CEUR-WS.org/Vol-3311/paperl0.pdf

Regression Trees for System Models and Prediction

Swantje Plambeck?!, Gorschwin Fey!

'Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany

Abstract

Today’s systems are highly complex and often appear as black-box systems because of unknown internal
functionalities. Thus, retrieving a model of a system is possible only based on observations of the system.
We explore the usage of regression trees to learn a model of a complex system with continuous signals.
Our approach for learning a regression tree uses observed inputs and outputs of a system from bounded
history. We describe how to construct such a model and analyze the accuracy of predictions. Results
show the applicability of regression tree models for continuous systems.

Keywords

Regression Trees, System Models, Continuous Systems

1. Introduction & Related Work

Discrete and finite models are used and necessary for many tasks like verification [1], testing
[2, 3], or monitoring [4, 5]. Finding suitable models of modern systems becomes more and more
challenging due to an increased complexity. We consider to learn such models to speed-up
the mentioned tasks and allow modeling for black-box systems. There is a broad research
interest on learning techniques in recent years where neural networks are among the prominent
examples. Neural networks may handle value-continuous or value-discrete data, but they lack
in finding interpretable models. Nevertheless, interpretability, especially for the assumption of
a black-box system is preferable. To enable learning of discrete models, a valid discretization
or abstraction of the mainly real-valued input and output signals of the system is needed [6].
Automata learning is an established approach to learn discrete models that are deterministic.
There exist learning algorithms for automaton models, which learn on a given set of learning
data (passive automata learning [7]) or actively ask queries to a given system to iteratively
extract learning data (active automata learning [8, 9, 10]).

We consider a passive approach, but without the requirement to reset a system to an initial
state. Furthermore, our approach overcomes the step of abstraction of continuous signals
and learns a model directly on the real-valued samples. For this, we use regression trees — a
specialization of decision trees for real-valued decision outputs. The idea of using decision
trees to learn approximate models of systems was already presented in [11]. In that scope,
theoretical limitations for modeling are discussed and prediction accuracies give a metric for

OVERLAY 2022: 4th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis,
November 28, 2022, Udine, Italy

& swantje.plambeck@tuhh.de (S. Plambeck); goerschwin.fey@tuhh.de (G. Fey)

@ 0000-0002-4875-5280 (S. Plambeck); 0000-0001-6433-6265 (G. Fey)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

#—== CEUR Workshop Proceedings (CEUR-WS.org)

mailto:swantje.plambeck@tuhh.de
mailto:goerschwin.fey@tuhh.de
https://orcid.org/0000-0002-4875-5280
https://orcid.org/0000-0001-6433-6265
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

approximation. In this paper, we consider systems with real-valued input and output signals as
[11], but examine capabilities of regression trees as system models.

2. Modeling Approach

2.1. Preliminaries

Definition 1 (Regression Tree). A regression tree is a tree T = (V, E') consisting of a set of
nodes V' and a set of edges E. The regression tree represents a functiond : X — R that maps
a feature vector f = [f1, ..., fim] from the domain X to a real number. The set of nodes without
outgoing edges V7, are called leaf nodes or leaves. All other nodes V' \ Vi, are inner nodes [12].

We assume a binary regression tree where each inner node has exactly two outgoing edges. A
regression tree 7T’ is built based on a learning set £ consisting of a set of labeled feature vectors
(f,c) with f € X and ¢ € R. Every node v in the tree represents a subset S, C £ where each
inner node splits its set into disjoint subsets S,,, S,, associated to the successors vy, vp of v.
The leaf nodes have a label representing the output of the regression function d. The label c,, is
calculated as the mean value over all labels in the set S, as follows

1
Cyp = ‘Sﬂz‘ Z C. (1)

(f,c)ESvl

Regression trees tend to overfit the learning data. To overcome overfitting, there exist multiple
strategies. Here, we apply a binning step before tree learning as part of the algorithm — meaning
that equidistant discretization intervals (bins) are used for all real-valued features.

