A new concise representation of frequent patterns
through disjunctive search space

T. Hamrount-2, I. Denden, S. Ben Yahia and E. Mephu Nguif®

1 Faculty of Sciences of Tunis, Tunis, Tunisia.

{tarek.hamrouni, sadok.benyahi@fst.rnu.tn

2 CRIL-CNRS, IUT de Lens, Lens, France.
{hamrouni, mephp@cril.univ-artois.fr

Abstract. The interest in a further pruning of the set of frequent patterns that
can be drawn from real-life datasets is growing up. In fact, it is a quite\alr
reflex towards providing a manageably-sized and reliable knowleddg fact is
witnessed by the proliferation of what is calledincise representatiaof frequent
patterns. In this paper, we propose an exact concise representati@xpiores

the disjunctive search spada addition to the conjunctive one, in contrast with
almost all known concise representations which only focussed on thespéitee.

This representation required the definition of a new disjunctive closweeatp.

The latter operator partitions the search space into distinct disjunctivesdeyuie
classes and, hence, makes possible to drastically reduce the nunitzerdigd
patterns. Empirical evidences are presented about the relative sthe atw
representationv.r.t. those based on frequent closed, (closed) non-derivable and
essential patterns, respectively.

Keywords: Frequent pattern, Concise representation, Disjunctive search, space
Itemset.

1 Introduction and motivations

Within the traditional framework of association rule migjmrmanaging the high number
of frequent patterns extracted from real-life dataset®imess an important topid). A
growing number of works hence explored the conjunctive deapace to get out a
nucleus of patterns, from which the remaining ones can beetkwithout information
loss. Such an exploration was mainly motivated by the faadttthe conjunctive operator
— linking items — got the monopoly since the application afaasation rules in market
basket analysis. Such a nucleus is better knowexast concise representatiodBeyond
expected high compactness rates, an exact concise refatéseshould make possible
to guess the frequency status of a pattern, and then to gxatikeve its support when
it is frequent enough. The main exact concise representatimposed are those based
on frequent closed [1], non-derivable [2], closed nondssie [3] () and essential
patterns [4]. The first three representations also haventieeeisting property of being
true (also calledperfectin [4]) covers of frequent patterns, since their cardiyaitt
always smaller than that of the frequent pattern set.

! Here we are mainly interested in itemsets as a pattern class.
2 This representation simply gathers the set of closures of frequerderirable patterns. It is,
hence, smaller in size terms than the previous two ones.



2 T. Hamrouni, I. Denden, S. Ben Yahia and E. Mephu Nguifo

The main originality of the concise representation basefteguent essential pat-
terns stands in the fact that it mainly explores tligunctive search spacghere ele-
ments are characterized by their respective disjunctippaus, instead of conjunctive
ones. It hence makes use of the inclusion-exclusion idesi5] to bridge both con-
junctive and disjunctive search spaces. Neverthelesgite ef such originality, this
representation suffers from two major disadvantages:

1. It is not self-contained in the sense that the essentiadpatet does not make pos-
sible by itself to decide whether a pattern is frequent or Heince, such a set has to
be burdened by additional elements belonging to the peditdrder of the order ideal
induced by the frequency constraint.

2. Several essential patterns can characterize the sameadgéofs and, therefore, they
present a certain form of redundancy.

In this situation, finding a closure operator related to essakepatterns would be of
paramount importance to get a more reduced concise repagisen Indeed, thanks
to this operator, many essential patterns will be mappeathe same element within
the disjunctive search space. Thus, the obtained repegsentvill be more compact,
especially for dense datasets. Furthermore, the simultenese of essential patterns
and disjunctive closed ones can also ease the detectioriofréispective disjunctive
equivalence classes and, hence, the traversal of the disfasearch space. This can in-
tensively be explored in many applications as done withénctbnjunctive search space
thanks to their correspondences; minimal generators aygddlpatterns respectively
(see [6] for a study). Indeed, these particular patternstueturally localized within
the associated lattice what gives them more semanticsiacgrib other patterns nu-
merically retained (like non-derivable patterns) indegently from their localization.

