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Abstract. Boolean factor analysis aims at decomposing an objects ×
attributes Boolean matrix I into a Boolean product of an objects × fac-
tors Boolean matrix A and a factors × attributes Boolean matrix B, with
the number of factors as small as possible. This paper is a continuation
of our previous paper where we proved that formal concepts of I are
optimal factors for Boolean factor analysis. In particular, we concentrate
on the implications of the proof. Namely, on the fact that finding factors
can be reduced to the set covering problem for which there exist efficient
approximation algorithms. In this paper, we present the algorithm for
finding factors which results this way and present several experiments
on factorizing Boolean matrices.

1 Introduction and problem setting

The present paper concerns factor analysis of Boolean data and is a continuation
of [4]. In [4], we proved that formal concepts are optimal factors in Boolean factor
analysis and outlined some implications of the insight provided by the proof. The
aim of this paper is to elaborate on one of those implications. Namely, on the fact
that the problem of finding factors in Boolean factor analysis can be reduced to
the well-known set covering problem. For the set covering problem, there exists
an efficient approximation algorithm. This algorithm can thus be used for finding
factors in Boolean factor analysis. Moreover, the algorithm can be sped up due
to some specific features of Boolean factor analysis. In this paper, we present
the thus resulting algorithm for finding factors in Boolean factor analysis. The
main focus of the paper is on presenting examples on on Boolean factor analysis
and experiments with the algorithm.

The idea of factor analysis is rooted in Spearman’s monumental development
of a psychological theory involving a single general factor and a number of spe-
cific factors [18]. Today, factor analysis is a well-established branch of statistical
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data analysis with applications in numerous fields and with support in several
software packages, see e.g. [1, 7, 10]. According to Harman [10, p. 4], “The prin-
cipal concern of factor analysis is the resolution of a set of variables linearly in
terms of (usually) a small number of categories or ‘factors’. . . . A satisfactory so-
lution will yield factors which convey all the essential information of the original
set of variables. Thus, the chief aim is to attain scientific parsimony or economy
of description.”

The problem of factor analysis can be described as follows. Suppose we are
given an n × m matrix I describing relationships between n objects and m
variables. Each entry Iij of the objects×variables matrix I contains the value of
j-th variable on i-th object. The aim is to find k new variables, called factors, an
n×k matrix A describing a relationship between objects and factors, and a k×m
matrix B describing a relationship between factors and original variables, in such
a way that I can be obtained from A and B. In case of linear factor analysis,
I is required to be (approximately) equal to the usual matrix product A ◦ B of
A and B. In addition, one requires that the number k of factors be less than
the number m of original variables, attaining thus the dimension reduction of
the space in which the objects are described. Every A’s entry Ail, called factor
loading, represents a value of l-th factor on i-th object; every B’s entry Blj ,
called factor score, represents the manifestation of j-th variable on l-th factor.

Several extensions of linear factor analysis have been proposed to deal with
data for which linear resolution of the original variables in terms of factors is
not appropriate, see e.g. [7, 10]. A particular example of such data is represented
by Boolean variables (attributes), called also binary variables (attributes), yes-
or-no variables (attributes). In this case, entries of I are 1s and 0s, i.e. Iij = 1
or Iij = 0 with 1/0 indicating that the i-th object has/does not have the j-
th variable (attribute). That is, I is a so-called Boolean matrix. For instance, a
patient (object) has or does not have headache (variable, attribute). The question
of whether the methods of factor analysis are appropriate for Boolean variables
has been discussed since 1940s, see e.g. Section 7 of [13]. It has been argued
that common methods of factor analysis, both linear and non-linear are not
appropriate to handle Boolean variables, see e.g. [13, 16, 19].