2.2. Learning Regression Tree Models of Systems

We consider a black-box system that receives a possibly multi-dimensional input i of dimension
n and outputs a one-dimensional output o € R. This is a valid assumption, as usually a single
value of interest is observed at a time. If several outputs are considered, multiple regression
tree models can be learned in parallel. Inputs are categorical or real-valued. The observation
of a system results in sequences § = ((ig, 0), (i1,01), ...) representing sampled inputs and
outputs over discrete time points. We assume to observe the system with bounded history,
which is a practical requirement assuming that limited memory is available. Thus, the learning
data results in observations s = ((ig,0p), . . ., (in,on)) of length N + 1 with N € N. The
regression tree requires a learning set £ consisting of tuples (f, ¢). Given a sequence s, we map
to an observation for the learning set as follows

1 . 1 1 .
f={(i1,...,i7,01,i5,...,09, ... iN,...,iN), C=ON. (2)

With this mapping, the learned regression tree represents the prediction of the next output
based on the knowledge about all previous in- and outputs of the last N time steps. The
regression tree’s prediction accuracy is validated on an evaluation set £ consisting of tuples of

observed signal
S =N W
§
|

| | | | | |
0 2 4 6 8 10 12 14 16 18 20
t

(a) Example of a Discrete System (b) Example of a Continuous Signal

Figure 1: Examples for Approximations of Regression Tree Models

feature vectors and a known next output (f, 0¢zqct). We use the mean prediction error (Eq. 3)
as a quality metric for the learned regression tree model.

1
€mean = E Z loe:vact - d(f)| (3)
(

fyoezact)eg

2.3. Theoretical Limitations

For an optimal model, the prediction dy,(f) always perfectly matches the exact output 0cyqct-
Regression tree models according to our approach have some theoretical limitations introducing
approximations that lead to imperfect predictions. A first reason for approximations is the usage
of bounded history, because the information from previous time steps might not be sufficient to
fully determine the system’s status and, thus, determine an upcoming output.

Example 1. Consider that Fig. 1a shows a valid, discrete abstraction of a system, where circles
1 to 4 represent states of the system, while arrows are transitions labeled with observations from
the alphabet { A, B, C, D, E'}. Because of the two self-loops with observation B at state 1 and 3,
bounded history does not always allow to clearly determine, in which of these states the system is
and, thus, what the next observed symbol will be.

Further limitations result from the sampling of the time-continuous signals and the fact that
a regression tree has a finite set of results — thus, approximating the actual real-valued output.

Example 2. Considering a system with an output signal as in Fig. 1b, we could achieve optimal
predictions under the following conditions (1) there is no noise or measurement error, (2) the
sampling of the signal is happening with a sampling rate that matches the signal’s periodicity, (3)
we sample the output signal always at the exact same sampling points for each observation. If any
of the above conditions does not hold, approximations might be introduced to the learned model.

3. Experimental Evaluation

In the following, we present an empirical evaluation on example systems. For all examples 150
simulation runs are used for learning, while 50 additional simulation runs provide evaluation
data. Sampling periods 7" are provided with respect to the simulation time unit and, thus, come

without physical unit. The number of bins for regression tree learning is set to 30 which was
empirically found suitable within the interval of 10 to 100 bins.

Water Reservoir A water reservoir with one tank. The input signals are the flow rates at
inflow and outflow valves while the output is the water level of the reservoir. The input and
output flow rates are alternating, periodic rectangular functions describing modes of inflow and
outflow. The system is modeled in Matlab and the total duration of one simulation run is 50
time units.

Boiler A temperature control system based on [13]. The input signal is the refer-
ence temperature which changes every 50 time units randomly to values from the set
{18°C,19°C, ..., 25°C}. The output signal is the water temperature of the boiler starting at
15 °C. The overall simulation time of one run is 1400 time units.

0.006 S — 0.006 | e
0.004 T _o7 § 0,004\ 7 —9
0.002 —_— T=1 5 0.002 — T =30

(a) Waterreservoir (b) Boiler

€mean
€mean

Figure 2: Relative Mean Error over Different Length N of Bounded History

Fig. 2 shows the mean error €,,¢q, for the example systems with several sampling periods
T over a bounded history N = 1..10. For comparability of the examples, the relative mean
error with respect to the maximum output value of the examples is given. The water reservoir
produces outputs in the range [0,5] while the boiler has an output range in [15,26]. First of
all, we observe that for both examples and all sampling periods the mean error decreases over
increasing N which validates the assumption that a valid next output can be predicted from past
observations of the system. Furthermore, we observe a stagnation for larger N which shows
that the usage of a bounded history is sufficient for the considered systems to achieve valid
predictions of the future. Finally, we observe a slightly increased prediction accuracy using a
smaller sampling period which is an intuitive result. Both example reach in the limit prediction
errors of about 0.2% of their maximum output.