The rest of the paper is arranged as follows. The next sectizails the key notions
used throughout this paper. Section 3 describes the compsesentation based on fre-
quent essential patterns. The disjunctive closure opeaatwell as its main properties
are detailed in Section 4, where a new disjunctive closaset concise representa-
tion is also introduced. The empirical evidences about thigyuof our approach are
provided in Section 5. Section 6 discusses the main relatel. w

2 Key notions

In this section, we briefly sketch the key notions used in émainder of this paper.

Definition 1. (EXTRACTION CONTEXT) An extraction context is a triple€ = (O, Z,
R), whereQ represents a finite set of objeciSis a finite set of items anR is a binary
(incidencé@ relation (i.e.,R C O x 7). Each coupldo, 1) € R expresses that the object
o € O contains the itemi € 7.

Example 1. In the remainder, we will consider the extraction contexgided by Table
1withO ={1,2,3,4,5,6,7} andZ = {a, b, c, d}.

A pattern can be characterized by three kinds of supportsststed by the follow-
ing definition.

Definition 2. [5] (SUPPORTS OF A PATTERN Let £ = (O, Z, R) be an extraction
context. We distinguish three kinds of supports associatadatterni:
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Table 1. An extraction context.
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- Conjunctive support: Supgl) = |{o€ O | (Vi€ I,(o0,i) € R)} |

- Digjunctive support: SupgVvI)=|{o€ O | (3ie€ I,(o,i) € R)} |

- Negative support: Sup{—I)=|{o€ O | (Vie I,(0,i) ¢ R)} |

A pattern] is said to bdrequentif Supg) is greater than or equal to a user-specified
minimum support threshold, denotetinsup Since frequent patterns fulfill the order
ideal property [7], the supersets of infrequent items wibabe infrequent. The set of
itemsZ (and consequently the extraction cont&Xtwill hence be considered as only
containing frequent ones. Infrequent items will thus benpdi Please also note that
SupgVvI) > Supgl).

Given the respective disjunctive supports of a patterriissts, we are able to derive
its conjunctive support using ttieclusion-exclusion identitig®]. Furthermore, thanks
to theDe Morgan’s law we are even able to straightforwardly derive its negatiye s
port. Lemma 1 shows these important properties.

Lemma 1. (DERIVATION OF THE CONJUNCTIVE AND NEGATIVE SUPPORTELet] C
7 be an arbitrary pattern. Its conjunctive and negative suppare respectively derived

as follows: Supgl) = Z (— 1)\ L|-1 Supg v I) (1)
OpcI,CI
Sup~I) = | O] — Supg V) 2)

Example 2. Consider the extraction context of Table 1. Given the respedisjunc-
tive supports obc’ subsets®), its conjunctive and negative supports are inferred as
follows:

e Supgbc) = (— 1)/*I =1 supgvbe) + (= 1)®I — 1 Supgvb) + (— 1)lcl 1
Supggve) = - Supvbc) + Supp(vb) + Supve) =-5+ 3+ 3= 1.

e Supff—bc) = |O| - Supgvbc) = 7 - Supvbc) = 7-5= 2.

3 Frequent essential pattern-based concise representatio

The next definition presents the frequent essential pattdiimese patterns constitute
the core of the concise representation which motivates (@firSection 1).

Definition 3. [4] (FREQUENT ESSENTIAL PATTERN LetC = (O, Z, R) be an extrac-
tion context and C 7. I is an essential patteriff Sup{\VI) # max{SupgVvI\i) | i€
I}. An essential patterii is also frequent if Sugg) > minsup.

Example 3. Consider the extraction context of Table 1 for minsup.=ad is not an
essential pattern since Supyad) = Supp(\va) = 7. Whereadc is an essential pattern
since Supfvbc) = 5 # max{SupgVvb), SupgVvc)} since Supfvb) = Supp(vc) =
3. bc is also frequent since Sufipc) = 1 > minsup.

