
Making sense of temporal data: the DECLARE

encoding
⋆

(Discussion/Short Paper)

Chiara Di Francescomarino1, Ivan Donadello2, Chiara Ghidini1,*,
Fabrizio Maria Maggi2 and Williams Rizzi1,2

1FBK IRST, Via Sommarive 18, Trento, Italy
2Free University of Bozen-Bolzano, Bolzano, Italy

1. Introduction

Making sense of data, and extracting the knowledge they contain in explicit formalizations,
such as the one provided by conceptual or formal models, is an important step in creating
human understandable descriptions of data, and in bringing humans in the loop of taking
appropriate decisions based on these data. Process discovery aims at exploiting unsupervised
learning in order to discover explicit formulations of so-called event logs data. These explicit
formulations are usually either expressed in the form of Petri nets or declare patterns. The
latter provide a declarative model composed of a set of constraints, usually interpreted in Linear
Temporal Logic over finite traces (LTL𝑓 ), which is deemed especially important when event
logs contain the execution of highly variable processes [2]. In addition to techniques for process
discovery, recent works in the field of Deviance Mining and explainable process predictions
have paved the way to extract also different types of knowledge from data. This knowledge is
able to describe the discrepancies among classes of process executions [3], and to describe why
a certain prediction is given, not only for a single trace but also for an entire quadrant of the
confusion matrix associated to a (binary) classification Machine Learning (ML) model [4].

Most of the state-of-the-art Deviance Mining and explainable process predictions techniques
rely on Machine Learning and different encodings have been proposed in literature [5] so as
to exploit different characteristics of the event logs by means of ML techniques. Alas, none of
them enables the encoding in terms of temporal logic patterns. In this abstract we recall a recent
proposal for a declare encoding of execution traces in the context of Deviance Mining [1],
where the problem is the one of explaining, in terms of declare patterns, the differences
between a set of positive (ℒ+) and a set of negative (ℒ−) traces.

PMAI@IJCAI22: International IJCAI Workshop on Process Management in the AI era, July 23, 2022, Vienna, Austria
⋆

This abstract refers to a paper currently submitted to Decision Support Systems which can also be found in [1]
*Corresponding author.
" dfmchiara@fbk.eu (C. Di Francescomarino); ivan.donadello@unibz.it (I. Donadello); ghidini@fbk.eu
(C. Ghidini); maggi@inf.unibz.it (F. M. Maggi); wrizzi@fbk.eu (W. Rizzi)
� 0000-0002-0264-9394 (C. Di Francescomarino); 0000-0003-1563-4965 (C. Ghidini)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:dfmchiara@fbk.eu
mailto:ivan.donadello@unibz.it
mailto:ghidini@fbk.eu
mailto:maggi@inf.unibz.it
mailto:wrizzi@fbk.eu
https://orcid.org/0000-0002-0264-9394
https://orcid.org/0000-0003-1563-4965
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


2. Declare

Template LTL𝑓

existence(A) ♢𝐴

responded existence(A,B) ♢𝐴 → ♢𝐵

response(A,B) □(𝐴 → ♢𝐵)
alternate response(A,B) □(𝐴 → ○(¬𝐴 𝒰 𝐵))
chain response(A,B) □(𝐴 → ○𝐵)

not co-existence(A,B) ♢𝐴 → ¬♢(𝐵)
not succession(A,B) □(𝐴 → ¬♢𝐵)
not chain succession(A,B) □(𝐴 → ¬○𝐵)

Table 1: declare constraints in LTL𝑓 .

declare [2, 6] is a declarative process modeling lan-
guage based on Linear Temporal Logic over finite traces
(LTL𝑓 ) [7]. More specifically, a declare model fixes a
set of activities, and a set of constraints over such ac-
tivities, formalized using LTL𝑓 formulae. The overall
model is then formalized as the conjunction of the LTL𝑓
formulae of its constraints. Among all possible LTL𝑓
formulae, declare selects some pre-defined patterns
such as the ones represented in Table 1. Each pattern is
represented as a declare template, i.e., a formula with
placeholders to be substituted by concrete activities to obtain a constraint.

