
Software-Supported Product Backlog Prioritization in
Scrum Software Development Projects
Kleophas Model1,∗, Georg Herzwurm1,∗∗

1University of Stuttgart, Information Systems II, Keplerstr. 17, 70174 Stuttgart, Germany

Abstract
Agile software development methods (e.g., Scrum) have gained increasing significance in recent years. In
contrast to traditional plan-driven methods, they offer the necessary flexibility to react to continuously
changing requirements. As the most established agile development method, Scrum involves the Product
Owner (PO) as the sole representative of all project relevant stakeholders. A central task of the PO is
the management of the Product Backlog (PB) that contains all relevant information to maximize the
product value, i.e., requirements in the form of user stories. During PB management, creating a shared
understanding of the underlying requirements is necessary. However, the PO is often a bottleneck, e.g.,
due to requirements complexity or limited access to relevant stakeholders. Especially the task of PB
prioritization appears to be a challenging while success critical one. Appropriate software support can
help to overcome challenges such as communication and collaboration barriers, complex calculations,
or in-transparency regarding the prioritization process and result. While much research on manual or
(semi-)automated prioritization techniques has been conducted, no software-supported PB prioritization
currently exists that is based on a comprehensive methodological approach. The PhD project addresses
this knowledge gap in developing a conceptual model and a therewith-aligned software prototype.

Keywords
scrum, agile software development, requirements prioritization, product backlog, software support

1. Problem & Motivation

In the context of software-intensive business, there is a tendency to ever shorter and faster devel-
opment cycles due to an unpredictable environment with continuously changing requirements
[1, 2]. In contrast to traditional plan-driven methods (e.g., the waterfall model or the V-model),
agile methods (e.g., Scrum) promise to offer the necessary flexibility to react to changes in
requirements [3]. An annual study by Komus et al. [4] reveals a remarkable decline in the use
of plan-driven methods and, therefore, a respective increase in the use of agile methods.

Several agile methods have emerged based on the values and principles of the agile manifesto
[5]. Since a complete specification of product requirements is often not possible at the beginning
of the project or does not make sense due to the volatility of requirements, project execution

ICSOB’22: International Conference on Software Business, November 08–11, 2022, Bolzano, Italy
∗PhD student and corresponding author.
∗∗Supervisor of PhD student.
Envelope-Open kleophas.model@bwi.uni-stuttgart.de (K. Model); georg.herzwurm@bwi.uni-stuttgart.de (G. Herzwurm)
GLOBE https://www.bwi.uni-stuttgart.de/en/institute/team/Model/ (K. Model);
https://www.bwi.uni-stuttgart.de/en/institute/team/Herzwurm/ (G. Herzwurm)
Orcid 0000-0002-9318-8369 (K. Model); 0000-0003-4663-0940 (G. Herzwurm)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:kleophas.model@bwi.uni-stuttgart.de
mailto:georg.herzwurm@bwi.uni-stuttgart.de
https://www.bwi.uni-stuttgart.de/en/institute/team/Model/
https://www.bwi.uni-stuttgart.de/en/institute/team/Herzwurm/
https://orcid.org/0000-0002-9318-8369
https://orcid.org/0000-0003-4663-0940
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


is started even without a complete specification [6]. Therefore, an iterative and incremental
procedure is necessary. In each iteration, a subset of requirements is chosen to develop a poten-
tially shippable increment that can be used for review and feedback collection. A continuous
collaboration with relevant project stakeholders is pursued [7, 8]. It is obvious that not all
product requirements can be implemented in a single iteration. Therefore, a comprehensible
selection of appropriate requirements to be implemented is necessary. Thus, requirements
prioritization is a central part of agile methods [9]. Without prioritization, there is the risk
that unimportant requirements will be implemented in the next iteration, and more important
requirements will be unconsciously postponed. Under certain circumstances, this can lead to
project failures, which is why requirements prioritization is considered a critical success factor
within agile software development projects [10].