3 We use a separator-free form for the setg, the sebc stands fofb, c}.
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The set of frequent essential patterns, dendté€® ., was proven in [4] to be an or-
der ideal in @%, C). The following theorem presents the frequent essentitépa
based concise representatid@#D ™ (FPx) denotes the set of maximal frequent pat-
terns, which is used to detect the frequency status of atramppattern.

Theorem 1. [4] The setFEP of frequent essential patterns increasedd®) ™ (FP i)
constitutes an exact concise representation of the se¢qfiént patterns.

It is worth noting that in [8], this representation was shavat to be perfect, contrary
to the authors’ claim.

4 New disjunctive closure-based concise representation

Here we detail the main constructs related to the disjuaediwsure operator [8], which
will make possible to map several essential patterns intoigue element within the
disjunctive search space. This is the starting point of @w concise representation.

4.1 The disjunctive closure operator

Let us start by defining the disjunctive closure operator.

Definition 4. (DISJUNCTIVE CLOSURE OPERATORLetK = (O, Z, R) be an extrac-
tion context. The disjunctive closure operatois defined as follows:
h:P(T) — P(T)

I »h(I) ={ieZ|(NVMoecO)((0,i) € R)= (Ti1 € I)((0,i1) € R)}.

Roughly speaking, the disjunctive closutél) of a pattern/ is equal to the maximal
set of items whictonly appear in the objects that contain at least an iteth of

Example 4. Given the extraction context depicted by Table 1, the patberis a dis-
junctive closed pattern since it is equal to the maximal $étemns only contained in
the set of objects wheteor ¢ appears, i.e.{2, 3, 5, 6, 7}. Henceh(bc) = bc. While
acd is not a disjunctive closed pattern sinbenly appears in the set of objects where
at least an item o&cd appears. In facth(acd) = abcd.

Actually, Definition 4 gives an explicit expression of thejdinctive closure operator,
free from the connection operators linkiR{Z) and?(O). This definition structurally
characterizes the disjunctive closure of any patt&riand, hence, allows to straight-
forwardly compute it from any extraction context. To the tbafsour knowledge, our
work is the first one allowing the extraction of a concise espntation of frequent
patterns based on a disjunctive closure operator, andgehexuloring the disjunctive
search space. We will denote BCP the set of disjunctive closed patterns extracted
from a contextC. Thanks to the closure operatbr the disjunctive search space is
partitioned into distinct disjunctive equivalence clasda the latter classes, disjunc-
tive closed (esp.essential) patterns are the largassp.minimal) elementsy.r.t. set
inclusion.

The following propositions allow to establish the relatlmetween the smallest dis-
junctive closed pattern containing a pattérandh (7).

Proposition 1. LetI C Z. h([I) is the smallest disjunctive closed pattern containing
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h(I) =minc{f € DCPx | I C f}.
Proposition 2. Let] C Z. Supg Vv I) = Supf V h(I)).

Proposition 3 makes possible to deduce the disjunctiveusdosf a pattern using
the disjunctive closure of one of its subsets, while Prapmsi4 establishes the link
between disjunctive closed patterns and frequent esspatiarns.

Proposition 3. Let X C Z andY C 7 be two patterns. We then have:
(X Y € (X)) = (MY) = h(X)).

Proposition 4. LetI C 7 and FPx be the set of frequent patterns. We then have:
(I € FPx)= (3 f € DCPx andl, € FEPk s.t.h(I1) = h(I) = fandl; CI).

Proof. (Sketch The proof is based on the fact that the §&P is an order ideal in
(2%, ©) whose elements are the minimal ones in their associatedndisye equiva-
lence classes.

In the remainder of the paper, we will denote BIPCP . (£ssentialDisjunctive
ClosedPatterns) the subset G1CPx whose elements have at least a frequent essential
pattern as generator. Thanks to Proposition 4, it is easyaw ghat the disjunctive
closures of the patterns belongingd®* (FP) are contained i€ DCP.

