𝑣), the set of objects 𝑥 ∈ 𝑈 that satisfies Φ in 𝑆 is defined as:

‖Φ‖𝑆 = ‖(𝑎, 𝑣)‖𝑆 = {𝑥 ∈ 𝑈 ∣ ̄𝑎(𝑥) = 𝑣}

Given Φ,Ψ ∈ 𝐹𝑜𝑟(𝐵), the set of objects that satisfies Φ∧Ψ in 𝑆 is defined as ‖Φ ∧Ψ‖𝑆 = ‖Φ‖𝑆 ∩ ‖Ψ‖𝑆
and the set of objects that satisfies Φ ∨ Ψ in 𝑆 is defined as ‖Φ ∨ Ψ‖𝑆 = ‖Φ‖𝑆 ∪ ‖Ψ‖𝑆.

Once the formal language associated with a subset of attributes has been defined, we can
introduce the notion of a decision rule.

Definition 7. Let 𝑆 = (𝑈 ,𝒜𝑑, 𝒱𝒜𝑑 , 𝒜𝑑) be a decision table and 𝐵 ⊆ 𝒜. A decision rule in 𝑆 is
an expression Φ → Ψ where Φ ∈ 𝐹𝑜𝑟(𝐵), Ψ ∈ 𝐹𝑜𝑟({𝑑}) where 𝐵 and {𝑑} are condition and decision
attributes, respectively. In addition, we say that an object 𝑥 ∈ 𝑈 satisfies a decision rule Φ → Ψ if
𝑥 ∈ ‖Φ ∧ Ψ‖𝑆.

Finally, we introduce the notion of certainty of a decision rule, which provides us with the
conditional probability of the consequent given the antecedent.

Definition 8. Let 𝑆 = (𝑈 ,𝒜𝑑, 𝒱𝒜𝑑 , 𝒜𝑑) be a decision table and Φ → Ψ be a decision rule in 𝑆,
with Φ ∈ 𝐹𝑜𝑟(𝐵) and Ψ ∈ 𝐹𝑜𝑟({𝑑}). We call certainty of the decision rule Φ → Ψ to the value:

𝑐𝑒𝑟𝑆(Φ, Ψ) =
|‖Φ ∧ Ψ‖𝑆|
|‖Φ‖𝑆|



We will say that Φ → Ψ is a true decision rule, if 𝑐𝑒𝑟𝑆(Φ, Ψ) = 1. If 𝑐𝑒𝑟𝑆(Φ, Ψ) = 0, we say that the
decision rule is false. Otherwise, it will be called a not entirely true decision rule.

3. Relationship between true decision rules and valid attribute
implications

This section focuses on comparing decision rules in RST and attribute implications in FCA,
in order to obtain a relationship between them. Before carrying out this comparison, it is
convenient to note that given a set of objects and a set of attributes, they are always related
in some way in RST, thanks to the value given by the mapping associated to each attribute of
the decision table, while an object and an attribute may be related or not in FCA. Moreover,
we must take into account that, although FCA can consider multi-valued contexts [8], boolean
relations are usually considered in classical FCA. Hence, in this preliminary study, we will
consider boolean decision tables, following the translation given in [3] in order to obtain a
decision table from a context and vice versa.

Definition 9. Let 𝑈 and 𝒜 be non-empty sets of objects and attributes, respectively. A boolean
decision table is a tuple 𝑆ℬ = (𝑈 ,𝒜𝑑, {0, 1}, 𝒜𝑑) such that 𝒜𝑑 = 𝒜 ∪ {𝑑} with 𝑑 ∉ 𝒜 and
𝒜𝑑 = { ̄𝑎 ∣ 𝑎 ∈ 𝒜𝑑, ̄𝑎 ∶ 𝑈 → {0, 1}}.

Considering Definitions 1 and 9, we can obtain a boolean decision table from a given
context as follows. Given a context (𝐴, 𝐵,ℛ), we construct the boolean decision table
𝑆ℬ = (𝐵,𝒜𝑑, {0, 1}, 𝒜𝑑), with an outstanding attribute 𝑑 ∈ 𝐴, defining the set 𝒜𝑑 by means
of the mappings ̄𝑎 ∶ 𝐵 → {0, 1} defined, for each 𝑎 ∈ 𝒜𝑑 and 𝑏 ∈ 𝐵, as follows:

̄𝑎(𝑏) = {
1 if 𝑎ℛ𝑏
0 otherwise

Reciprocally, given a boolean decision table 𝑆ℬ = (𝑈 ,𝒜𝑑, {0, 1}, 𝒜𝑑) we define the context
(𝒜𝑑, 𝑈 ,ℛ), where the relation 𝑅 is defined as 𝑎ℛ𝑏, if ̄𝑎(𝑏) = 1, for all attribute 𝑎 ∈ 𝒜𝑑 and object
𝑏 ∈ 𝑈.
Once exposed the mechanisms to obtain a boolean decision table from a context and vice

versa, we proceed to relate true decision rules in RST to valid attribute implications in FCA.

