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Abstract
The interaction data used by recommender systems (RSs) inevitably include noises resulting from mistaken or exploratory
clicks, especially under implicit feedbacks. Without proper denoising, RS models cannot effectively capture users’ intrinsic
preferences and the true interactions between users and items. To address such noises, existing methods mostly rely on
auxiliary data which are not always available. In this work, we ground on Optimal Transport (OT) to globally match a user
embedding space and an item embedding space, allowing both non-deep and deep RS models to discriminate intrinsic and
noisy interactions without supervision. Specifically, we firstly leverage the OT framework via Sinkhorn distance to compute
the continuous many-to-many user-item matching scores. Then, we relax the regularization in Sinkhorn distance to achieve
a closed-form solution with a reduced time complexity. Finally, to consider individual user behaviors for denoising, we
develop a partial OT framework to adaptively relabel user-item interactions through a personalized thresholding mechanism.
Extensive experiments show that our framework can significantly boost the performances of existing RS models.

1. Introduction
With the rapid growth of various activities on the Web,
recommender systems (RSs) become fundamental in help-
ing users alleviate the problem of information overload.
However, users can click some items by mistake or out
of curiosity, and many RSs will also recommend some
less relevant items for exploration every now and then.
Take movie watching for example. Since a user cannot
always distinguish horrible movies from romantic ones
by movie names, he/she can easily click a horrible movie
by mistake among the many romantic movies he/she usu-
ally watches. In this case, a traditional method like CF
cannot effectively reduce the probability of recommend-
ing a horrible movie unless the noisy clicks are extremely
rare, which may further seduce even more noisy clicks.

Recently, to get out of such mistakes, existing research
discovers users’ intrinsic preferences with the help of
external user behaviors [1], auxiliary item features [2] or
extra feedbacks [3]. A key limitation is their reliance on
auxiliary data, which costs significant effort and is not
always attainable in RSs. Without supervision, can we
develop a framework to automatically denoise user-item
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interactions for more accurate recommendations?
In this work, we approach the denoised recommen-

dation problem in two steps: 1. distinguishing intrinsic
and noisy interactions; 2. stressing intrinsic preferences
and reducing noisy ones for recommendation. Inspired
by a least modeling effort principle in an unsupervised
fashion [4, 5], we refer to noises as minor abnormal data
that needs higher modeling effort than the intrinsic ones.

Based on the above rationale, we propose to distin-
guish noises by ranking the global matching cost between
the user and item embedding spaces, and flexibly inte-
grate it with both non-deep and deep RS methods. In
this way, the key to distinguishing noises boils down
to finding a global matching matrix with the minimum
matching cost. Subsequently, we advocate a principled
denoised RS framework and calculate the matching ma-
trix grounding on Optimal Transport (OT), which has
been introduced to address the unsupervised matching
problem between two distributions or spaces in many
fields [6, 7]. Through minimizing the overall cost of the
mismatched user-item pairs, OT finds a global optimal
matching matrix, whose values represent the matching
cost (i.e., modeling effort). Specifically, the low user-item
matching cost indicates a user’s intrinsic preferences while
the high value indicates noisy ones.

However, to apply OT to achieve denoised recommen-
dation, three problems still remain: 1. Unlike the one-hot
constraint in previous applications of OT, the nature of
RSs requires a many-to-many matching; 2. The large
number of users and items makes the matching process
time-consuming; 3. A mechanism is needed to properly

mailto:yctan@fzu.edu.cn
mailto:j.carlyang@emory.edu
mailto:weixy@zju.edu.cn
mailto:wuziyue@zju.edu.cn
mailto:21831010@zju.edu.cn
mailto:xlzheng@zju.edu.cn
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


leverage the learned matching matrix and finally elimi-
nate the effect of noises for denoised recommendation.

To address these challenges, we first leverage the OT
framework via Sinkhorn distance [8]. Unlike a one-hot
matching matrix that satisfies the requirements of the
many widely studied tasks (e.g., transfer learning [6, 9]),
we compute a continuous many-to-many approxima-
tion to the discrete OT, so as to meet the nature of RSs.
Furthermore, we propose to relax the regularization in
Sinkhorn to achieve a closed-form solution, which can
reduce the time complexity for large-scale data from
𝒪(max(𝑀,𝑁)3) to 𝒪(max(𝑀,𝑁)2) . Then, we rank
the learned continuous matching cost to differentiate in-
trinsic and noisy interactions for each user. Finally, we
take into account that individual users’ behaviors can
vary in RSs, which should be handled differently during
denoising. To this end, we design a personalized thresh-
olding mechanism for relabeling user-item interactions,
which efficiently finds a splitting point for each individual
user according to the ranked matching cost.

Experiment results on one real-world dataset with syn-
thesized noises demonstrate our proposed ProRec’s abil-
ity of denoising under various levels of noises. Further
experiments on three original real-world datasets also
verify the advantages of ProRec, which demonstrate its
significant performance boosts upon multiple popular RS
models, in terms of effectiveness and efficiency.

2. Related work
Many research studies have pointed out that there exist
a large proportion of noisy interactions in the implicit
feedbacks (i.e., the clicks) [10, 1, 11]. These feedbacks are
easily affected by different factors, such as the position
bias [12], caption bias [13] and exposure bias [10, 14].
Therefore, there exist large gaps between the implicit
feedbacks and the actual user preferences due to various
reasons, which are detrimental to the users’ continuous
behaviors and overall satisfaction [2, 5].