Example 5. Consider the context of Table 1. Within the disjunctivdédatsketched by
Figure 1, different sets of patterns are indicated. The @galkpatterns are shown with
bold letters, while the disjunctive closed patterns arearfided. The setFEP in-
duces an order ideal structure, as shown in Figure 1 for marsu.. LetBD™ (FEPxk)
be the negative border oFEP . equal tominc {I € P(Z) \ FEPk}. The elements
belonging to this border are in italic. An example of a disjtine equivalence class,
induced by the disjunctive closure operator, is also skexdcits minimal element is the
essential patterra and its largest one is the disjunctive closed pattebtd. Please
note that if, for example, a pattern is in bold letters and lisoaunderlined, then this
means that it is both an essential pattern and a disjunctieser one. As an indication,
the patterns belonging t8D (FPx) are encircled.

A disjunctive
(ebcc, 7) equivalence class

bed, 6)

(be, 5) | | (bd, 5)

The order
ideal l@7]|[e3]
shape of o—
frequent
essential
patterns

Fig. 1. The associated disjunctive lattice where each node contains a disjuratigenpwith its
disjunctive support.
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4.2 New disjunctive closure-based concise representation

It is commonly known that the definition of a concise repréaton is closely related to
the way the whole set of frequent patterns will be generatatirsg from its elements.
Suppose we have at hand the §&CP where each element is provided with its
disjunctive support (as it is the case in [8]). We need toyaathe “tools” that will be
of help in such a regeneration process. To the best of our legige, only the formula
shown in Lemma 1 makes the link between the disjunctive stmi@ pattern and its
conjunctive one. This formula requires knowing beforehtrgddisjunctive supports of
the subsets of a given candidate to be able to compute itarcije support. Hence, an
APRIORHlike regeneration is naturally advocated. This manneegéneration consists
in finding the conjunctive supports afpatterns2-patterns, and so on.

Let X be a pattern to which we are interested in retrieving its woctive support.
ReachingX is conditioned by the fact that all its subsets (and moreiped¢ the im-
mediate ones) are proven to be frequent. Indeed, the setmfdnt patterns is an order
ideal [7]. Hence, if a subset of is infrequent, thernX will necessarily be infrequent.
Assume now that all subsets &f are frequent. At this step, the main information we
have about each subset consists in its disjunctive closifir®roposition 1) and, con-
sequently, its different supportsf(Lemma 1). If X is included in the closure of one
of its immediate subsets, then we have its disjunctive cand, hence, its disjunctive
support €¢f. Proposition 3). We can thus compute its conjunctive suppiease note
that in this caseX is obviously not an essential pattern. Xf is included in none of
its subsets’ closures, then X is necessarily an essentigrpaHowever, the closure of
X is required to correctly compute its conjunctive suppor tren deduce i is fre-
quent or not. Nevertheless, how can we ensure that suchwaelbslongs t& DCPy?
Indeed,X can be arinfrequentpattern and, at the same time, tinéiquegenerator of
its disjunctive equivalence class. Hence, its closure m@liessarily not be i6 DCPy
(4). This important part was missed in [8], what motivates afcéuserutiny to correct
the representation and make it really exact.

At this step of the treatment, to correctly regenerate thelavket of frequent pat-
terns, itis clear that we need the disjunctive closuresaafident patterns.é., EDCPr),
augmented by the closuresiquelygenerated by essential patterns belonging to the
negative border ofFEP . These latter closures do not belong&®CPy, but they
bring key information when an infrequent essential pattsrreached. They are also
necessarily sufficient because once an infrequent paatiséovered all its supersets
will not be treated. Hence, an important result is §¥&C P is not sufficient to ensure
the exact regeneration of the whole frequent pattern sedt wiakes the claim of the
authors in [8] incorrect. As characterized in the remaindeme closures should then
be added to ensure that some candidates will not be errdyemusidered as frequent
whereas they are actually infrequent. These closuresariththe setADCPx (Added
DisjunctiveClosedPatterns). An interesting question will be: how can we redihee
cardinality of ADCP . without affecting the exact regeneration of the whole fexgu
pattern set?