4. Conclusion & Future Work

We presented an approach to model complex systems using regression trees allowing to include
continuous signals from observations of bounded history without resetting the system to an
initial state. We introduced a mapping from system observations to labeled feature vectors for
regression tree learning. The resulting regression tree model represents a decision rule that
predicts a next output signal based on previous behavior of the system. Future work considers
to evaluate further strategies for regression tree pruning and analysis of the influence of the
sampling frequency as well as discretization-related approximations in modeling.

Acknowledgments

This work is partially funded by BMBF project AGenC no. 011S22047A.

References

(1]

[10]

[11]

[12]
[13]

A. Corso, R. Moss, M. Koren, R. Lee, M. Kochenderfer, A survey of algorithms for black-box
safety validation of cyber-physical systems, J. Artif. Int. Res. 72 (2021). doi:10.1613/
jair.1.12716.

B.K. Aichernig, R. Bloem, M. Ebrahimi, M. Horn, F. Pernkopf, W. Roth, A. Rupp, M. Tappler,
M. Tranninger, Learning a behavior model of hybrid systems through combining model-
based testing and machine learning, in: Testing Software and Systems, 2019, pp. 3-21.

S. Plambeck, J. Schyga, J. Hinckeldeyn, J. Kreutzfeldt, G. Fey, Automata learning for
automated test generation of real time localization systems, 2021. arXiv:2105.11911.
A. Maier, Online passive learning of timed automata for cyber-physical production
systems, in: IEEE International Conference on Industrial Informatics (INDIN), 2014, pp.
60—66. doi:10.1109/INDIN.2014.6945484.

F. H. Bahnsen, G. Fey, Local monitoring of embedded applications and devices using
artificial neural networks, in: Euromicro Conference on Digital System Design (DSD),
2019, pp. 485-491. doi:10.1109/DSD.2019.00076.

F. Howar, B. Steffen, M. Merten, Automata learning with automated alphabet abstraction
refinement, in: Verification, Model Checking, and Abstract Interpretation, 2011, pp.
263-277.doi:10.1007/978-3-642-18275-4_109.

K. P. Murphy, et al., Passively learning finite automata, Technical Report, Santa Fe Institute,
1995.

D. Angluin, Learning regular sets from queries and counterexamples, Information and
Computation 75 (1987). doi:10.1016/0890-5401(87)90052-6.

M. Merten, Active automata learning for real life applications, Ph.D. thesis, Technische
Universitat Dortmund, 2013. doi:10.17877 /DE290R-5169.

H. Urbat, L. Schroder, Automata learning: An algebraic approach, in: ACM/IEEE Sympo-
sium on Logic in Computer Science, 2020, p. 900-914. doi:10.1145/3373718.3394775.
S. Plambeck, L. Schammer, G. Fey, On the viability of decision trees for learning models of
systems, in: Asia and South Pacific Design Automation Conference (ASP-DAC), 2022, pp.
696-701. doi:10.1109/ASP-DAC52403.2022.9712579.

R. A. Berk, Classification and Regression Trees (CART), Springer, New York, 2008, pp. 1-65.
doi:10.1007/978-0-387-77501-2_3.

MathWorks, Bang-bang control using temporal logic, https://mathworks.com/help/
simulink/slref/modeling-discrete-message-transport-systems.html, 2022. Accessed:
13.07.22.

http://dx.doi.org/10.1613/jair.1.12716
http://dx.doi.org/10.1613/jair.1.12716
http://arxiv.org/abs/2105.11911
http://dx.doi.org/10.1109/INDIN.2014.6945484
http://dx.doi.org/10.1109/DSD.2019.00076
http://dx.doi.org/10.1007/978-3-642-18275-4_19
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.17877/DE290R-5169
http://dx.doi.org/10.1145/3373718.3394775
http://dx.doi.org/10.1109/ASP-DAC52403.2022.9712579
http://dx.doi.org/10.1007/978-0-387-77501-2_3
https://mathworks.com/help/simulink/slref/modeling-discrete-message-transport-systems.html
https://mathworks.com/help/simulink/slref/modeling-discrete-message-transport-systems.html

	1 Introduction & Related Work
	2 Modeling Approach
	2.1 Preliminaries
	2.2 Learning Regression Tree Models of Systems
	2.3 Theoretical Limitations

	3 Experimental Evaluation
	4 Conclusion & Future Work