A promising way to reveal factors in Boolean data is provided by Boolean
factor analysis (BFA), see e.g. [8, 14, 17]. In BFA, a decomposition of an n × m
matrix I with Iij ∈ {0, 1} is sought into a Boolean matrix product A ◦ B of an
n× k matrix A with Ail ∈ {0, 1} and a k ×m matrix B with Blj ∈ {0, 1} with
k as small as possible. Note that a Boolean matrix product A ◦B is defined by

(A ◦B)ij =
k∨

l=1

Ajl ·Blj . (1)

where
∨

denotes maximum. Using Boolean matrices for the objects×factors and
the factors×variables relationships, and using Boolean matrix product has the
following advantage:

– One does not have to deal with the problem of rounding off real values to 0
and 1 which is the case when using common methods of factor analysis.



– Clear interpretability of factors. Namely, with the Boolean matrix product,
I = A◦B says: “an object i has an attribute j if and only if there is a factor
l such that l applies to i and j is one of the manifestations of l”.

Several methods for BFA can be found in the literature. Perhaps the most
advanced one is based on using Hopfield-like associative neural networks, see
[8, 17]. In this approach, factors correspond to stable points (attractors) of an
associative neural network. [12] presents a different approach which is based on
using genetic algorithms for the search of factors. Yet another approach, which
served as an inspiration for our paper is presented in [11] where the authors try
to exploit methods of formal concept analysis [5, 9] for BFA.

In [4], we presented several results on factorizing a Boolean matrix I using
formal concepts associated to I. The main result says that formal concepts are
optimal factors in BFA, meaning that for every decomposition of I into A ◦ B
with k factors, i.e., A and B are n×k and k×m Boolean matrices, there exists a
decomposition of I which uses formal concepts as factors such that the number
of the formal concepts is at most k. In addition, we pointed out in [4] that the
problem of finding a smallest set of factors in BFA can be reduced to set covering
problem for which there exists an efficient approximation algorithm.

In this paper, we present the thus resulting algorithm for finding factors in
BFA. The main aim of this paper is to present examples on BFA and experiments
with the algorithm.

2 Formal concepts as optimal factors and the reduction
to set covering problem

Recall first basic notions and notation from formal concept analysis (FCA) [5,
9]. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be sets of objects and attributes,
and I be a binary relation between X and Y . The triplet 〈X, Y, I〉 is called a
formal context. Using the well-known fact that a binary relation between X and
Y can be represented by an n × m Boolean matrix, we denote both the binary
relation and its corresponding Boolean matrix by I. That is, for the entry Iij

of (matrix) I we have Iij = 1 iff 〈xi, yj〉 belongs to (relation) I and Iij = 0 if
〈xi, yj〉 do not belong to (relation) I. A formal concept of 〈X, Y, I〉 is any pair
〈C,D〉 of sets C ⊆ X and D ⊆ Y such that C = D↓ and D = C↑ where

D↓ = {x ∈ X | for each y ∈ D : 〈x, y〉 ∈ I}
is the set of all objects sharing all attributes from D, and

C↑ = {y ∈ Y | for each x ∈ C : 〈x, y〉 ∈ I}
is the set of all attributes shared by all objects from C. The set of all formal
concepts of 〈X, Y, I〉 is denoted by B(X, Y, I). Under a natural partial order,
B(X, Y, I) happens to be a complete lattice, so-called concept lattice of 〈X, Y, I〉
[9, 20]. It is a well-known fact that formal concepts of 〈X, Y, I〉 are just maximal



rectangles of matrix I which are full of 1s. For instance, 1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1


is a Boolean matrix representing a formal context with X = {x1, . . . , x4}, Y =
{y1, . . . , y5}, and relation I for which 〈x1, y1〉 ∈ I, 〈x1, y2〉 ∈ I, 〈x1, y3〉 6∈ I,
etc. The bold 1s form a maximal rectangle, with rows 1, 2, 3, and columns 1
and 2. Correspondingly therefore, 〈{x1, x2, x3}, {y1, y2}〉 is a formal concept in
〈X, Y, I〉. This “geometrical” way of looking at formal concepts proves to quite
useful in FCA.

Let

F = {〈A1, B1〉, . . . , 〈Ak, Bk〉} ⊆ B(X, Y, I),

i.e. F is a set of formal concepts associated to I. Denote by AF and BF the
n× k and k ×m Boolean matrices defined by

(AF )il =
{

1 if xi ∈ Al,
0 if xi 6∈ Al;

and (BF )lj =
{

1 if yj ∈ Bl,
0 if yj 6∈ Bl.