“1f X is not the unique essential pattern of its disjunctive equivalence €la&en its closure
can belong t& DC P if C contains at least a frequent pattern.



A new concise representation of frequent patterns through disjursetareh space 7

Let X be an infrequent essential pattern belongin1d™ (FEPx). Let us have a
look at the formula establishing the link between the codijue and disjunctive sup-
ports:

SupgX) => (- ) suptvx’) = () supgvX) +> (- )X supg v X).

PCX'CX pCcX’'CX

Suppose thatX | is even. Hence, ¢ 1)‘X‘*1 = -1. Assume now that we did not
compute the disjunctive closuyfeof X. Then, two cases can arise: eitbéiis covered
by at least an element #IDCP or is not covered at alig., V f' € EDCPx, X ¢ f').
In the latter case, it is obvious that is infrequent ¢f. Proposition 4). Let us analyze
the former case. Lef; be the smallest closure #DCP coveringX. Itis clear thatf
C f1 (otherwise, the closure of will never bef) (5. Hence Supg v f1) > SupgV f)
= Supfd Vv X). Hence, if we us&upg Vv f1) in the formula instead dbupg Vv X), the
support value we obtain will be lower than or equal to the esapport ofX (6). This
does not affect the final decision about the frequency stHtus since it is infrequent
and the possible decrease of its support will maintain ftequency status. Hence if
is an infrequent pattern of even size belongin@® ™~ (FEP:), we need not compute
its disjunctive closure, what consists in a very intergspruning.

Example 6. Consider the extraction context depicted by Table 1 for apns 2. Ap-
plying an extraction process, we obtafiDCP = {(b, 3), (c, 3), (d, 3), (abcd, 7)},
where each couple represents a disjunctive closed pattednita disjunctive support.
Let us regenerate the set of frequent patterns. We begingmstterns, i.e.a, b, ¢ and
d. The smallest closure containiragis abcd. Hence, its disjunctive support is equal to
7, which also corresponds to its conjunctive support. It sssame for the remaininty
patterns. Thus, we find that their associated conjunctiygstts are respectively equal
to 7, 3, 3 and 3. We hence have the four candidates frequent. We then haaaith-c
date2-patterns. Consider the caselof whose subsets are proven to be frequent. The
smallest closure i€ DCPy: containingbc is abcd. Howeverabcd is not the actual
closure ofbc. Nevertheless, this does not affect the final decision atheutrequency
status otbc. Indeed, three cases should be distinguisiedf bc was frequent, hence
its closure must belong ©DC Py, (ii) if bc is not covered by the elementsddPC P
thenbc is necessarily infrequent, otherwiggi) since|bc| = 2, then(-1)/P¢l-1 = -1
and hence taking a largest closugiee.,abcd), instead of the actual ong.e.,bc) will
decrease the result obtained thanks to Form@pa(cf. Lemma }, and, hencebc will
always be considered as infrequent and no status changercan @hus, the closure of
bc is not required in the representation whbn is infrequent. Note that the applica-
tion of Formula(l) is required independently from the frequency statusoosince we
cannot guess its status beforehand only if it contains amdpfent subset what is not
the case here.

Unfortunately, such a pruning cannot be applied whéims of odd size. Indeed,
in this case, 1)‘X‘_1 = +1. Thus, usingSupg V f1) instead ofSupg v X) will

5 f can be equal tdf; if it also has a frequent essential pattern as generator.
5 The computation of the conjunctive support Xfis inevitable since we cannot beforehand
predict whether it is frequent or not.
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probably lead to the increase 8upgX). Consequently, ifX is infrequent and we
augment its conjunctive support, then this may lead to a atip@lue greater than
or equal tominsupwhat clearly falsifies its frequency status. In this sitoatiwe can
further reduce the cardinality ADCP by only maintaining the closurgof X ifitis
included in at least an element®DCPx . Indeed, a patterX is eligible to be frequent
only if it is covered by a pattern &FDC P (cf. Proposition 4). This can simply be done
oncef is computed by set inclusion operations with maximal elesehE DCPy.