The prioritization of requirements in the context of agile software development orients to-
wards maximizing customer satisfaction, taking into account the first principle of the agile
manifesto as it is “the highest priority to satisfy the customer” [5]. Nevertheless, the interests
of all relevant stakeholders (including customers) need to be taken into account during prior-
itization [11]. As the most established agile software development method, Scrum involves
the Product Owner (PO) as the sole stakeholder representative. It is his job to “represent the
needs of many stakeholders” [11]. Scrum contains the product backlog (PB) to maintain, among
others, stakeholder needs and product requirements, usually in the form of user stories [11].
These user stories represent short descriptions of requirements and how they are intended to
fulfill the needs of specific stakeholders [12]. Moreover, the PB is an ordered list of user stories
and other items (e.g., features or bugs). As the PO is responsible for PB management, it is his job
to bring these items in the correct order according to their priority and thus to “maximize the
value of the product resulting” [11]. To establish a shared understanding, the PO decisions must
be respected by the stakeholders and represented in the PB. Therefore, one central task of the
PO is the continuous PB prioritization that includes an ongoing consolidation, incorporation,
and assessment of relevant stakeholder input [11].

However, the PO often becomes a ‘bottleneck’ and thus hinders PB management [13]. There
are several reasons for this. First, the high number of divergent requirements often leads to
complexity in the prioritization subject, while less-documented user stories make continu-
ous communication necessary to dissolve complexity. Second, the high number of divergent
stakeholders with divergent interests leads to complexity in decision-making. In addition,
these stakeholders are not directly personally accessible (e.g., due to distributed projects or
remote-work settings) [14]. Especially in scaled agile frameworks, such as Large Scale Scrum
(LeSS) or Scrum of Scrums, this problem intensifies. Here, additional coordination mechanisms
between several Scrum teams, with several POs and several PBs, become necessary [15]. Third,
Scrum leaves it open how to carry out the prioritization tasks as this depends on specific project
context and situation [8]. Many established prioritization techniques can also be applied in
Scrum. However, this often results in a ‘technique jungle’ in which orientation without having
situation-specific guidelines on integrating techniques into Scrum is complex [14]. Last, no
unified definition of the ‘value’ and its underlying criteria according to which the prioritization
tasks have to be carried out exists [8]. These problems require methodological support to
dissolve the PO bottleneck. Furthermore, appropriate software support, on the one hand, can
help to overcome communication and collaboration barriers and, on the other hand, enable



the development of innovative PB prioritization approaches (e.g., data-driven prioritization).
Within the research disciple of Information Systems, this need follows the understanding of an
information system as a socio-technical system, which requires a bilateral alignment with/of
underlying processes [16, 17].

2. State of Research & Knowledge Gap

The design of a methodological approach requires a complete description of what (i.e., activities)
needs to be done by whom (i.e., roles) in a given situation (i.e., situation and context factors)
with specific (software) tool support and how to ensure quality regarding process and results
[18]. This understanding of a comprehensive methodological approach serves as a frame of
reference for analyzing the current state of research and identifying the knowledge gap.
Within the literature, there is a multitude of manual prioritization techniques (e.g., AHP,

MoSCoW, or Numerical Ranking) most of which originate from classical requirements engineer-
ing. Many of these manual prioritization techniques are complex and thus time-consuming
and dependent on expert knowledge. Furthermore, only a few techniques support continu-
ous re-prioritization after requirements changes [19]. To resolve challenges like calculation
complexity and collaboration barriers, there are (semi-)automated advancements of classical
prioritization techniques by software support, for example, RedCCahp, an AHP advancement
that automatically checks for consistency in redundant requirement comparisons, or CBRanking,
a machine learning algorithm to predictively generate a requirements ranking [14]. However,
these techniques are relatively generic in terms of their application in specific project environ-
ments. Significantly, there is no information regarding their applicability in agile development
methods (i.e., Scrum). Moreover, these techniques mainly lack a comprehensive methodological
framework.