To alleviate the above issues, many researchers have
considered incorporating auxiliary feedbacks to the iden-
tification of noises in the implicit feedbacks, such as dwell
time [1] and scroll intervals [13]. These works usually
design features manually and label items with external
help (e.g., from domain experts) [13, 2], which require
extensive effort and cost, which are not always available
across RSs. To this end, sheer observations on training
losses have recently been explored to denoise the implicit
feedbacks during training in an unsupervised fashion [5].
The method is purely heuristic and can be integrated
with deep learning methods only. Based on a principle
of the least modeling effort in different fields [4, 15], our
proposed framework aims to denoise the user-item in-
teractions without supervision, which is supported by

Optimal transport (OT) theory with guaranteed optimal-
ity in the global matching and can be flexibly integrated
with both deep and non-deep RS methods.

OT aims to find a matching between two distributions
or spaces, which has been most widely used in transfer
learning. It can match one instance in the source domain
to another in the target domain with the least cost. Ex-
isting works mainly study discrete OT for one-to-one
matching. For example, in computer vision, OT has been
applied to domain adaption [4, 6] and style transfer [16].
OT has also been successfully applied in many natural
language processing tasks, such as topic modeling [7, 17],
text generation [18], and sequence-to-sequence learning
[19]. Considering the effect of non-matched pairs, [9]
proposed a partial one-to-one matching that leverages
one shared threshold to address domain shift for domain
adaption instead of taking all pairs into account.

However, the above discrete one-to-one matching can-
not satisfy the nature of many-to-many user-item re-
lationships in RSs, where each user can interact with
many items and each item can interact with many users.
Though OT is applied into cold-start recommendation
problem in [20], they directly measure user-item similar-
ity without taking the effect of noises into consideration.
Moreover, partial matching with a shared threshold can-
not reflect the individual user behaviors, and thus leads
to suboptimal recommendation performances.

3. Methodology
In this section, we detail the proposed Partial relaxed
optimal Transport for the denoised Recommendation
(ProRec) framework, as shown in Figure 1. Specifically,
we first formulate the denoised recommendation as a two-
step process. Then, we introduce the Optimal Transport
(OT) framework for distinguishing noises through global
user-item matching. Furthermore, we elaborate on our
proposed ProRec framework, which can be applied to
achieve denoised recommendations.

3.1. Problem Statement
Following the setting of recommendation, we denote
the user-item interaction matrix as 𝑋 ∈ {0, 1}𝑀×𝑁 ,
where 𝑀 denotes the number of users and 𝑁 denotes the
number of items. We construct user-item relationships
across a user embedding space 𝒟𝑢 and an item embedding
space 𝒟𝑣 . The problem is that user-item pairs contain
some noisy interactions which need to be relabeled.

In this work, we approach denoised recommendation
through two steps. Firstly, we distinguish intrinsic and
noisy interactions across 𝒟𝑢 and 𝒟𝑣 by a global match-
ing matrix 𝜋*. Then, to stress users’ intrinsic preferences
and reduce noises, we rank the learned 𝜋* and keep only
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Figure 1: A toy example illustrating the denoised recommendation based on our ProRec framework.

the top 𝜅 interactions of each user via a personalized
thresholding mechanism. In this way, we learn a rela-
beled matrix 𝑅 ∈ 𝑅𝑀×𝑁 for denoised recommendation.

3.2. Global Matching for Distinguishing
Noises

As motivated in Section 1, a framework that can denoise
user-item interactions for more accurate recommenda-
tion is in great need. However, without supervision, it is
hard to define noisy interactions and then stress intrinsic
preferences together while reducing noisy ones.

To distinguish noises in an unsupervised fashion, sev-
eral works [4, 15, 21, 5] have pointed out a principled
way to locate noises by finding the data that needs the
most modeling effort or cost. Inspired by this principle
of least modeling effort, in this work, we propose to refer
to the noises as minor abnormal data. Compared with
the interactions from intrinsic preferences, noises take
much effort or cost to model.

Based on the above least effort rationale, we propose
a novel denoising framework to distinguish noises by
ranking the global matching between user and item em-
bedding spaces. The framework is served as a plug-in, so
as to be flexibly integrated to both non-deep and deep
RS methods. In this scenario, the key to distinguishing
noises boils down to finding a global user-item matching
across the user space 𝒟𝑢 and the item space 𝒟𝑣 with
minimal matching cost.

To address the unsupervised matching problem be-
tween two spaces, we advocate a principled denoised RS
framework and ground on Optimal Transport (OT), which
has been successfully applied in many fields such as CV
[6] and NLP [7]. As studied theoretically in [22], the
OT formulation derived from the Earth Movers Distance
(EMD) can be expressed as

min
𝜋∈𝒳 (𝒟𝑢,𝒟𝑣)

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

ℳ𝑖𝑗𝜋𝑖𝑗 ,

𝑠.𝑡. 1𝑀𝜋 =
1

𝑁
1𝑁 ,1𝑁𝜋𝑇 =

1

𝑀
1𝑀 ,

(1)

where 𝒳 (𝒟𝑢,𝒟𝑣) denotes the joint probability distribu-
tion of user embedding space 𝒟𝑢 and item embedding
space 𝒟𝑣 . 1𝑀 ∈ R1×𝑀 ,1𝑁 ∈ R1×𝑁 with all elements

equal to 1. 𝑀 is the number of users and 𝑁 is the number
of items. 𝜋* denote the optimal transport plan.