Proposition 2. Let 𝑆ℬ = (𝐵,𝒜𝑑, {0, 1}, 𝒜𝑑) be a boolean decision table, (𝐴, 𝐵,ℛ) be a context
and 𝐶, 𝐷 ⊆ 𝐴, such that 𝐶 = {𝑎1, … , 𝑎𝑛} and 𝐷 = 𝑑. Given a decision rule Φ → Ψ in 𝑆ℬ satisfied by
at least one object 𝑥 ∈ 𝐵, where Φ = (𝑎1, 1) ∧ … ∧ (𝑎𝑛, 1) and Ψ = (𝑑, 1), the following equivalence
holds:

𝑐𝑒𝑟𝑆ℬ(Φ, Ψ) = 1 if and only if 𝐶 ⇒ 𝐷 is a valid attribute implication in (𝐴, 𝐵,ℛ)

The decision rules in which all the attributes (conditions and decision attributes) take the
value 1 will be called 1-decision rule.

As a consequence of the previous proposition, if a dataset is interpreted as a boolean decision
table and a true 1-decision rule is obtained, a valid attribute implication is deduced. In contrast,



if the dataset is studied from the FCA perspective and a valid attribute implication is extracted,
where at least one object is related with all the attributes of the implication, a true decision
rule in RST is obtained. In short, regardless of the framework worked, it is possible to obtain
significant conclusions in both of them simultaneously.

On the other hand, it is also possible to relate true 1-decision rulesΦ → Ψ = (𝑎1, 1)∧… (𝑎𝑛, 1) →
(𝑑, 1) to valid attribute implications 𝐶 ⇒ 𝐷 in the case that 𝐶↓ ≠ ∅. This occurs since if an
object 𝑥 belongs to 𝐶↓ then it is related to all the attributes of 𝐶. Hence, 𝑥 satisfies the antecedent
Φ of the decision rule and, whether decision rule Φ → Ψ is true or the attribute implication
𝐶 ⇒ 𝐷 is valid it is obtained that 𝑥 satisfies the consequent Ψ. Then, it is equivalent to require
that the decision rule Φ → Ψ is satisfied by at least one object than to require that this object
belongs to 𝐶↓. As a consequence, the following result arises.

Corollary 1. Let 𝑆ℬ = (𝐵,𝒜𝑑, {0, 1}, 𝒜𝑑) be a boolean decision table, (𝐴, 𝐵,ℛ) be a context and
𝐶, 𝐷 ⊆ 𝐴, such that 𝐶 = {𝑎1, … , 𝑎𝑛} and 𝐷 = 𝑑. Given an attribute implication 𝐶 ⇒ 𝐷 with 𝐶↓ ≠ ∅,
the following equivalence holds:

𝑐𝑒𝑟𝑆ℬ(Φ, Ψ) = 1 if and only if 𝐶 ⇒ 𝐷 is a valid attribute implication in (𝐴, 𝐵,ℛ)

where Φ → Ψ is a 1-decision rule.

Notice that, by the philosophy in FCA, only attributes with value 1 can be considered in
decision rules to be compared with attribute implications. Hence, the possibility of taking into
account that decision rules is to consider mixed contexts, that is, positive and negative attributes,
as it is considered in [2, 6, 17]. This extension will be studied in the future. Now, we illustrate
Proposition 2 and Corollary 1 in the following example.

Example 1. Consider the context (𝐴, 𝐵,ℛ) where the set of attributes is 𝐴 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5},
the set of objects 𝐵 = {𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7} and the relation ℛ is given in Table 1.

Table 1
Context (𝐴, 𝐵,ℛ) of Example 1.