Bakalova et al. [8] developed a conceptual model for agile requirements prioritization. This
model is based on empirical insights from practice and consists of eleven components (e.g.,
Project context, Prioritization criteria, or Developers’ input). Furthermore, they conducted a
literature review to map existing prioritization techniques to the conceptual model. In doing so,
they identified central gaps regarding the suitability of these techniques and the conceptual
model. Especially, there is a shortcoming regarding customer-orientated prioritization. Based
on their findings, they call for further empirical investigations using the conceptual model
proposed. However, appropriate software support is not recognized in the conceptual model
yet. Moreover, it does not consider Scrum-specific factors.
Bakalova et al. [8], for example, stated that Quality Function Deployment (QFD) is one of

the few prioritization techniques that is based on the principle of customer-centered product
development. QFD goes beyond a prioritization technique. In its origin, QFD is a method
for customer-centered product development to cause high quality. Schockert [20] developed
Agile Software QFD, an adaptation of QFD that can be applied in agile software development
projects. Although it represents QFD for agile methods in general, it is mainly based on Scrum
principles. Moreover, it is possible to integrate further techniques into Agile Software QFD to
enable flexibility in situation-appropriate applications. Schockert [20] stated that it is necessary
to conduct an empirical evaluation and to implement Agile Software QFD in a software tool.



Rietz & Schneider [13] present target-means statements (i.e., design principles) for a coop-
erative requirements prioritization system based on the theory of shared understanding. It is
mainly based on the MoSCoW technique. However, it lacks empirical problem identification as
the design principles are derived from issues elaborated in the context of a literature review.
Besides work on software-supported PB prioritization in science, there are several software

tools in practice, either for PB management in general or specifically for PB prioritization.
Atlassian Jira is one of the most established commercial software tools for PB management.
Ducalis.io provides a broad toolbox of different prioritization techniques implemented in a web
application. Besides the fact that these software tools are not scientifically founded, they do not
represent a methodological approach.
Summarizing, to the best of the authors’ knowledge, there currently exists no software-

supported PB prioritization for Scrum software development projects that is scientifically based
on a comprehensive methodological approach. This assumed knowledge gap is the starting
point for the presented PhD project.

3. Research Design & Methodology

Pursuing an explorative, design-oriented approach, the PhD project aims to fill the previously
derived knowledge gap. Therefore the research objective is the conceptualization of a software-
supported PB prioritization for Scrum software development projects that is scientifically based
on a comprehensive methodological approach. The central part of the research objective is
developing a conceptual model that contains practically usable target-means statements for
PB prioritization (esp. regarding methodological implementation and its support through a
software tool). Conceptual models form a reconstructive abstraction of purposeful concepts for
structuring and presentation of complex information systems. The models have both descriptive
and prescriptive purposes and therefore pursue the goal of a novel solution [21, 22].
The research gap results in the need for software support to ensure the feasibility of the

methodological approach. Therefore, in addition to the conceptualization of the methodological
approach, the conceptualization of the software tool is a central part of the research objective.
Following the purpose of classical business-IT-alignment, this research approach accompanies
the bidirectional interrelationship of business (i.e., requirements that stem from organizational
structures) and IT (i.e. technological solution characteristics). Therefore, on the one hand, it
is necessary to align the software architecture with the process architecture. On the other
hand, to promote innovative research results and exploit the existing technological potential of
software, it is necessary to allow enablement regarding the methodological approach through
possible software support [17, 16]. To address the bidirectional interrelationship of business
requirements and technological solution characteristics, a continuous evaluation of both the
underlying methodological concept as well as the technical solution are necessary. Thus the
instantiation of the conceptual model as a software prototype is a mandatory result of the PhD
project. This results in the following Main Research Question: How can a software-supported
product backlog prioritization for Scrum software development projects be designed?

To reach the research objective, the PhD project follows the Design Science Research Method-
ology (DSRM) according to Peffers et al. [23] consisting of six process steps. The DSRM allows



research projects to develop innovative IT artifacts based on existing science problems and
real-world practice problems. In addressing the problem and solution space, the DSRM is
recommended in the context of explorative, design-oriented research projects [24].