Example 7. Now consider the context of Table 1 for minsup.£DCPx = {(b, 3), (c,
3),(d, 3), (bc, 5), (bd, 5), (cd, 5), (abcd, 7)}. As in the previous example, we begin by
1-patterns, i.e.a, b, ¢ andd. We find that their associated conjunctive supports are
respectively equal t@, 3, 3 and3. We then treat candidat-patterns and we find that
the different candidates are frequent. We now reach candi8ligatterns. The unique
candidate isbcd since all its subsets are proven to be frequéxatd hence fulfills the
order ideal property of frequent patterns. It is also not tained in the closure of its
subsetqcf. Figure 1. bcd is hence an essential pattern. If we will apply the same re-
generation process tbcd, abcd will be considered as the disjunctive closurebafd
since it is the smallest one §IDCP containing it. The conjunctive support btd

will then be equal td.. However, this is not true becauabcd is not the actual disjunc-
tive closure ofbcd. The latter should be equal focd. Since|bcd| = 3, (-1)/Pcdl—1

= +1 and hence taking a largest closufee., abcd), instead of the actual ong.e.,
bcd), will augment the conjunctive support o€ d, actually equal to0, which shifts

its status from infrequent to frequent. The problem arisesalise€DCPx only con-
tains closures having at least a frequent essential patsrgenerator. This is not the
case ofi(bcd) equal tobcd whose unique generator is obviou$lyd. Such a closure
necessarily does not belong #OCPy sincebcd is infrequent(its conjunctive sup-
port is equal tod). Hence, its closure must be added to the representationsioremot
includingbcd with the set of frequent patterns during the regeneratiacpss.

We now give the formal definition of the setDCP that ensures the new repre-
sentation being exact.

Definition 5. Let £Px be the set of the essential patterns that can be extracted fro
a contextKC. The setADCPy is defined as followsADCPx = {h(X) | (X €
BD (FEPK)NEPK) A ((— DX = 1) A (vX' C Z,h(X') = h(X) =
SupX’) < minsup A (3f € EDCPy s.t.h(X) C f)}.

To summarize ADCPy. contains closures generated by infrequent essentialrpatte
of odd sizes belonging t8D~ (FEPx). These closures have all their corresponding
essential patterns infrequent and are covered by at leasel@ment ofEDCP. It
is important to mention that iMDCPy, we did not consider the disjunctive closures
of infrequent noressential patterns belonging 8D~ (FEPy) since they are already
included in€DCP (cf. Proposition 3).

The concise representati§tDCPx | ADCPx will be denotedDCPy_rep.

Theorem 2. DCPx _rep is an exact concise representation®P .

The proof of Theorem 2 can be treated as a naive algorithmeiividg frequent pat-
terns and their associated supports.
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In addition to the exact retrieval of frequent patterns a#i a&their various sup-
ports,DCP . _rep presents three other main properties:
1. Homogeneity DCPx _rep only involves disjunctive closed patterns(FEP |J
BD*(FPx)). Hence, it ensures the homogeneity of the representsitize all its ele-
ments are provided with the same kind of support; the disjumone. They also have
the same structural properties. Indeed, they are the tapeeies of their associated
equivalence classes within the disjunctive search space.
2. Small size In [8], the size of€ DCPx is shown to be significantly smaller than those
of the best known concise representations. In additionsihe of ADCPy is very
small since its elements must fulfill many easy-to-checlkst@aints. Hence, the size of
DCPy_rep will be, in most cases, smaller than those of the other reptasions.
3. Low regeneration costit is worth mentioning that our concise representationveslo
retrieving the conjunctive support faster than from (ctseon-derivable patterns [2,
3]. Indeed, for a patter s.t.| X | =n, the retrieval process &upgX) from these rep-
resentations requires the costly evaluatior2®fdeduction rules based on Bonferroni-
inequalities [9]. The computation cost for inferring suppas then awfully high. While
the retrieval ofSupgf X') from our concise representation only needs to evaluateaen
inclusion-exclusion identity. Furthermore, it allows tsteaightforward retrieval of the
disjunctive and negative supports of frequent patterns.