ℛ 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5
𝑏1 × ×
𝑏2 × ×
𝑏3 ×
𝑏4 × × × ×
𝑏5 ×
𝑏6 × ×
𝑏7 ×

As it was commented previously, we can obtain different boolean decision tables
(𝐵, 𝒜𝑑, {0, 1}, 𝒜𝑑), depending on the considered outstanding attribute 𝑑 ∈ 𝐴. In order to il-
lustrate Proposition 2, the set of attributes 𝒜 = {𝑎1, 𝑎2, 𝑎4, 𝑎5} and the decision attribute 𝑑 = 𝑎3
will be fixed. The boolean decision table (𝐵, 𝒜𝑑, {0, 1}, 𝒜𝑑) obtained following the mechanism
previously explained is represented in Table 2.
Now, we consider all decision rules of Table 2 by using {𝑎1, 𝑎2} as condition attributes and

𝑑 = 𝑎3 as decision attribute. One decision rule is extracted for each 𝑏 ∈ 𝐵. However, the pairs



Table 2
Boolean decision table (𝐵, 𝒜𝑑, {0, 1}, 𝒜𝑑) of Example 1

𝑎1 𝑎2 𝑎4 𝑎5 𝑑
𝑏1 0 1 1 0 0
𝑏2 0 1 0 1 0
𝑏3 0 0 0 0 1
𝑏4 1 1 1 0 1
𝑏5 0 0 1 0 0
𝑏6 0 1 0 0 1
𝑏7 0 0 0 1 0

of objects 𝑏1, 𝑏2 and 𝑏5, 𝑏7 generate the same decision rule. Therefore, five decision rules are
obtained, which are:

𝑟1 ∶ (𝑎1, 0) ∧ (𝑎2, 1) → (𝑑, 0)
𝑟2 ∶ (𝑎1, 0) ∧ (𝑎2, 0) → (𝑑, 1)
𝑟3 ∶ (𝑎1, 1) ∧ (𝑎2, 1) → (𝑑, 1)
𝑟4 ∶ (𝑎1, 0) ∧ (𝑎2, 0) → (𝑑, 0)
𝑟5 ∶ (𝑎1, 0) ∧ (𝑎2, 1) → (𝑑, 1)

Notice that, both 𝑟1 and 𝑟4 are satisfied by two objects, and therefore, the number of obtained
decision rules are lesser than the number of objects. Attending to the obtained decision rules, we
can ensure that 𝑟3 is the unique 1-decision rule. In order to illustrate the mentioned proposition,
we will compute the certainty of 𝑟3, being Φ3 = (𝑎1, 1) ∧ (𝑎2, 1) and Ψ3 = (𝑑, 1). By Definition 8,
its certainty is

𝑐𝑒𝑟𝑆ℬ(Φ3, Ψ3) =
|‖Φ3 ∧ Ψ3‖𝑆ℬ |

|‖Φ3‖𝑆ℬ |
= 1

1
= 1

On the other hand, notice that

‖Φ3‖𝑆ℬ = ‖(𝑎1, 1) ∧ (𝑎2, 1)‖𝑆ℬ = ‖(𝑎1, 1)‖𝑆ℬ ∩ ‖(𝑎2, 1)‖𝑆ℬ
= {𝑏 ∈ 𝐵 ∣ 𝑎1(𝑏) = 1} ∩ {𝑏 ∈ 𝐵 ∣ 𝑎2(𝑏) = 1}
= {𝑏 ∈ 𝐵 ∣ 𝑎1ℛ𝑏 and 𝑎2ℛ𝑏} = {𝑎1, 𝑎2}↓

that is, an object satisfies Φ3 in RST if it is related to all of the attributes of {𝑎1, 𝑎2} in FCA,
obtaining a direct correspondence between ‖Φ3‖𝑆ℬ and {𝑎1, 𝑎2}↓. Therefore,

{𝑎1, 𝑎2}↓↑ = ({𝑎1, 𝑎2}↓)↑ = (‖Φ3‖𝑆ℬ)
↑

= {𝑏4}↑ = {𝑎 ∈ 𝐴 ∣ 𝑎ℛ𝑏4} = {𝑎1, 𝑎2, 𝑎4, 𝑑}

Since {𝑑} ⊆ {𝑎1, 𝑎2}↓↑, we can conclude that {𝑎1, 𝑎2} ⇒ {𝑑} is a valid attribute implication,
according to Proposition 1.
Now, we will emphasize the need to require that all of the attributes of the decision rule

given in Proposition 2 must take the value 1 in order to obtain an equivalence between true
decision rules and valid attribute implications. To show this, we consider a different boolean
decision table, that is, (𝐵, 𝒜𝑑, {0, 1}, 𝒜𝑑) with 𝒜 = {𝑎1, 𝑎2, 𝑎3, 𝑎4} and 𝑑 = 𝑎5. We consider all of



the decision rules of Table 2 by using 𝑎4 as condition attribute and 𝑑 = 𝑎5 as decision attribute.
These decision rules are