For binary constraints (i.e., constraints specifying a relationship between two activities),
one of the two activities is called activation, and the other target; while testing a trace for
conformance over one of these constraints, the presence of the activation in the trace triggers
the clause verification, requiring the (non-)execution of an event containing the target in the
same trace. The notion of activation is related to the notion of vacuity detection in model
checking [8]. For example, in the constraint response[doSurgery,doRehab], if doSurgery
never occurs in a trace, then the constraint is “vacuously” satisfied, that is, satisfied without
showing any form of interaction with the trace.

3. Encoding traces using LTL𝑓 temporal patterns

How to encode. Traces in an event log need to be transformed into numerical feature
vectors, which can then be used to train a classifier. To this aim, encodings can be used where
each element of the feature vector corresponds to the LTL𝑓 temporal pattern derived from
a declare constraint (taken from a list of selected constraints). Depending on the need to
to distinguish vacuously satisfied constraints from non-vacuously satisfied, we introduce the
following parametric encoding values:

• −1, if the corresponding declare constraint is violated in the trace;
• 1, if the corresponding declare constraint is (non vacuously) satisfied in the trace.
• 𝛼 if the corresponding declare constraint is vacuously satisfied in the trace, with 𝛼 = 0

if we aim at distinguishing vacuously satisfied constraints and 𝛼 = 1 otherwise.

The event log is transformed into a matrix of numerical values where each row corresponds to
a trace and each column corresponds to a feature.

Let us assume we aim at distinguishing between satisfied and vacuously satisfied. Given the
trace ⟨a, b, c, a, b, c, d, a, b⟩:

• constraint response(a, c) is violated, since the third activation (the third occurrence of a)
leads to a violation (is not eventually followed by c) and is encoded as 0;

• constraint response(a, b) is satisfied and is encoded as 1;



• constraint response(e, b) is (vacuously) satisfied and is encoded as 0.

We also adopt the same approach for representing data-aware [9] declarative features. E.g.,
given a trace ⟨a{color = white}, c, b{color = black}, c, d, a{color = white}, c⟩, where e.g., a {color =
white} indicates that a has an attribute color having value white in its payload, we have:

• constraint response(a,c,color = white) is satisfied, and is hence encoded as 1;
• constraint response(a,d,color = white) is violated, since the second occurrence of a is not

eventually followed by d, and is encoded as 0;
• constraint response(b,c,color = white) is vacuously satisfied and encoded as 0 (b is not an

activation, because the data condition color = white does not hold on its payload).

How to build the feature vector. While apparently extremely natural, the usage of the
declare encoding requires some preprocessing. In particular, even assuming to restrict to the
typical set of declare templates, the number of patterns to be considered present in any trace
is, generally, too large to use all of them to build the feature vectors. This triggers the need of a
method to select an appropriate set of patterns for building the feature vectors.

To select the declare constraints to be used for building the feature vectors, the first step is
to discover a list of constraints from the event log, similarly to what is usually done in process
discovery. Since the problem we are addressing is the discriminative explanation of positive
(ℒ+) and negative (ℒ−) traces, declare constraints need to be extracted separately from ℒ+

and ℒ−. In particular, we first discover frequent activity sets separately in ℒ+ and in ℒ−. Then,
we build a list of candidates as done for process discovery. Each candidate is checked separately
over ℒ+ and ℒ− (depending on whether it is derived from an activity set discovered from ℒ+

or ℒ−) to verify if it is satisfied in a percentage of traces that is above a given support threshold.
The number of patterns generated from the discovery is, generally, still too large to use all

of them to build the feature vectors. Therefore, it becomes important to remove the ones that
do not give much value for training the explanatory model. To this aim, the temporal patterns
discovered in the previous step are selected by first ranking them according to the Fisher score
[10]. The Fisher score for the j-th feature (i.e., pattern) is computed as:

𝐹𝑗 =

∑︀𝒞
𝑖=1 𝑛𝑖(𝜇𝑖 − 𝜇)2∑︀𝒞

𝑖=1 𝑛𝑖𝜎2
𝑖

, (1)

where 𝑛𝑖 denotes the number of traces in class i (in our case the number of positive traces
in ℒ+ and the number of negative traces in ℒ−), 𝜇𝑖 and 𝜎2

𝑖 denote mean and variance of the
values of the j-th feature for traces in class 𝑖, and 𝜇 and 𝜎 are mean and variance of the values
of the j-th feature for all traces in the event log. 𝒞 = {0, 1} denotes the set of classes for our
binary classification task. Following the ranking, patterns are selected until every trace satisfies
(non-vacuously) at least a fixed number of patterns (coverage threshold). A pattern is only
chosen if it is non-vacuously satisfied in at least one of the traces not totally covered yet.