Specifically, the matching cost matrix ℳ directly re-
flects the modeling effort, and thus the low user-item
matching cost can indicate users’ intrinsic preferences
while the high values can indicate noises. Based on the
definition of ℳ, we can integrate the denoising process
with both non-deep and deep RS models as follows:
ℒ(𝑈 ,𝑉 ) = ||𝑋−𝑈𝑉 𝑇 ||2𝐹 + 𝜁(||𝑈 ||22 + ||𝑉 ||22), (2)
ℒ(𝑈 ,𝑉 ) = 𝒞(𝑋, 𝐺𝑦(𝑈 ,𝑉 )) + 𝜁(||𝑈 ||22 + ||𝑉 ||22),

(3)
where 𝑈 ∈ R𝑀×𝑑 and 𝑉 ∈ R𝑁×𝑑 represent the user
and item embeddings. 𝐺𝑦 denotes a classification net-
work. The hyperparameter 𝜁 is to balance the loss and the
regularization term. In non-deep learning models, Eq. 2
can be solved effectively through many methods (e.g., Al-
ternative Least Square). Since the prediction scores rep-
resent the user-item similarities where ℳ has negative
values, we calculate the cost matrix as ℳ = −𝑈𝑉 𝑇

by using inner product. In deep learning models, we
can optimize Eq. 3 by adopting the widely used binary
cross-entropy loss (i.e., 𝒞(·, ·)). Then, similar calcula-
tions can be made for those deep learning ones, where
ℳ = −𝐺𝑦(𝑈 ,𝑉 ).

However, there are three technical challenges when
applying OT to denoised recommendation:
Challenge 1. In RSs, each user can interact with many
items and each item interact with many users, which cor-
responds to a many-to-many interaction matrix. Unlike
previous applications of OT in CV or NLP, directly apply-
ing the one-hot constraint specified in Eq. 1 is counter-
intuitive for recommendation.
Challenge 2. In RSs, the number of users and items in
the real world tends to be large, making the matching
process time-consuming.
Challenge 3. Besides distinguishing noises, it is nec-
essary to design a mechanism to eliminate the effect
of noisy interactions. A naïve way is to set one global
thresholding hyperparameter 𝜅 to keep the top 𝜅 items
with the least matching cost for each user. However, the
global thresholding hyperparameter cannot accommo-
date individual user behaviors.



3.3. The ProRec Framework
In this section, we propose a Partial relaxed optimal
Transport for denoised Recommendation (ProRec) frame-
work to address the above three challenges.
Many-to-many matching to meet the nature of RSs.
To address Challenge 1, we look for a smoother version of
OT by lowering the sparsity and increasing the entropy of
the matching matrix [4]. Among the many OT algorithms
(e.g., ADMM and Proximal Point Method [23, 24]), we
choose the Sinkhorm algorithm [8] due to its simplicity
and efficiency. We achieve OT with a many-to-many
matching through the Sinkhorn algorithm as follows:

min
𝜋∈𝒳 (𝒟𝑢,𝒟𝑣)

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

ℳ𝑖𝑗𝜋𝑖𝑗 + 𝛾𝐻(𝜋)

𝑠.𝑡.,1𝑀𝜋 = 𝑝,1𝑁𝜋𝑇 = 𝑞,

(4)

where 𝐻(𝜋) =
∑︀𝑀

𝑖=1

∑︀𝑁
𝑗=1 𝜋𝑖𝑗 (log(𝜋𝑖𝑗)− 1). 1𝑀 ∈

R1×𝑀 ,1𝑁 ∈ R1×𝑁 are with all elements equal to 1. 𝛾 is
a hyperparameter to balance the entropy regularization
and OT.

Compared with most studies of discrete OT in CV, the
major advantages of the Sinkhorn algorithm above are
as follows: i) By relaxing the discrete constraint, we can
obtain a continuous matrix instead of a one-hot one. In
this way, the obtained matching matrix can capture the
many-to-many relationships between users and items.
ii) By adding an entropy regularization, we address the
sparsity problem of 𝜋*. The dense cost matrix can be
used for subsequent ranking. iii) By modifying the distri-
bution constraint of 𝜋 from uniform (i.e., 1𝑀𝜋 = 1

𝑁
1𝑁 )

to popularity-based (i.e., 1𝑀𝜋 = 𝑝), we model non-
uniform distributions where users and items have differ-
ent number of interactions, and successfully adapt the
optimization to the recommendation scenario. Specifi-
cally, we count the interactions and then normalize them
to obtain 𝑝𝑖 and 𝑞𝑗 , so

∑︀𝑁
𝑖=1 𝑝𝑖 = 1 and

∑︀𝑀
𝑗=1 𝑞𝑗 = 1.

Relaxed OT to reduce the time complexity. Note
that the optimal 𝜋* is dense and needs to be com-
puted through multiple iteractions. Therefore, it is time-
consuming in RSs with large numbers of users and items.
Inspired by the Relaxed OT for EMD [17], we extend the
original Sinkhorn algorithm with a relaxed regularization.
Specifically, we use two auxiliary distances, each essen-
tially is the Sinkhorn with only one of the constraints in
Eq. 4:

min
𝜋∈𝒳 (𝒟𝑢,𝒟𝑣)

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

ℳ𝑖𝑗𝜋𝑖𝑗 + 𝛾𝐻(𝜋) 𝑠.𝑡. 1𝑀𝜋 = 𝑝,

(5)

min
𝜋∈𝒳 (𝒟𝑢,𝒟𝑣)

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

ℳ𝑖𝑗𝜋𝑖𝑗+𝛾𝐻(𝜋) 𝑠.𝑡. 1𝑁𝜋𝑇 = 𝑞.