That is, the l-th column (AF ) l of AF consists of the characteristic vector of Al

and the l-th row (BF )l of BF consists of the characteristic vector of Bl.

We are interested in a decomposition of I into AF ◦BF . If I = AF ◦BF , F
can be seen as a set of factors and we call the formal concepts from F factor
concepts. The l-th factor, i.e. formal concept 〈Al, Bl〉, applies to the i-th object
if xi ∈ Al; the j-th attribute yj is a manifestation of the l-the factor if yj ∈ Bl.
Note that decomposing I by means of formal concepts has been proposed in [11].
However, the particular way of using formal concepts as factors is not described
explicitly in [11].

Two questions then arise. First, does there always exist a F ⊆ B(X, Y, I)
such that I = AF ◦BF? Second, to what extent is it optimal to consider formal
concepts from B(X, Y, I) as factors?

For the first question, it is a well-known fact of formal concept analysis
that if we put F = B(X, Y, I) (with any indexing of formal concepts), then
I = AF ◦ BF . In this sense, factorization using formal concepts is universal,
see [4]. Note that putting F = B(X, Y, I) is not practically useful because the
number |B(X, Y, I)| of all formal concepts is usually larger than the number |Y |
of the original attributes. A better way consists in taking F = O(X, Y, I) or
F = A(X, Y, I) where

O(X, Y, I) = {〈{x}↑↓, {x}↑〉 |x ∈ X} and A(X, Y, I) = {〈{y}↓, {y}↓↑〉 | y ∈ Y }
are the sets of object-concepts and attribute-concepts, respectively. In both of
these cases we have I = AF ◦BF but still, this may not be the optimal decom-
position.

The second question is answered by the following theorem which was proven
in [4]. The theorem says that for any decomposition of I there is always at least
as good a decomposition which uses formal concept as factors.



Theorem 1 (formal concepts are optimal factors). Let I = A◦B for n×k
and k ×m Boolean matrices A and B. Then there exists F ⊆ B(X, Y, I) with

|F| ≤ k

such that for the n× |F| and |F| ×m Boolean matrices AF and BF we have

I = AF ◦BF .

The proof is instructive and we therefore summarize its main points. First,
observe that I = A ◦ B means that I can be written as a

∨
-superposition of

rectangles consisting of 1s. For instance, in case of I = A ◦B being(
1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
=

(
1 0 0 1
1 0 1 0
1 1 0 0
0 0 1 0

)
◦

(
1 1 0 0 0
0 0 1 1 0
1 0 0 0 1
0 1 0 0 0

)
,

the corresponding decomposition can be rewritten as a
∨

-superposition(
1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
=

(
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
0 0 0 0 0

)
∨

(
0 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0

)
∨

(
0 0 0 0 0
1 0 0 0 1
0 0 0 0 0
1 0 0 0 1

)
∨

(
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)

of rectangles I1, I2, I3, I4, i.e. Boolean matrices whose 1s form rectangles. The
l-th Boolean matrix I l results as a Boolean matrix multiplication of the l-the
column of A (n× 1 matrix) and the l-th row of B (1×m matrix). Second, each
such a rectangle is contained in a maximal rectangle of I, i.e. in a formal concept,
and a

∨
-superposition of these maximal rectangles gives I. Denoting therefore

the collection of all these formal concepts by F yields the conclusion. Note that
since two distinct rectangles may be contained in a single maximal rectangle, we
may have |F| < k.