5 Experimental results

We compare, through various experiments, the size of ouciserrepresentation to
those of the exact ones based on frequent closed, (closedjarivable and essential
patterns. This is done in the most critical cases, for strongly correlated dataséfs.
Indeed, within such datasets, the ratio between the cditglinfthe frequent pattern set
and those of concise representations is high. Thus, we #ne imost interesting cases.
Moreover, equivalence classes extracted from sparseatsita®e often reduced to the
associated generators and cannot be compacted anymaenakes the size reduction
rates brought by concise representations meaninglessindatasets. Due to lack of
space, we only summarize the main results in this section.

All experiments were carried out on a PC equipped with a 1H8Gentrino Duo
Core and 2GB of main memory, and running the Linux versionoFe@dore 6 (with
2GB of swap memory). Results are shown in Table 5. The aldtieni“F P _set”(resp.
“FCPyxrep” 8, “NDPy_rep”, “CN'DPx_rep”, and “FEPy _rep”) is used to stand
for the set of frequent patterneép.frequent closed, non-derivable, closed non-derivable
and essential pattern-based concise representationjmiportant to note that in the ex-
perimental results given in [3], the authors have chosereeifipinterval ofminsupfor
each dataset to extraiNDP_rep. However, we noticed that their program abruptly
comes to an end with an execution error beyond these intefVakrefore, we use the
symbol “-” to designate a case where an execution error oeduAt a glance, we can
also deduce the following assertions:

1. Necessity to set up concise representatiariadeed, their respective sizes.t. that

" These datasets are availableftp:/fimi.cs.helsinki.fi/data
8Source codes for extracting frequent (closed) patterns are availadte
http://fimi.cs.helsinki.fi/src



10 T. Hamrouni, |. Denden, S. Ben Yahia and E. Mephu Nguifo

of the set of frequent patterns clearly show their utilitd gotential benefits. In particu-
lar, even for highminsupvalues, the cardinality of the introduced concise reprediem

is considerably reduced.

2. Effectiveness of the proposed concise representatiomdeed, for GiEss CON-
NECT and RUMSB datasets, the size @CP _rep is significantly reduced compared
to those of the remaining concise representations, whigginfy different kinds of pat-
terns’ supports.

3. Scalability of DCP_rep: It is easily observable that, in most cases, the cardijnalit
of DCP_rep is less sensible to the variationminsupthan those of the other concise
representations.

4. Absence of an outstanding concise representatioRor example, in some cases, the
size of DCP_rep is slightly greater than the size of the other concise reprasions
(e.g, MusHROOMfor minsup=5%).

[minsup (%) [ [FPk-set [[[FCPk-rep| [INDPxrep| [[CNDPx_rep| [[FEPk -rep[[[[DCPk-rep]]

CONNECT
90 27,127 3, 4864 199 177 398 22
70 4,129, 83 35, 875 545 491 1,71Q 161
50 88, 324, 40 130, 112 1, 397 - 5,063 589
30||1, 331, 673, 36f 460, 356 3,221 - 14, 083 1, 986
M USHROOM

40 565 140 146 117 151 91
20 53, 583 1,197 1,143 731 1, 258 941
10 574, 431 4,885 4, 347 2,655 6, 530 5, 457

5 3, 755, 511 12, 843 11, 569 6, 546 24, 407 20, 554

CHESS
90 622 498 95 93 118 43
70 48, 731 23, 892 684 669 1, 482 420
50 1,272,933 369, 45( 3,425 3, 341 14, 272 1, 971
30 37,282,962 5, 316, 461 15, 147 - 147, 777 8, 824
PumsB

90 2, 607 1, 467 586 460 788| 318
80 142, 156 33, 308 3,642 2,136 6, 251 1, 079
70 2,698, 654 241, 259 7,875 4,564 18, 3194 2, 143
60 19,529,991 1,074, 621 21, 323 - 54, 644 5, 550
50|| 165, 903, 54 7,121, 264 47,764 - 232, 58] 11, 551

Table 2.Size of the different concise representations for benchmark datasets

6 Discussion

First of all, let us make an alignment between the disjuectiearch space and the
conjunctive one. We will hence find that an essential patienine mapping of the
concept ofminimal generator(aka key patterrand free-setin the literature, see [6]
for references) when the conjunctive search space is cenesidWhile the disjunctive
closed patterns are the mapping of conjunctive ones [1].