(6)

Proposition 1. The constraint of problem in Eq. 4 is re-
laxed by Eq.5 and Eq. 6. By defining ℳ̃ = 𝑒

−ℳ
𝛾 , the

closed-form solution for the global optimal matching ma-
trix is:
𝜋* = max(ℳ̃diag(𝑝⊘1𝑀ℳ̃),diag(𝑞⊘1𝑁ℳ̃𝑇

)ℳ̃),
(7)

where ⊘ corresponds to the element-wise division.

Proof. Based on Eq. 6 and using the Lagrange multiplier
method we have:

ℒ =

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

ℳ𝑖𝑗𝜋𝑖𝑗+𝛾𝐻(𝜋)−(1𝑁𝜋𝑇 −𝑞)𝑓𝑇 , (8)

where 𝑓𝑇 is Lagrangian multipliers.
Then, in order to find the optimal solution, we let the

gradient 𝜕ℒ
𝜕𝜋𝑖𝑗

= 0, which means:

𝜕ℒ
𝜕𝜋𝑖𝑗

= ℳ𝑖𝑗 + 𝛾 log𝜋𝑖𝑗 − 𝑓𝑖 = 0, (9)

In this case, we can obtain the solution of 𝜋𝑖𝑗 as

𝜋𝑖𝑗 = 𝑒
𝑓𝑖−ℳ𝑖𝑗

𝛾 . (10)
The users and items that have different interactions,

which means both users and items are based on differ-
ent degrees of popularity. To take such popularity into
consideration, we count and norm the number of items
that have interacted with user 𝑖. Based on the popularity
of user 𝑖 ( i.e., 𝑞𝑖), we add constraints of the matching
matrix 𝜋 by

∑︀𝑁
𝑗=1 𝜋𝑖𝑗 = 𝑞𝑖. Then, we have

𝑁∑︁
𝑗=1

𝑒
𝑓𝑖−ℳ𝑖𝑗

𝛾 = 𝑞𝑖. (11)

Since the Lagrange multiplier 𝑓𝑖 is not related to 𝑗, we
can extract this part and rewrite the formula as:

1

𝑞𝑖

𝑁∑︁
𝑗=1

𝑒
−

ℳ𝑖𝑗
𝛾 = 𝑒

− 𝑓𝑖
𝛾 . (12)

Take the logarithm of both sides of the above equation
and move 𝛾 to the other side:

𝑓𝑖 = −𝛾 log(
1

𝑞𝑖

∑︁
𝑗

𝑒
−

ℳ𝑖𝑗
𝛾 ). (13)

To keep the formula simple and clear, we define ℳ̃ =

𝑒
−ℳ

𝛾 , so the formula above can be written as:

𝑓 = 𝛾 log 𝑞 − 𝛾 log(1𝑁ℳ̃𝑇
). (14)

According to Eq. 10 and Eq. 12, we have

𝜋𝑖𝑗 = 𝑒
𝑓𝑖−ℳ𝑖𝑗

𝛾 = 𝑞𝑖
𝑒
−

ℳ𝑖𝑗
𝛾∑︀

𝑗 𝑒
−

ℳ𝑖𝑗
𝛾

. (15)

Finally, based on Eq. 15 and the definition of ℳ̃ =

𝑒
−ℳ

𝛾 , we obtain the closed-form solution via a matrix
form as follow

𝜋𝑉 = diag(𝑞 ⊘ 1𝑁ℳ̃𝑇
)ℳ̃, (16)



where ⊘ corresponds to element-wise division.
Following the same derivation, we can obtain the

closed-form solution of Eq. 5 as follow
𝜋𝑈 = ℳ̃diag(𝑝⊘ 1𝑀ℳ̃). (17)

The original Sinkhorn minimizes 𝜋 under two con-
straints. By relaxing one constraint, we can balance the
computation efficiency and improved preformance. To
approximate the solution under the original constraints,
we adopt the max operation, which is consistent with
the results in previous work [16]. So we have

𝜋* = max(𝜋𝑈 ,𝜋𝑉 ) (18)
This is equivalent to:

𝜋* = max(ℳ̃diag(𝑝⊘1𝑀ℳ̃),diag(𝑞⊘1𝑁ℳ̃𝑇
)ℳ̃).