The core component of the conceptual model to be developed is a methodological approach
integrated into Scrum. Therefore the DSR project follows the situational method engineering
(SME)methodology that allows the construction and/or configuration of amethod (also including
techniques and tools) by applying engineering activities. As the configuration of a method
depends on specific situation and context factors, SME requests the construction of situation-
specific method configurations [18, 25]. SME has been established as a proven research method
for tailoring agile methods [26]. The main idea of SME is developing an extensive method
base that allows the selection of appropriate method fragments that fit the situation. Having
assembled and applied the method, its performance needs to be measured and evaluated so
that an iterative reconstruction of the method base and the method fragment selection can be
proceeded [18].

Since the research objective focuses on developing practically usable target-means statements,
a problem-centered initiation of the DSR project that addresses challenges in practice is necessary.
Therefore, by applying DSRM step 1 (Problem identification), the research problem is further
motivated from a practical perspective. The resulting challenges serve to define objectives of
the software-supported PB prioritization to be further developed [23] in context of Research
Question 1: What challenges exist in practice with regard to PB prioritization in Scrum?

To answer this research question, an empirical qualitative cross-sectional analysis of method-
ological approaches with regard to PB prioritization in Scrum software development projects
is conducted. For this purpose, the experience of practice experts (especially but not exclu-
sively POs, Scrum Masters, Software Engineers, Requirement Engineers, Business Analysts,
Product Managers, and customers) will be analysed in semi-structured, guideline-based expert
interviews [27]. For a thorough elicitation of problems and the associated derivation of re-
quirements (see research question 2), the interviews are supplemented by the Critical Incidents
Technique [28, 29]. Based on the identified challenges, in context of DSRM step 1, in DSRM
step 2 (Objective definition) it is necessary to transform these descriptive challenges into norma-
tive design objectives. These design objectives, in the sense of solution-neutral requirements,
need to be fulfilled by the targeted solution. Therefore, these requirements are the guiding
basis for the conceptualization and the subsequent evaluation of the software-supported PB
prioritization [23]. This objective results in Research Question 2: What are the requirements
on a software-supported PB prioritization in Scrum software development projects?

On the one hand, the requirements can be directly obtained in the context of the cross-sectional
analysis (i.e., expert interviews). On the other hand, an argumentative-deductive analysis of the
challenges is carried out, resulting in the derivation of corresponding requirements. The derived
requirements have a hypothetical character and must therefore be subjected to evaluation.
DSRM step 3 (Design & Development) provides for the design and development of justified

solution artifacts, e.g., in the form of methods and/or models, that address the requirements
previously derived. Therefore, the goal is to propose well-argued solution characteristics and
bring them into a comprehensible relationship. The development of the solution artifact thus
anticipates, on the one hand, the elicitation of appropriate solution characteristics and, on the
other hand, the synthesis of these separate solution characteristics into a systemic solution



construct, i.e., a conceptual model. Therefore, prescriptive target-means statements that bring
solution characteristics and requirements into a comprehensible relationship form the core of
the conceptual model [23]. This results in Research Question 3: Which solution characteristics
should a software-supported PB prioritization for Scrum software development projects contain?
SME envisages establishing a method based on already existing and/or newly developed

methods [18]. Identifying existing potential solution features takes place in a qualitative
secondary data analysis. Triangulation of sources and methods is conducted for collecting these
method components, which are relatively diverse in terms of their types. For the identification of
methodological approaches and techniques, an analysis of scientific and grey literature will take
place. A document and tool analysis is performed to identify and analyze the functionality of
existing software tools. Following the design-oriented research design that aims for innovative
artifacts, well-justified new solution characteristics should be proposed and integrated into the
methodological basis. This will be done in the context of an argumentative-deductive analysis
taking into account the identified requirements. The SME step of assembling the method
fragments is performed by argumentative-deductive analysis. At this point, the target-means
relationships are formed, and thus the design recommendations are derived. The connections
between solution characteristics and requirements are represented within a QFD prioritization
matrix from which target-means statements can be derived. Finally, a conceptual model is
developed that integrates the single solution characteristics into a systemic relationship [22, 21].
To make the conceptual model tangible and thus accessible for evaluation purposes, this

