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Abstract
Graph collaborative filtering approaches learn refined users’ and items’ node representations by iteratively aggregating the
informative content (called messages) coming from neighbor nodes into each ego node. Unfortunately, not all interactions
(i.e., graph edges) may be equally important to the users and items involved. As this indiscriminate message aggregation leads
to multi-hop representation errors, recent strategies have used attention mechanisms to weight neighbors’ importance to the
ego node. Despite their success, such solutions seem to disregard the potentially critical impact users’ reviews may play on
this weighting process. Reviews convey the multi-faceted user’s opinion about items and provide a fundamental tool to group
like-minded customers. In this work, we first formally show the causes of node error representation in graph collaborative
filtering and demonstrate how existing neighborhood weighting procedures (e.g., attention mechanisms) may alleviate the
issue at the expense of limited hop exploration. Second, we correct the representation error through an additional graph
network where we enrich graph edge embeddings through opinion-aware review embeddings to smooth each neighbor
node’s importance on its ego node. We call our solution Edge Graph Collaborative Filtering (EGCF). Extensive experiments on
three e-commerce datasets show that EGCF competes successfully with traditional, graph- and review-based approaches on
accuracy and beyond-accuracy objectives, while a study on the number of explored hops justifies the adopted configuration
for EGCF. Code and datasets are available at: https://github.com/sisinflab/Edge-Graph-Collaborative-Filtering.
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1. Introduction
Recommender systems constitute the backbone of several
online platforms (e.g., Amazon), offering consumers lists
of products that might meet their needs and tastes. Rec-
ommendation algorithms are traditionally designed and
trained to find preference patterns in user-item recorded
interactions. Optionally, this learning process may be
enriched through additional informative data constantly
updated on those platforms, which may captivate cus-
tomer’s attention towards items’ characteristics (e.g.,
product images) or provide a tool to share opinions about
purchased items to guide other customers during their
decision-making process (e.g., reviews).

Collaborative filtering (CF) [1], one of the most promi-
nent recommendation paradigms in recent years, pro-
motes the intuition of similar users interacting with sim-
ilar items. CF-based models usually map users and items
to embeddings in the latent space, and learn to predict
user interactions by optimizing an objective function that
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also wear well for an 
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them."

"Nothing really wrong 
with the belt just wider 
and thicker than I like. 
Good quality."

"They were too 
narrow and hurt my 
feet so I returned 
them."

"Great belt, nice color 
and holding up very 
well"
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Figure 1: A subset of users, items, and reviews users wrote
about items, along with the expressed ratings (in the range
1-5). Despite being connected to the same items, users 𝑢1-
𝑢2, and users 𝑢1-𝑢3 do not share similar opinions about the
interacted items.

combines these embeddings linearly (e.g., inner prod-
uct [2]) or non-linearly (e.g., neural networks [3] and
probabilistic models [4]). While focusing on improving
the user-item prediction step, such techniques have long
underestimated the importance of deriving informative
features to describe users and items suitably.

Recently, graph convolutional networks (GCNs) [5]
have taken over CF-based recommendation, thanks to
their capability of mining user-item high-order relation-
ships. Unlike prior techniques, these models explicitly
incorporate user and item relationships into their embed-
ding representations. Concretely, the embedding of each
node (defined as ego node) is refined by aggregating its

https://github.com/sisinflab/Edge-Graph-Collaborative-Filtering
mailto:daniele.malitesta@poliba.it
mailto:claudio.pomo@poliba.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


neighbors’ node embeddings (i.e., whose contribution is
called messages). This step is repeated iteratively to propa-
gate the collaborative signal over multiple hops. These
models are becoming the de facto standard in personal-
ized recommendation, reaching remarkable recommen-
dation performance as in the pioneer works presented
in [6, 7], and more recently, in the solutions [8, 9, 10].