(19)

Note that, the closed-form solution yields a time com-
plexity of 𝑂(max(𝑀,𝑁)2). This shows that by relaxing
the OT formulation with auxiliary limitation from only
one side, our model can achieve a lower time complexity
than the 𝑂(max(𝑀,𝑁)3) reported in [6], which uses OT
for one-to-one matching.
Personalized thresholding mechanism for denoised
recommendation. To flexibly discriminate the in-
trinsic and noisy user-item interactions for individual
users, we propose a non-parametric personalized thresh-
olding mechanism. We first normalize the matching

cost by each user as 𝜋𝑖𝑗
*′ =

𝜋*
𝑖𝑗∑︀

𝑗 𝜋*
𝑖𝑗

, and rank them

as 𝜌𝑖 = sort(𝜋*′
𝑖 ). According to the definition of the

matching matrix, each row represents users’ preferences
towards the items. We define 𝜅 = {𝜅1, . . . , 𝜅𝑀} as the
index of the threshold which can filter out users’ noisy
preferences. 𝜅𝑖 denotes user 𝑖’s threshold. As shown
in Figure 1, some users with consistent (narrow) inter-
ests (i.e., user 𝐴) would benefit from a reasonably low
threshold since a few items can already represent their
preferences and more items can introduce more noises.
Meanwhile, some users with diverse (wide) interests (i.e.,
user 𝐵) would require the threshold to be relatively high
to model a broader range of preferences and satisfy the
need for exploration. To find a personalized splitting
point 𝜅𝑖 for each user according to the learned matrix,
the model requires an automatic splitting mechanism.
Inspired by the threshold selection mechanism used in
CART [25], we efficiently learn the personalized thresh-
olds 𝜅𝑖 for different users by minimizing the following
sum of square errors:

𝜅𝑖 = argmin
𝜂

[︃
𝜂∑︁

𝑗=1

(︀
𝜌𝑖𝑗 − 𝑐1𝜂

)︀2
+

𝑁∑︁
𝑗=𝜂+1

(︀
𝜌𝑖𝑗 − 𝑐2𝜂

)︀2]︃
,

(20)
where 𝜌𝑖𝑗 is the 𝑗-th value of the sorted 𝜌𝑖 and the index
𝜂 ∈ {1, 2, · · · , 𝑁−1}. 𝑐1𝜂 = 1

𝜂

∑︀𝜂
𝑗=1 𝜌𝑖𝑗 represents the

mean value of top 𝜂 items while 𝑐2𝜂 = 1
𝑁−𝜂

∑︀𝑁
𝑗=𝜂+1 𝜌𝑖𝑗

represents mean of the rest 𝑁 − 𝜂 items. After obtaining
the index of splitting points 𝜅, we have the correspond-
ing threshold values 𝜌𝑖,𝜅𝑖 . Based on the personalized
threshold 𝜌𝑖,𝜅𝑖 , we can relabel by 𝑟𝑖𝑗 ∈ R as follows:

𝑟𝑖𝑗 =
1

1 + exp(−𝛽(𝜌𝑖𝑗 − 𝜌𝑖,𝜅𝑖))
, (21)

where 𝑟𝑖𝑗 is a monotonically increasing function accord-
ing to the value of 𝜌𝑖𝑗 − 𝜌𝑖,𝜅𝑖 . 𝛽 is a hyperparameter to
control the inclination of the function.

Finally, to make the relabeling process more flexible,
we propose to use a hyperparameter 𝜆 to control the
degree of relabeling and obtain a new interaction matrix
as follows:

𝑋 = 𝜆𝑋 + (1− 𝜆)𝑅⊙𝑋, (22)
where ⊙ corresponds to the element-wise product. Con-
sidering that the noises in sparse positive interactions
would induce worse effects in recommendation [5], in
this work, we only target the part of the original dataset
where 𝑋𝑖𝑗 = 1. In this way, the newly generated 𝑋 can
keep users’ intrinsic preferences and reduce the noise
ones. We summarize the learning procedure of our pro-
posed ProRec in Algorithm 1, which is proved to guaran-
tee the local convergence for denoised recommendation.

4. Experiments
In this section, we first conduct controlled experiments
with synthetic noises on one dataset, so as to investi-
gate ProRec’s performance to different levels of noisy
interactions. Then, we evaluate ProRec’s performance
on three original real-world datasets of recommendation
with implicit feedback.

4.1. Experimental Settings
4.1.1. Dataset and evaluation protocols.

We use ML-100k for the noise-controlled experiments
and do a 4:1 random splitting for train/test data follow-
ing [26]. To simulate the noise, we randomly select
5%/10%/15%/20% of ground-truth records and flip labels
in the train set. The selected records can be regarded
as noises during training. For real data experiments, we
use Amazon music (AMusic)1, Amazon toys (AToy)1, and
Yahoo2. These datasets have been widely adopted in
previous literature [27, 5, 28], and their statistics are sum-
marized in Table 1. We do a 5:2:3 splitting for them fol-
lowing [28]. We evaluate the ability to distinguish noise
by Hit Ratio, and recommendation performances by nor-
malized discounted cumulative, mean average precision,
and recall.

1https://github.com/familyld/DeepCF/tree/master/Data
2https://webscope.sandbox.yahoo.com/catalog.php?datatype=r



Algorithm 1: Partial Relaxed Optimal Transport
for Denoised Recommendation (ProRec)

Data: The noisy user-item interactions 𝑋 , user
popularity 𝑝 and item popularity 𝑞

Result: Denoised user embeddings 𝑈 and item
embeddings 𝑉 , a relabeled matrix 𝑅.