𝑟 ′1 ∶ (𝑎4, 1) → (𝑑, 0)
𝑟 ′2 ∶ (𝑎4, 0) → (𝑑, 1)
𝑟 ′3 ∶ (𝑎4, 0) → (𝑑, 0)

It is easy to check that 𝑟 ′1 is a true decision rule. However, the attribute implication {𝑎4} ⇒ {𝑑}
is not valid since

{𝑑} ⊈ {𝑎4}↓↑ = {𝑏1, 𝑏4, 𝑏5}↑ = {𝑎4}

This fact is due to the decision rule 𝑟 ′1 is not a 1-decision rule.
Now, we will show that it is also possible to obtain valid attribute implications without

requiring the existence of true decision rules. Notice that, by Corollary 1, in order to illustrate this
case, no object can be in the extension of the antecedent of the attribute implication. Specifically,
we will see that {𝑎4, 𝑎5} ⇒ {𝑎2} is a valid attribute implication but the expression (𝑎4, 1)∧(𝑎5, 1) →
(𝑎2, 1) is not a certain decision rule. In fact, it is not even a decision rule. Furthermore, none of the
decision rules obtained from the boolean decision table (𝐵, 𝒜𝑑, {0, 1}, 𝒜𝑑)with𝒜 = {𝑎1, 𝑎3, 𝑎4, 𝑎5}
and 𝑑 = 𝑎2, by using as condition attributes {𝑎4, 𝑎5}, is true. On the one hand, we obtain

{𝑎4, 𝑎5}↓↑ = ∅↑ = 𝐴

As a result, {𝑎2} ⊆ {𝑎4, 𝑎5}↓↑ = 𝐴. Hence, {𝑎4, 𝑎5} ⇒ {𝑎2} is a valid attribute implication. On
the other hand, the expression:

(𝑎4, 1) ∧ (𝑎5, 1) → (𝑑, 1)

is not a decision rule if we take into account the condition attributes and decision attribute
mentioned above. Even more, computing all the decision rules:

𝑟″1 ∶ (𝑎4, 1) ∧ (𝑎5, 0) → (𝑑, 1)
𝑟″2 ∶ (𝑎4, 0) ∧ (𝑎5, 1) → (𝑑, 1)
𝑟″3 ∶ (𝑎4, 0) ∧ (𝑎5, 0) → (𝑑, 0)
𝑟″4 ∶ (𝑎4, 1) ∧ (𝑎5, 0) → (𝑑, 0)
𝑟″5 ∶ (𝑎4, 0) ∧ (𝑎5, 0) → (𝑑, 1)
𝑟″6 ∶ (𝑎4, 0) ∧ (𝑎5, 1) → (𝑑, 0)

(1)

and their certainty, collected in Table 3, we can conclude that there are no true decision rules
with {𝑎4, 𝑎5} as condition attributes and 𝑎2 as decision attribute, whereas {𝑎4, 𝑎5} ⇒ {𝑎2} is a
valid attribute implication. The main reason of this fact is that in the derivation operator ↓ only
objects related to the given subset of attributes are taken into account.

As a consequence of Proposition 2 and Corollary 1, we can also conclude that, if the context
contains an object with all the attributes, then we have that the set of true 1-decision rules is
equal to the set of valid attribute implications.



Table 3
Certainty of each decision rule of (1).

Rule 𝑐𝑒𝑟𝑆ℬ
𝑟″1 0.67
𝑟″2 0.5
𝑟″3 0.33
𝑟″4 0.5
𝑟″5 0.5
𝑟″6 0.5

4. Conclusions and future work

In this paper, we have related true decision rules in RST and valid attributes implication in FCA.
For this purpose, we have taken into account a way of obtaining boolean decision tables from
a given context and vice versa. We have explored that a true decision rule is equivalent to a
valid attribute implication, when at least one object has the attributes in the antecedent. This
hypothesis is equivalent to check whether the object satisfies the 1-decision rule. Moreover,
these theoretical results are illustrated with an example.

The obtained consequences show a first and encouraging step to relate both notions, decision
rules and attribute implications, with the main goal of each framework takes advantage of the
definitions and results developed during the last decades in the other framework. Therefore,
as a future work, we will continue studying the relationships among these notions in the
classical setting, as well as the well-known notion of functional dependencies in Database
Management System (DBMS). There exist important notions to be taken into consideration,
such as, association rules, algorithm of decision rules, efficiency, etc. Moreover, mixed contexts
with negative attributes will be incorporated in the study. In addition, we are interested in the
study of this relationship in the fuzzy setting.
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