The message-passing pattern, by design, may still
present some limitations despite being successful. An
argument could be made that not all user-item interac-
tions (i.e., graph edges) have the same relative impor-
tance. To clarify this, consider the motivating scenario
in Figure 1, where we depict a subset of users and items
from a real-world e-commerce platform (i.e., the Amazon
catalog) and enrich their interactions with ratings and
reviews. Both user 𝑢1 and 𝑢2 interacted with item 𝑖1,
thus inferring that they might share similar interests and
preferences. However, careful analysis of the correspond-
ing reviews reveals that their opinions about item 𝑖1
are opposite (the expressed ratings are 5 and 2, respec-
tively). Following a similar reasoning schema, users 𝑢1

and 𝑢3 have both interacted with item 𝑖2 but their com-
ments, while being generally similar (the item is rated 3
and 5, respectively), show slight shades of disagreement
(i.e., 𝑢1 is not completely satisfied with the belt size). As
the message-passing pattern works by indiscriminately
aggregating the neighbor nodes at multiple hops, the
node representation of 𝑢1 is ultimately influenced by the
representations of both 𝑢2 and 𝑢3 after two propagation
hops. In the long term, such behavior may lead to what
we could define as a node representation error.

Weighting the importance of neighborhood while ag-
gregating the incoming messages into the ego node
is among the prominent solutions to the abovemen-
tioned issue. Following the same direction path in [11],
other popular and recent works in recommendation
such as [12, 13, 14, 15] leverage attention mechanisms
(i.e., a neural network) to perform the weighting proce-
dure. Even if these models have widely demonstrated
to provide superior accuracy recommendation perfor-
mance, they are still affected by oversmoothing, the
phenomenon according to which node embedded rep-
resentations tend to get closer and closer in the latent
space after multiple propagation hops, thus flattening
the existing differences in the neighborhood [16, 17]. For
this reason, attention-based approaches usually propa-
gate messages for only one or two hops, but this does
not help access wider portions of the user-item graph.

In this respect, we believe attention-based techniques
generally disregard other potential sources of informa-
tion (e.g., users’ generated reviews) whose contribution
may positively impact the neighborhood weighting pro-
cess. Opinions and comments about interacted items
constitute the basis on which like-minded users gather
on online platforms, as they promote the discovery of

novel and diverse items from the catalog. In this work,
we first formally define the problem of nodes’ represen-
tation error in graph collaborative filtering. After that,
we show how existing weighting techniques (such as
attention mechanisms) may alleviate the described issue
at the expense of limiting the hop exploration depth to
reduce the effect of oversmoothing. Thus, to address
such drawback, we propose a lighter-weighting proce-
dure that exploits the informative content extracted from
reviews (i.e., opinions and comments about interacted
items) to enhance graph edge representation. Such edge-
enriched features are eventually used to derive the sim-
ilarity between the ego node and its neighbors, which
we re-interpret as the importance of the neighbor node
on the ego node. Our proposed weighting procedure is
applied to a GCN acting as the correction to another tra-
ditional (but error-affected) GCN. We call our solution
Edge Graph Collaborative Filtering (EGCF).

After formalizing the theoretical basis for EGCF and its
rationale, we assess its efficacy on three popular product
categories from the Amazon catalog [18]. Given their
similar intuitions and rationale to EGCF, we compare the
method with four families of CF-based recommendation,
i.e., traditional, review-based [19, 20], and graph-based
approaches (both leveraging attention mechanisms and
not). We seek to answer these research questions about
our proposed approach:

• RQ1. Can the correction to the node error rep-
resentation help EGCF produce more accurate
recommendations than state-of-the-art baselines?

• RQ2. Considering the high impact that novel and
diverse recommendation lists may have on both
users and companies, how effective is EGCF when
evaluated on beyond-accuracy metrics, given its
strategy for neighborhood exploration?

• RQ3. What is the effect of changing the hop
exploration number on recommendation perfor-
mance, and how can we justify such behaviors
for the adopted architecture?