1 while not converged do
2 1. Update 𝑈 and 𝑉 ;
3 if Learning 𝑈 and 𝑉 via non-deep methods

then Update 𝑈 and 𝑉 via
||𝑋 −𝑈𝑉 𝑇 ||2𝐹 + 𝜁(||𝑈 ||22 + ||𝑉 ||22 in
Eq. 2 and calculate ℳ = −𝑈𝑉 𝑇 ;

4 else Update 𝑈 and 𝑉 via
𝒞(𝑋, 𝐺𝑦(𝑈 ,𝑉 )) + 𝜁(||𝑈 ||22 + ||𝑉 ||22) in
Eq. 3, where 𝒞(·, ·) is binary cross-entropy
loss; Then calculate ℳ = −𝐺𝑦(𝑈 ,𝑉 ),
where 𝐺𝑦 is a classification network;

5 2. Update 𝑋 ;
6 Model denoised recommendation problem by

minimizing
∑︀𝑀

𝑖=1

∑︀𝑁
𝑗=1 ℳ𝑖𝑗𝜋𝑖𝑗 + 𝛾𝐻(𝜋),

where 1𝑀𝜋 = 𝑝,1𝑁𝜋𝑇 = 𝑞, in Eq. 4;
7 Compute a global optimal matching matrix

𝜋* by the closed-form solution
𝜋* = max(ℳ̃diag(𝑝⊘ 1𝑀ℳ̃), diag(𝑞 ⊘
1𝑁ℳ̃𝑇

)ℳ̃) in Eq. 7;
8 Compute personalized thresholds 𝜅 by

automatic splitting mechanism in Eq. 20;
9 Relabel user-item interaction by sorting 𝜅 in

Eq. 21;
10 Update 𝑋 by 𝑋 = 𝜆𝑋 + (1− 𝜆)𝑅⊙𝑋 in

Eq. 22;
11 end

Table 1
Statistics of the datasets used in our experiments.

Dataset # User # Item # Interaction Sparsity
ML-100k 942 1,447 55,375 0.9594
AMusic 1,776 12,929 46,087 0.9980

AToy 3,137 33,953 84,642 0.9992
Yahoo 1,948,882 46,110 48,817,561 0.9995

4.1.2. Methods for comparison

We compare two types of algorithms for recommenda-
tion. The first type is non-deep algorithms, which include:
SVD [29] – A similarity-based method that constructs
a similarity matrix through SVD decomposition of the
implicit matrix 𝑋 ; NCE [28] – Noise contrastive esti-
mation item embeddings combined with a personalized
user model based on PLRec [30]. The second type is
deep learning methods, including CDAE [10] – Collabo-
rative Denoising Autoencoder is a deep learning method
specifically optimized for implicit feedback recommen-
dation tasks; WRMF [10] – Weighted Regularized Ma-

trix Factorization, which is a deep MF framework; VAE-
CF [31] – Variational Autoencoder for Collaborative Fil-
tering, which is one of the state-of-the-art deep learning
based recommendation algorithm [28]; LightGCN [32] –
LightGCN devises a light graph convolution for training
efficiency and generation ability on recommendation sce-
nario; EGLN [33] – EGLN enhances graph learning and
node embedding modules iteratively based on mutual
information maximization.

Besides the above methods, T-CE [5] and SGDL [34]
are the existing frameworks for denoised recommenda-
tions. The first one discards the large-loss samples with
a dynamic threshold in each iteration and the second one
collects memorized interactions at the early stage of the
training and leverages those data as denoising signals to
guide the following training. Both of them are designed
as plug-ins for deep learning methods. We add CDAE
+ T-CE and LightGCN + SGDL as baselines to compare
the ability of denoising with the proposed ProRec, which
are shown to win the best performance in their original
works [5, 34].

For all the algorithms (except for CDAE + T-CE and
LightGCN + SGDL), we add the proposed ProRec on top
of them, allowing both non-deep and deep RS models to
discriminate intrinsic and noisy interactions in an unsu-
pervised fashion. Specifically, we have SVD + ProRec,
NCE + ProRec, CDAE + ProRec, WRMF + ProRec, VAE-
CF + ProRec, LightGCN + ProRec, and EGLN + ProRec,
respectively.

4.1.3. Implementation details

Implementations of the compared baselines are from
open-source projects (SVD3, NCE3, CDAE3, WRMF3,
VAE-CF3, LightGCN4, EGLN5, T-CE6 and SGDL7). We
optimize ProRec with standard Adam. We tune all hyper-
parameters through grid search. In particular, learning
rate in {0.0005, 0.001, 0.005, 0.01}, 𝜆 in {0.25, 0.5, 0.75,
1.0}, 𝛾 in {0.05, 0.075, 0.1, 0.125, 0.15, 0.175}, 𝛽 in {1, 5,
10, 20, 50}, 𝜁 in {0.0005, 0.001, 0.005, 0.01}, and the batch
size in {100, 250, 500, 1000} for different datasets. We
also carefully tuned the hyperparameters of all baselines
through cross-validation to achieve their best perfor-
mances.

4.2. Controlled Experiments (Synthetic
Noises)

Before looking at the performance of recommendation,
we first inspect ProRec’s ability to distinguish noises.

3https://github.com/wuga214/NCE_Projected_LRec
4https://github.com/gusye1234/LightGCN-PyTorch
5https://github.com/yimutianyang/SIGIR2021-EGLN
6https://github.com/WenjieWWJ/DenoisingRec
7https://github.com/zealscott/SGDL



0% 5% 10% 15% 20%
Noise level

0.890

0.895

0.900

0.905

0.910

HR

0.000%

90.730%90.665%

90.195%

89.983%

0.158

0.159

0.160

0.161

0.162

Re
ca

ll

NCE
NCE + ProRec

(a) HR/Recall, controlled dataset

0 0.25 0.5 0.75 1.00.026
0.028
0.030
0.032
0.034
0.036
0.038
0.040

NCE+PreRec(NDCG)
NCE+PreRec(Recall)
NCE(NDCG)
NCE(Recall)

(b) Varying 𝜆 on AMusic

0.050 0.075 0.100 0.125 0.150 0.1750.026
0.028
0.030
0.032
0.034
0.036
0.038
0.040

NCE+PreRec(NDCG)
NCE+PreRec(Recall)
NCE(NDCG)
NCE(Recall)

(c) Varying 𝛾 on AMusic

Figure 2: (a) Testing HR/Recall with different noise levels on the noise-controlled dataset. (b)-(c) Hyperparameter effect on
the proposed ProRec.