DSRM 4 step (Demonstration) contains an instantiation of the conceptual model as a functional
software prototype in the sense of a minimum viable product (MVP). This instantiation is
understood as a proof-of-concept and is thus already a central part of the evaluation [30, 23, 31].
Besides the demonstration of functional feasibility, proof-of-concept evaluation intends to
deepen the understanding of the addressed problem space, allow the generation of scholarly
knowledge to further refine the solution characteristics or addressed requirements [30].

Besides proof-of-concept evaluation, Nunamaker et al. [30] propose proof-of-value evaluation
as a second stage. It primarily aims to demonstrate the efficacy of an artifact, meaning to
investigate and measure causal relations between solution characteristics and the underlying
requirements. Moreover, proof-of-value evaluation is intended to comprehend influencing
factors that affect the application of the proposed solution, e.g., situational context factors.
Therefore, proof-of-value evaluation corresponds with the DSRM step 5 (Evaluation) [23].

The evaluation of the identified challenges (research question 1) and the requirements (re-
search question 2) is to be carried out within the context of an empirical qualitative cross-
sectional analysis using an online survey. On the one hand, practice experts are invited to
assess the relevance of the challenges based on their experience. On the other hand, the practice
experts have to evaluate the identified requirements in terms of their importance using the
100 dollar method, a specific implementation of cumulative voting, so that prioritization of the
requirements can occur afterward [32].

The evaluation of the conceptual model, in particular the underlying solution characteristics
and design recommendations (research question 3), takes place in two stages. In the first step,
practice experts are invited to use the prototype to perform a constructed prioritization scenario.
In doing so, the study participants are asked to articulate their thoughts aloud while using
the prototype (‘thinking aloud’) [33]. In the second step, the participant is asked to fill out a



questionnaire that covers a satisfaction survey combining Likert scaled and free text questions.
Based on this, a Kano classification of the solution features can take place afterward [34].

According to DSRM step 6 (Communication) ongoing communication of the research results
at relevant scientific conferences (e.g., ICSOB) and in practice communities (e.g., ISPMA) are
planned [23].

4. Timeline & Preliminary Results

The overall duration of the PhD project is planned as four years. In the first year, the research
problem and the research design were elaborated. Moreover, two empirical pre-studies have
been conducted to verify the (assumed) practical research gap and to evaluate the questionnaire
for the expert interviews. These pre-studies identified an initial set of challenges, requirements,
and solution characteristics. The findings confirmed the practical research gap and, thus, the
relevance of the PhD project. In the second year, a case study was initiated with a big and
prominent German software company (case A). Ten interviews were conducted with product
managers, POs, developers, and team leads to identify further challenges and requirements. In
parallel, the first version of a web application that is based on SpringBoot and Angular was
implemented based on the identified requirements to that date. In another case study with
the software department of a big German insurance company (case B), this prototype could
be evaluated, and further challenges, requirements, and solutions requirements could have
been elaborated. The main idea of the solution concept is based on Agile Software QFD by
Schockert [20]. Thus, the separation of stakeholder needs and solution characteristics is pursued.
This is achieved by establishing dedicated backlogs for stakeholders, stakeholder needs, and
product functions. The content of these backlogs flows in the final PB. The prioritization of PB
items is done by cooperatively prioritizing the different backlog items according to stakeholder
competencies and responsibilities. These preliminary results were presented at IWSiB’22 [35].
For the next remaining two years the following activities are planned: The prototype will

be further developed. Soon, there will be thinking-aloud tests and satisfaction surveys with
experts of case company A conducted. Moreover, a global (i.e., separated from specific case
studies to gain a high number of returns) online survey is conducted to assess the relevance of
challenges and to prioritize requirements.