Using our example, consider formal concepts 〈A1, B1〉 = 〈{x1, x2, x3}, {y1, y2}〉,
〈A2, B2〉 = 〈{x3}, {y1, y2, y3, y4}〉, 〈A3, B3〉 = 〈{x2, x4}, {y1, y5}〉, of I. Then,
each of the rectangles corresponding to I ls is contained in some of the max-
imal rectangles corresponding to 〈A1, B1〉, 〈A2, B2〉, or 〈A3, B3〉. Putting now
F = {〈A1, B1〉, 〈A2, B2〉, 〈A3, B3〉}, we have I = AF ◦ BF . Denoting by (AF ) l

and (BF )l the l-th column of AF and the l-th row of BF , I = AF ◦ BF can
further be rewritten as I = (AF ) 1 ◦ (BF )1 ∨ (AF ) 2 ◦ (BF )2 ∨ (AF ) 3 ◦ (BF )3 ,
which shows a

∨
-decomposition of I into maximal rectangles. With our example,

we have (
1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
=

(
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
0 0 0 0 0

)
∨

(
0 0 0 0 0
0 0 0 0 0
1 1 1 1 0
0 0 0 0 0

)
∨

(
0 0 0 0 0
1 0 0 0 1
0 0 0 0 0
1 0 0 0 1

)
.

Remark 1. In factor analysis, factors considered to represent general categories,
sometimes called concepts, of which the original variables are particular manifes-
tations. The problem of interpretability of factors is a part of the whole process
of factor analysis. From this point of view, interpretation of formal concepts as
factors in BFA is clear for a user. Namely, the notion of a formal concept results
as a mathematical formalization of the notion of a concept as worked out in the



traditional logic. A formal concept 〈Al, Bl〉 can be seen as a “unit of thought”
consisting of a collection Al of objects to which it applies (concept’s extent)
and a collection Bl of attributes to which it applies (concept’s intent). Clear
interpretability is one of the advantageous features of having formal concepts as
factors.

Consider now the following problem we call the BFA Problem [4]:

INPUT: Boolean matrix I,
OUTPUT: smallest F ⊆ B(X, Y, I) for which I = AF ◦BF .

As mentioned in [4], BFA Problem is reducible to the set covering optimiza-
tion problem, for which we refer to [6]. Recall that in the set covering optimiza-
tion problem we are given a set U and a collection S ⊆ 2U of subsets of U with⋃
S = U . The goal is to find a set C ⊆ S with the fewest sets (i.e. with |C| as

small as possible) such that C covers U , i.e. such that U =
⋃
C. The set covering

optimization problem is a difficult problem. It is NP-hard and the corresponding
decision problem is NP-complete. However, there exists an efficient greedy ap-
proximation algorithm for the set covering optimization problem which achieves
an approximation ratio ≤ ln(|U|) + 1, see [6].

The idea of the proof of Theorem 1 allows us to see that I = AF ◦BF means
that I is covered by the rectangles corresponding to 〈Al, Bl〉’s from F . Conse-
quently, the BFA Problem is reducible to the set covering problem by putting
U = {〈xi, yj〉 | Iij = 1} and S = {C × D | 〈C,D〉 ∈ B(X, Y, I)}. That is, the set
U to be covered is the set of all pairs for which the corresponding entry Iij is
1, and the set S of sets which can be used for covering U is the set of “rectan-
gular sets” of positions corresponding to formal concepts 〈C,D〉 ∈ B(X, Y, I).
The above-mentioned greedy approximation algorithm can therefore be used
to find approximately optimal solutions for the BFA Problem. However, the
particular nature of the BFA Problem enables us to speed up the algorithm.
It is easy to see that if I = AF ◦ BF , then F needs to contain all formal con-
cepts from B(X, Y, I) which are both object concepts and attribute concepts, i.e.
O(X, Y, I) ∩A(X, Y, I) ⊆ F . Therefore, one can include O(X, Y, I) ∩A(X, Y, I)
in F right in the beginning. Recall that the set O(X, Y, I) of all object concepts
and the set A(X, Y, I) of all attribute concepts is defined by

O(X, Y, I) = {〈{x}↑↓, {x}↑〉} and A(X, Y, I) = {〈{y}↓, {y}↓ ↑〉}.
The resulting algorithm for computing the factors follows:

Algorithm 1 (Compute factor concepts)