Table 2
Comparison between the original baselines and the ones plus ProRec on three benchmark datasets. The best performances of
non-deep and deep learning methods are in boldface. Statistically tested significant improvements with 𝑝-value < 0.01 brought
by ProRec compared with the original methods are indicated with *.

model N@5 M@5 R@5 N@5 M@5 R@5 N@5 M@5 R@5
AMusic AToy Yahoo

SVD [29] 0.0363 0.0667 0.0264 0.0116 0.0212 0.0084 0.1614 0.2316 0.1430
NCE [28] 0.0375 0.0693 0.0276 0.0143 0.0262 0.0104 0.2498 0.3440 0.2249
CDAE [10] 0.0074 0.0124 0.0060 0.0046 0.0080 0.0033 0.0716 0.1022 0.0652
WRMF [10] 0.0236 0.0435 0.0171 0.0086 0.0157 0.0062 0.2503 0.3244 0.2321
VAE-CF [31] 0.0146 0.0258 0.0115 0.0117 0.0212 0.0084 0.2622 0.3423 0.2380
LightGCN [32] 0.0406 0.0830 0.0368 0.0162 0.0296 0.0117 0.2750 0.3729 0.2494
EGLN [33] 0.0422 0.0866 0.0386 0.0166 0.0303 0.0120 0.2806 0.3809 0.2543
CDAE + T-CE [5] 0.0080 0.0143 0.0062 0.0049 0.0080 0.0038 0.0714 0.1032 0.0648
LightGCN + SGDL [34] 0.0417 0.0852 0.0378 0.0166 0.0304 0.0120 0.2825 0.3830 0.2561
SVD + ProRec 0.0374* 0.0677 0.0275* 0.0123* 0.0220* 0.0093* 0.1987* 0.2820* 0.1763*

NCE + ProRec 0.0396* 0.0723* 0.0298* 0.0149* 0.0267* 0.0108* 0.2619* 0.3562* 0.2364*
CDAE + ProRec 0.0080* 0.0148* 0.0065* 0.0049 0.0084 0.0038* 0.0718 0.1028 0.0660*

WRMF + ProRec 0.0241* 0.0442* 0.0179* 0.0096* 0.0165* 0.0077* 0.2699* 0.3358* 0.2403*

VAE-CF + ProRec 0.0162* 0.0266* 0.0120 0.0129* 0.0231* 0.0102* 0.2743* 0.3535* 0.2472*

LightGCN + ProRec 0.0424* 0.0866* 0.0379* 0.0168* 0.0302* 0.0120* 0.2924* 0.3918* 0.2636*

EGLN + ProRec 0.0445* 0.0915* 0.0406* 0.0173* 0.0317* 0.0124* 0.2973* 0.4012* 0.2705*

Since we know the index of the randomly added noises in
the dataset, we evaluate the level of distinguished noises
by Hit Ratio (HR) of the real added noises in Figure 2(a).
Specifically, we observe a consistent high HR of NCE +
ProRec around 90% when the level of noises increases.
Furthermore, we test Recall of NCE and NCE + ProRec
under different levels of noises. It can be clearly observed
that NCE + ProRec always performs better than NCE, as
the former can accurately relabel some noises to elimi-
nate the effect of noises. For example, when the noise
level is at 20%, NCE + ProRec significantly improves NCE
from 0.1579 to 0.1596.

4.3. Real Data Experiments
4.3.1. Overall Performance Comparison

We compare the recommendation results of the proposed
ProRec to those of the baseline models. Table 2 shows
the NDCG, MAP, and Recall scores on three datasets. We

have the following observations.
In three different domains, by integrating ProRec with

both non-deep and deep methods, we can consistently im-
prove strong baseline models and achieve start-of-the-art
performance. Since the graph-based model can leverage
high-order relations among users and items, EGLN out-
performs all baselines on three datasets. Furthermore, our
proposed EGLN + ProRec outperforms all deep-learning
baselines on three datasets, ranging from 3.34% (achieved
on AToy on Recall@5) to 6.38% (achieved on Yahoo on
Recall@5), while NCE + ProRec outperforms all non deep-
learning baselines on three datasets, ranging from 1.91%
(achieved on AToy on MAP@5) to 7.97% (achieved on
AMusic on Recall@5). All of these show that ProRec is ca-
pable of effective recommendation on different datasets.

One step further, we observe that the methods based
on the proposed ProRec framework all outperform the
original models, which indicates the advantage of the
denoising process. Compared with existing denoising
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Figure 3: The denoising process of ProRec.

Table 3
Impact of different model components of ProRec on AMusic.