5. Expected Contributions

According to design-oriented information systems research, the expected research contributions
can be classified into descriptive, normative, and prescriptive results [23]. These results are
intended to contribute to the identified knowledge gap and to research mainly in the context of
software-intensive business, i.e., in the areas of agile software development, and requirements
engineering [1]. As the primary research objective is developing scientifically founded but
also practically usable target-means statements, besides science, the PhD project contributes to
practice in solving real-world practice problems. Therefore the research results also address
companies in the context of software-intensive business, e.g., software development projects
that apply the Scrum process model and need support in prioritizing the PB.



By answering research question 1, challenges that exist in real-world practice are identi-
fied. This allows for creating a problem-oriented knowledge base for the PhD project and
further research endeavors. To solve these identified challenges, well-argued solution-neutral
requirements are collected in a requirements backlog that serves as the normative objective for
further design science research projects especially starting with an objective-centered initiation.
Finally, solution characteristics related to the derived requirements in the form of prescriptive
target-means statements serve as design knowledge for future instantiations of the conceptual
model to pursue empirical studies in science and improve real-world Scrum projects in practice.

References

[1] P. Abrahamsson, J. Bosch, S. Brinkkemper, A. Mädche, Software business, platforms, and
ecosystems: Fundamentals of software research, 2018. doi:10.4230/DagRep.8.4.164.

[2] J. Highsmith, A. Cockburn, Agile software development: The business of innovation,
Computer 34 (2001) 120–122. doi:10.1109/2.947100.

[3] K. Petersen, C. Wohlin, The effect of moving from a plan-driven to an incremental software
development approach with agile practices: An industrial case study, Empirical Software
Engineering 15 (2010) 654–693. doi:10.1007/S10664-010-9136-6/FIGURES/5.

[4] A. Komus, M. Kuberg, Ergebnisbericht: Status quo (scaled) agile 2019/20, 2019.
[5] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Gren-

ning, J. Highsmith, A. Hunt, et al., Manifesto for agile software development, 2001.
[6] D. Port, T. Bui, Simulating mixed agile and plan-based requirements prioritization strate-

gies: proof-of-concept and practical implications, European Journal of Information Systems
18 (2009) 317–331. doi:10.1057/ejis.2009.19.

[7] ISO/IEC/IEEE 2621525:3023, Systems and software engineering - Developing user docu-
mentation in an agile environment, Technical Report, ISO, Geneva, CH, 2012.

[8] Z. Bakalova, M. Daneva, A. Herrmann, R. Wieringa, Agile requirements prioritization:
What happens in practice and what is described in literature, in: Lecture Notes in Computer
Science 6606, 2011, pp. 181–195.

[9] B. Ramesh, L. Cao, R. Baskerville, Agile requirements engineering practices and challenges:
an empirical study, Information Systems Journal 20 (2010) 449–480.

[10] K. Curcio, T. Navarro, A. Malucelli, S. Reinehr, Requirements engineering: A systematic
mapping study in agile software development, Journal of Systems and Software 139 (2018)
32–50. doi:10.1016/J.JSS.2018.01.036.

[11] K. Schwaber, J. Sutherland, The scrum guide, 2020.
[12] M. Cohn, User stories applied: For agile software development, Addison-Wesley, 2004.
[13] T. Rietz, F. Schneider, We see we disagree: Insights from designing a cooperative re-

quirements prioritization system, in: Proceedings of the 28th European Conference on
Information Systems (ECIS 2020), 2020.

[14] F. Hujainah, R. B. A. Bakar, A. B. Nasser, B. Al-haimi, K. Z. Zamli, Srptackle: A semi-
automated requirements prioritisation technique for scalable requirements of software
system projects, Information and Software Technology 131 (2021) 106501.

http://dx.doi.org/10.4230/DagRep.8.4.164
http://dx.doi.org/10.1109/2.947100
http://dx.doi.org/10.1007/S10664-010-9136-6/FIGURES/5
http://dx.doi.org/10.1057/ejis.2009.19
http://dx.doi.org/10.1016/J.JSS.2018.01.036


[15] D. Šmite, N. B. Moe, A. Šāblis, C. Wohlin, Software teams and their knowledge networks in
large-scale software development, Information and Software Technology 86 (2017) 71–86.