INPUT: I (Boolean matrix)
OUTPUT: F (set of factor concepts)

set S to B(X, Y, I)
set U to {〈xi, yj〉 | Iij = 1}
set F to ∅
for each 〈C,D〉 ∈ S:

if (〈C,D〉 ∈ O(X, Y, I) ∩ A(X, Y, I)):



add 〈C,D〉 to F
remove 〈C,D〉 from S
for each 〈x, y〉 ∈ C ×D:

remove 〈x, y〉 from U
while (U 6= ∅):

do select 〈C,D〉 ∈ S that maximizes (C ×D) ∩ U :
add 〈C,D〉 to F
remove 〈C,D〉 from S
for each 〈x, y〉 ∈ C ×D:

remove 〈x, y〉 from U
return F

3 Experiments with Boolean factor analysis

In this section, we present experiments on factorization of Boolean matrices. In
the experiments, we employed the algorithm described in the end of the previous
section.

Experiment 1 The first experiment concerns analysis of factors which determine
attributes of European Union countries. We have taken information from the
Rank Order pages of the CIA World Factbook 20063 and created a Boolean ma-
trix consisting of 27 rows (EU countries) and 141 columns (yes/no attributes).
The attributes are scaled versions of the numerical values taken from the Fact-
book.

The total number of formal concepts present in the matrix is 3963. From
this amount of concepts, Algorithm 1 computes only a small number of factor
concepts. In particular, we obtained a set F of 49 factor concepts, i.e. formal
concepts for which I = AF ◦BF . That is, the 27×141 matrix I has been decom-
posed into a Boolean product of a 27 × 49 Boolean matrix AF representing a
relationship between EU countries and the factors and a 49×141 Boolean matrix
BF representing a relationship between the factors and the original attributes.
The factor concepts can be considered factors explaining completely the original
141 attributes. Note that the original attributes are socio-economic attributes.
However, due to the limited scope, we restrict ourselves to listing the numbers of
attributes and factors and leave the socio-economic interpretation of the factors
to a future work, to be done possibly with an expert economist.

Experiment 2 We have used Algorithm 1 to compute factor concepts from large
data sets. In the case of large data sets, it seems to be of interest whether there
is a set of factors which approximately explain the data.

Here we present the results for the well-known MUSHROOM data set which
can be found at the UCI Machine Learning Repository4. The MUSHROOM

3 https://www.cia.gov/library/publications/download/
4 http://www.ics.uci.edu/˜mlearn/



database is presented as a collection of so-called “item sets”, i.e. it is a collec-
tion of sets of items. The collection can be transformed into a Boolean matrix
with rows corresponding to items sets, attributes corresponding to items and
table entries indicating whether an item set given by the row contains an item
given by the column. The MUSHROOM database contains 8124 objects and 119
attributes. The corresponding Boolean matrix contains 238710 formal concepts.

Let us thus turn our attention to factor concepts which approximately explain
the data. That is, our aim is to find a set F of factor concepts such that I is
approximately equal to AF ◦BF . From the perspective of the results presented
in this paper, solutions to the approximate factorization problem can be looked
for by a slight modification of Algorithm 1. Recall that Algorithm 1 finishes its
computation if each 1 in from the input table is covered by at least one factor.
We might modify the halting condition of the algorithm so that

– it stops if the number of found factors exceeds threshold n; or
– it stops if the found factors cover “almost all 1s” present in the input matrix.

In either case, we obtain a set F of factor concepts so that AF ◦ BF ≤ I. It is
desirable to have AF ◦ BF as close to I as possible while having a reasonable
number of factors at the same time. The closeness of AF ◦ BF will be assessed
as follows. For I and F ⊆ B(X, Y, I), define A(I,F) by

A(I,F) =
Area(F)

Area(B(X, Y, I))
,

where

Area(G) = |{〈i, j〉 | (AG ◦BG)ij = 1}|
for each G ⊆ B(X, Y, I). Hence, Area(G) is the number of 1s in the matrix given
by a set of rectangles G. As a consequence, Area(B(X, Y, I)) is the number of 1s
in the input matrix. A(I,F) will be called a degree of approximation of I by F .
Furthermore, A(I,F) · 100 is the percentage of 1s in the input matrix I which
are covered by factors from F . Clearly, if F is a set of the exact factor concepts,
i.e. AF ◦ BF = I, then Area(B(X, Y, I)) = Area(F) which yields A(I,F) = 1.
Observe that A(I,F) ∈ [0, 1] and in addition, A(I,F) = 1 iff I equals AF ◦BF ,
i.e., iff the factors completely explain the data.