4. Using the declare encoding for Deviance Mining.

A hospital carries out the procedures for the treatment of fractures, whose executions are logged
in its information system. Some lengthy traces reflect hospital inefficiencies, which might



resolve into patients’ complaints: the hospital director needs to understand the discrimination
between two distinct trace classes - the fast (ℒ+) and the lengthy ones (ℒ−) - by characterizing
the slow executions with respect to the fast ones. A resulting list of temporal logic patterns will
give suggestions on how to intervene so to match the behavior of the desired (fast) traces.

In the context of a scenario like this, the work in [1] investigates how a declarative encoding,
paired with feature selection, can accurately discriminate between (ℒ+) and (ℒ−) executions of
a process using synthetic and real-life event logs from multiple domains. Moreover, the paper
analyzes the possible outcomes returned to the users. Two different methods, based on the
white-box classifiers Ripper𝑘 (Repeated Incremental Pruning to Produce Error Reduction) [11]
and decision trees [12] are used to identify the declarative patterns, and compared both in terms
of their classification performance and in terms of amount and length of the decision rules
returned (to investigate user readability and explanation conciseness).

References

[1] G. Bergami, C. Di Francescomarino, C. Ghidini, F. M. Maggi, J. Puura, Exploring business
process deviance with sequential and declarative patterns, arXiv:2111.12454v1, 2022.

[2] M. Pesic, H. Schonenberg, W. M. P. van der Aalst, Declare: Full support for loosely-
structured processes, in: Proc. of EDOC, IEEE Computer Society, 2007.

[3] F. Taymouri, M. La Rosa, M. Dumas, F. M. Maggi, Business process variant analysis: Survey
and classification, Knowl. Based Syst. 211 (2021) 106557.

[4] W. Rizzi, C. Di Francescomarino, F. M. Maggi, Explainability in predictive process moni-
toring: When understanding helps improving, in: BPM Forum 2020, Proceedings, volume
392 of LNBIP, Springer, 2020, pp. 141–158.

[5] C. Di Francescomarino, C. Ghidini, Predictive process monitoring, in: Process Mining
Handbook, volume 448 of LNBIP, Springer, 2022, pp. 320–346.

[6] V. Skydanienko, C. Di Francescomarino, C. Ghidini, F. M. Maggi, A tool for generating
event logs from multi-perspective declare models, in: Proc. of the Dissertation Award,
Demonstration, and Industrial Track at BPM 2018, volume 2196 of CEUR Workshop Proc.,
CEUR-WS.org, 2018, pp. 111–115.

[7] G. De Giacomo, M. Y. Vardi, Linear temporal logic and linear dynamic logic on finite traces,
in: Proc. of IJCAI, AAAI Press, 2013.

[8] I. Beer, C. Eisner, Efficient detection of vacuity in temporal model checking, Formal
Methods in System Design 18 (2001).

[9] M. Montali, F. Chesani, P. Mello, F. M. Maggi, Towards data-aware constraints in declare,
in: Proc. of SAC 2013, ACM, 2013, pp. 1391–1396.

[10] X. He, D. Cai, P. Niyogi, Laplacian score for feature selection, in: NIPS 2005, 2005, pp.
507–514.

[11] W. W. Cohen, Fast effective rule induction, in: In Proc. of the 12th Int. Conf. on Machine
Learning, Morgan Kaufmann, 1995, pp. 115–123.

[12] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1993.


	1 Introduction
	2 Declare
	3 Encoding traces using LTLf temporal patterns
	4 Using the declare encoding for Deviance Mining.