Metric N@5 R@5 Time N@5 R@5 Time
Method NCE EGLN
Base 0.0375 0.0276 64s 0.0422 0.0386 82s
+EMD 0.0360 0.0259 98s 0.0406 0.0371 124s
+Sinkhorn 0.0384 0.0281 132s 0.0431 0.0398 174s
+ROT 0.0383 0.0281 76s 0.0430 0.0392 109s
+ProRec 0.0396 0.0298 82s 0.0445 0.0406 118s

frameworks (i.e., T-CE and SGDL), ProRec can not only
be flexibly integrated with both deep and non-deep RS
methods but also gain more improvements.

Moreover, on top of existing RS methods, our proposed
ProRec in Eq. 4 does not introduce significant compu-
tations. In the third and sixth columns in Table 3, we
compare the model’s training time under the same exper-
imental setting (e.g., embedding dimension). As can be
observed, the training time of the proposed NCE + ProRec
and LightGCN + ProRec are within the same scale as NCE
and LightGCN on AMusic dataset.

Note that the improvements brought by the denois-
ing process on the denser datasets (e.g., the performance
gains between 0% noise level and 5% noise level on ML-
100k shown in Figure 2(a)) are less than those on the
sparse datasets (e.g., the performance gains between
EGLN + ProRecn and EGLN on Yahoo in Table 2). Al-
though we can explicitly eliminate some effects of noisy
interactions (as shown in Figure 2(a)), they only have a
minor impact on the learned embeddings when interac-
tions are enough in the observed data, which is consistent
with the results in recent studies [35].

4.3.2. Model Ablation and Hyperparameter Study

In this section, three groups of ablation studies are con-
ducted to evaluate the impacts of our proposed many-to-
many matching, relaxed regularization, and personalized
thresholding mechanisms, as well as the effects of hyper-
parameters.
The effect of continuous many-to-many matching.
Compared with the many-to-many matching of NCE +

Sinkhorn, it is ineffective to directly adopt one-to-one
matching (i.e., NCE + EMD) due to the removal of many
matched interactions. For example, NCE + Sinkhorn
significantly improves NCE from 0.0276 to 0.0281 (on
Recall@5 on AMusic) while both metrics of NCE + EMD
are lower than those of the original NCE.
The efficiency of relaxed regularization.By balancing
the performance and the runtime via relaxing the opti-
mized constraints, we can observe that NCE + ROT can
reduce around half of the runtime while keeping almost
the same NDCG and Recall on AMusic and Yahoo.
The effect of personalized thresholding mechanism.
We first use one global threshold for ROT to study the
effectiveness of the personalized thresholding mecha-
nism. In the experiment, we search the hyperparameter
of global thresholds 𝜎 in {5, 10, 15, 20, 25} and find that
NCE + ROT achieves the best performance when 𝜎 = 10.
Compared with NCE + ROT, NCE + ProRec can individu-
ally discriminate intrinsic preferences and noises without
tuning the hyperparameter of the threshold, and then
improve the performance of the partial OT framework.
For example, the performance of NCE + ProRec achieves
0.0298, which outperforms 0.0281 of NCE + ROT on Re-
call@5 on AMusic dataset.
The effect of hyperparameters. Our proposed ProRec
framework introduces four hyperparameters: 𝛾, 𝛽, 𝜁 and
𝜆, where we empirically set 𝛽 to 20 and 𝜁 to 0.001. 𝜆
controls the degree of the relabeling and 𝛾 controls the
sparsity of the matching matrix. Take NCE + ProRec for
example (shown in Figure 2(b)-2(c)), the optimal 𝜆 and 𝛾
on AMusic are found to be 0.5 and 0.1, respectively. In
general, we can set 𝜆 to 0.5 for denser datasets and 0.25
for the sparser datasets and always set 𝛾 to 0.1.

4.3.3. Denoising Case Study

To demonstrate the advantages of the denoising process,
we visualize the interaction matrix given by ML-100k on
the left and the learned matrix of the proposed NCE +
ProRec on the right (as shown in Figure 3). The num-
bers in the boxes are actual movie IDs. The colors in
the original interaction matrix (left) are the same, indi-



cating uniform weights, whereas those in the relabeled
matrix (right) are different. The different depths of blue
represent the matching cost (the deeper, the lower) and
white boxes denote the intrinsically preferred items. As
we can see from the different colors, our many-to-many
matching matrix effectively discriminates intrinsic and
noisy interactions. Moreover, we can also observe the
personalized thresholding mechanism to work as differ-
ent numbers of items is being replaced for different users.
Furthermore, we show several movies relevant to user 0.
Since most interacted movies of user 0 are from the ro-
mance category, such as Titanic and Shakespeare in Love,
the horror movie is abnormal and is unlikely to reflect
her/his intrinsic preference. NCE + ProRec automatically
learns to highlight the two romantic movies. After down-
weighing Friday the 13th Part 3: 3D, the scoring of the
user’s preference changes, and thus the ranking of an-
other romantic movie (Runaway Bride) rises to show up
in the top 𝐾 = 6 candidate list for user 0.

5. Conclusion
In this paper, we propose a novel ProRec framework for
the recommendation with implicit feedback. ProRec can
effectively denoise the user-item interactions by flexibly
serving as a plug-in, so as to further improve the recom-
mendation accuracy for both non-deep and deep learning
RS methods. We demonstrate the superior performance
of ProRec in recommendation through extensive experi-
ments and showcase its effectiveness in denoising user-
item interactions through insightful case studies. Since
we achieve denoising in a fully unsupervised fashion
without accessing any additional user or item data, we
expect ProRec to incur no more negative societal impact
than any basic recommender system.
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