Our experiments with the MUSHROOM data set have shown that most of
the information contained in the data set can be expressed through a relatively
small number of factor concepts. The results of our experiment can be depicted
by a graph shown in Fig. 1. The graph shows a relationship between the number
of factor concepts and the degree of approximation of the original data set. We
can see from the picture that even if we take a relatively small number of factor
concepts, we achieve high degree of approximation. For instance, if we take first
6 factor concepts returned by Algorithm 1, we get F (I,F) ·100% = 51.89%. This
means that more than half the information contained in the MUSHROOM data
set can be explained by six factors. The growth of the degree of approximation is
rapid for first 10 factor concepts. The growth of the degree of approximation is
shown in Table 1. The tables say that, for instance, if we wish to achieve 90.36%



Fig. 1. Relationship between the number of factors and the approximation of the orig-
inal Boolean matrix.
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Table 1. Number of factor concepts vs. degree of approximation

factors (n) 1 2 3 4 5 6

fidelity (%) 16.78 26.03 34.35 41.29 47.51 51.89

factors (n) 10 20 45 60 100 119

fidelity (%) 60.44 73.07 90.36 94.98 99.76 100.00

approximation then it suffices to take 45 factor concepts which is significantly
less than the number of the original attributes; 95% is guaranteed if we use 60
factor concepts, etc.

4 Conclusions and future research

We presented an algorithm for finding factors in Boolean factor analysis. The
algorithm is based on a theorem, proven in our earlier paper, that the problem
of BFA can be reduced to a problem of a covering of entries containing 1s in a
given Boolean matrix I with maximal subrectangles of I which consist of 1s. This
way, the problem of BFA is reducible to a particular instance of a set covering
problem for which there exists an approximation algorithm. The algorithm can
be sped up by further insight provided by formal concept analysis. We presented
examples of Boolean factor analysis and experiments with the algorithm.

Future research will include the following problems:

– As we have seen, further insight provided by the particular nature of the set
covering problem can speed up the greedy approximation algorithm. One
such speed up results from the inclusion of mandatory concepts which we
presented. Other ways of improving the algorithm as well as looking for other
algorithms need to be investigated.



– Approximate decomposition, i.e. looking for A and B such that I is approx-
imately equal to A ◦B, cf. the above experiments with MUSHROOM data.
Both theoretical insight and experiments are needed in this direction.

– We did not impose any restrictions on F except for I = AF ◦ BF . It might
be desirable to look for F such that the number of attributes in the formal
concepts’ extents are restricted in one way or another. For instance, all formal
concepts from F have approximately the same number of attributes, this
means the level of generality of all factors is approximately the same. In
general, a question of what is a good set F of factor concepts needs to be
investigated. A small number of factor concepts, considered in this paper as
the only criterion, might not always be the best one by itself.

– New factors can be seen as new attributes using which the objects are de-
scribed. Since the number of new attributes (factors) is less than or equal to
the number of the original attributes, a general question is this: Can we use
the new attributes for more efficient reasoning and manipulation of objects?
For instance: Is it useful to extract association rules over the objects which
contain the new attributes? Is it useful to construct decision trees to classify
objects using the new attributes?

– Another topic relates to the question of whether there are connections be-
tween formal concept analysis, concept lattices and related structures on the
one hand, and associative neural networks on the other hand. In the light of
[8] and the present paper, this question should be pursued. Useful hints in
this respect could be provided by [2] and its followers such as [15].

– The last remark we want to make concerns the possibility to extend factor-
ization of Boolean matrices to matrices containing more general entries, such
as numbers from the unit interval [0, 1], instead of just 0 and 1, expressing
degrees to which attributes apply to objects. This is possible using an ex-
tension of formal concept analysis to the setting of fuzzy logic, see e.g. [3].
A paper on this topic is in preparation.
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