The concepts of essential and disjunctive closed pattenm®e considered as par-
ticular cases ofomposite itemELO] where the disjunction of items is used to compose
new items, the composite ones. This is an attempt towardsngnalseful infrequent
items in some applications. For example, consider the gbat&able 1 and leminsup
=4, b andc are hence infrequent items since their support is equal tevertheless,
the support obve is equal to5 and, henceSupbVve) > minsup bVve will be consid-
ered as a new item (a composite one) even if, actually it ispom®d of two items. It
will be used during the mining process since it is frequenatvhakes andc useful.
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It is important to make the link between our work and that oddét al. Indeed, in
[11], the authors proposed connection operators to(K) andP(O) for the case of
disjunctive Boolean expressions. Nevertheless, theinitiefa of the operator linking
P(O) to P(Z) depends on that ensuring the opposite direction and wasmdepen-
dently given from any other operator. Furthermore, theyheeiproposed the expres-
sion of the resulting closure operator nor carried out aahgh analysis of inherent
structural properties.

The disjunction operatori.€., the operator/) has also been used to define some
concise representations only exploring the conjunctigedespace, like those based
on disjunction-free sets and (generalized) disjunctiee-fenerators [12). This re-
quired the introduction of what is callatisjunctive rule Such a rule has a premise part
composed by a conjunction of items and a conclusion patindisfrom the premise
one, containing a specified number of items linked using thi@rmiction operator [12].

Some works [13, 14] were interested in using disjunctiominiassociation rules to
define what is called generalized association rules. Thdes grasped the interest of
many researchers since they offer wealthier types of kraiydén many applications.
In addition to the inclusive disjunction operatae., the operator/, the authors in
[13] were also interested in the exclusive disjunction ap@t denotedp. In [14], the
author mainly focusses on association rules having coiorisscontaining mutually
exclusive itemsj.e,, the presence of one of them leads to the absence of the others
what is expressed in [13] using the operatorOther forms of generalized association
rules were also described in [15].

7 Conclusion and future work

In this paper, we presented a new disjunctive closure opeaatwell as its main prop-
erties. Based on this operator, we introduced a new coneEesentation which cor-
rects the claim of [8] where the associated representatimnntiss some cases. This
required the addition of few further elements what ensureorrectness of the whole
regeneration process of frequent patterns. In additionterésting compactness rates,
our concise representation allows a straightforward caatjfmn of the disjunctive and
negative supports. The experimental results showed thaipst cases, its size is signif-
icantly smaller than those of the best known concise reptatiens. It is worth noting
that our approach can easily be extended when negative &mnfmndled.

Other avenues for future work mainly address the followinings: First, due to
space limitations here, we intend to address as next stepoimglexity time issue
(generation and derivability) of our representatimithose of the literature. In this
respect, other algorithms for mining conjunctive closettgzas could be adapted to
disjunctive ones, both breadth-first search algorithms dgeputh-first ones. Second, a
structural characterization of disjunctive closed patev.r.t. existing frameworks like
the k-free sets [12] will be done. Another important task corssiatovercoming the
lack in the literature of semantics’ studies related to @meepresentations. The study
of the possible extension of our representation to othdepatlasses should also be
examined. Finally, the extraction of generalized assmriatules will be thoroughly

9 We did not use these representations in our experiments AfE « _rep (and consequently,
CNDPy _rep) is shown in [2] to provide better results.
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addressed. Indeed, setting up a theoretical frameworkinbhtdes different kinds of

operators is of paramount importance for jumping beyonddsted association rules.
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