[16] J. M. Leimeister, Einführung in die Wirtschaftsinformatik, volume 13, Springer, 2021.
[17] H. Krcmar, Informationsmanagement, volume 6, Springer Berlin Heidelberg, 2015.
[18] S. Brinkkemper, Method engineering: engineering of information methods and tools,

Information and Software Technology 38 (1996) 275–280.
[19] P. Achimugu, O. Achimugu, M. A. Taiye, S. Husssein, G. Tam-Nurseman, S. Adekeye, How

to support communication among stakeholders during software requirements prioritiza-
tion, Journal of Software Engineering and Applications 14 (2021) 267–276.

[20] S. Schockert, Agiles Software Quality Function Deployment, Eul Verlag, 2017.
[21] U. Frank, S. Strecker, P. Fettke, J. Vom Brocke, J. Becker, E. Sinz, The research field

“modeling business information systems”, Business & Information Systems Engineering 6
(2014) 39–43.

[22] Y. Wand, R. Weber, Research commentary: Information systems and conceptual model-
ing—a research agenda, Information Systems Research 13 (2002) 363–376.

[23] K. Peffers, T. Tuunanen, M. A. Rothenberger, S. Chatterjee, A design science research
methodology for information systems research, Journal of management information
systems 24 (2007) 45–77.

[24] A. R. Hevner, S. T. March, J. Park, S. Ram, Design science in information systems research,
MIS Quarterly 28 (2004) 75–105.

[25] B. Henderson-Sellers, J. Ralyté, P. J. Ågerfalk, M. Rossi, Situational method engineering,
Springer Berlin Heidelberg, 2014. doi:10.1007/978-3-642-41467-1.

[26] A. S. Campanelli, F. S. Parreiras, Agile methods tailoring - a systematic literature review,
Journal of Systems and Software 110 (2015) 85–100. doi:10.1016/j.jss.2015.08.035.

[27] A. Bogner, B. Littig, W. Menz, Interviewing Experts, Palgrave Macmillan Ltd., 2009.
[28] J. L. Gogan, M.-D. McLaughlin, D. Thomas, Critical incident technique in the basket., in:

Thirty Fifth International Conference on Information Systems (ICIS 2014), 2014.
[29] J. C. Flanagan, The critical incident technique, Psychological Bulletin 51 (1954) 327–358.
[30] J. F. Nunamaker, R. O. Briggs, D. C. Derrick, G. Schwabe, The last research mile: Achiev-

ing both rigor and relevance in information systems research, Journal of Management
Information Systems 32 (2015) 10–47. doi:10.1080/07421222.2015.1094961.

[31] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Sucessful Businesses, Crown Business, 2011.

[32] D. Leffingwell, D. Widrig, Managing software requirements: a unified approach, Addison-
Wesley Professional, 2000.

[33] K. A. Ericsson, H. A. Simon, How to study thinking in everyday life: Contrasting think-
aloud protocols with descriptions and explanations of thinking, Culture and Activity 5
(1998) 178–186.

[34] K. Matzler, E. Sauerwein, The factor structure of customer satisfaction, International Jour-
nal of Service Industry Management 13 (2002) 314–332. doi:10.1108/09564230210445078.

[35] K.Model, C.Mombrey, G. Herzwurm, Paving theway to a software-supported requirements
prioritization in distributed scrum projects, in: 2022 IEEE/ACM International Workshop
on Software-Intensive Business (IWSiB), 2022, pp. 51–58.

http://dx.doi.org/10.1007/978-3-642-41467-1
http://dx.doi.org/10.1016/j.jss.2015.08.035
http://dx.doi.org/10.1080/07421222.2015.1094961
http://dx.doi.org/10.1108/09564230210445078

	1 Problem & Motivation
	2 State of Research & Knowledge Gap
	3 Research Design & Methodology
	4 Timeline & Preliminary Results
	5 Expected Contributions