The extensive experimental evaluation shows that the
correction to the node representation error and the pos-
sibility of propagating messages across multiple hops
permits EGCF to outperform state-of-the-art baselines
on accuracy and beyond-accuracy metrics. Finally, the
study on the hop propagation number proves the sound-
ness of our proposed architectural configuration while
shading interesting direction paths for future work.

2. Related Work
Graph-based recommendation. The approach pro-
posed in [21] is the first attempt to address the recom-
mendation task through a graph-based architecture. The



authors implement a graph autoencoder that labels its
edges with users’ ratings to perform link prediction. Ying
et al. [6] design a graph convolutional network for a web-
scale recommendation to produce high-quality image
recommendations for the Pinterest platform, efficiently
exploiting random walk and item’s multimodal side in-
formation. Wang et al. [7] present neural graph collabo-
rative filtering (NGCF), whose propagation layer aggre-
gates the messages from the neighborhood considering
the similarity between each neighbor node and its ego
node. While providing higher performance to previous
state-of-the-art solutions, NGCF (and GCN more gener-
ally) show limitations later addressed by He et al. [8].
Their idea is to lighten GCN’s traditional layer structure
and reach superior accuracy performance by removing
non-linearities and node embedding transformation in
the propagation layer (LightGCN). The latest approaches
try to take a step further to the LightGCN strategy by
allowing theoretically unlimited propagation layers [9]
and revisiting the concept of graph convolution for rec-
ommendation and node embedding smoothness under
the lens of graph signal processing [10].

While aggregating messages from neighbor nodes into
the ego node, not all received contributions have the
same importance. The pioneering work by Velickovic
et al. [11], called graph attention network (GAT), takes ad-
vantage of attention mechanisms to weight the different
influences of neighbor nodes on the ego node. Inspired
by this rationale, several recent works in recommenda-
tion seek to assess the relative importance of interacted
items on users involved in those interactions. In the last
few years, recommendation tasks such as session-based
recommendation [22, 23, 12] and sequential recommen-
dation [13, 24] have been widely addressed by using at-
tention mechanisms on graphs. Attention mechanisms
may also be beneficial when the informative content con-
veyed by the bipartite user-item graph is enhanced by
additional side information, like knowledge graphs [25],
heterogeneous information networks [14], or multimodal
items’ content [26]. Exploiting attention to disentangle
the aspects underlying node interactions may represent
a fundamental step toward explainability [27]. Follow-
ing this direction, the work by Wang et al. [15] named
disentangled graph collaborative filtering (DGCF), and
the method presented in Wu et al. [28], propose to disen-
tangle user-item connections into possible user intents.

State-of-the-art attention-based approaches provide
an efficient neighborhood weighting strategy. However,
their multi-hop exploration is usually limited to prevent
nodes in the neighborhood from getting too much similar
in the latent space (see Section 3.2). Conversely, EGCF
leverages additional information (i.e., reviews) whose ex-
tracted opinion-aware features do not flatten differences
among nodes while easing the weighting process. More-
over, in contrast to prior works, EGCF enriches edges by

representing them through the extracted embeddings.
Review-based recommendation. Reviews convey a
rich source of information to access users’ multi-faceted
opinions about interacted items. For this reason, sev-
eral existing works propose to extract valuable knowl-
edge from them to produce better-tailored recommen-
dations [19, 20]. Among the pioneer works, Wang et al.
[29] adopt a stacked denoising autoencoder to approxi-
mate the user-item rating matrix starting from textual re-
views, Almahairi et al. [30] introduce two neural network-
based approaches built upon bag-of-words and recurrent
neural networks, and Kim et al. [31] present convolu-
tional matrix factorization (ConvMF), where a convolu-
tional neural network is merged with probabilistic matrix
factorization to learn the context of review documents.

Reviews are textual documents composed of words,
which may further be grouped into sentences. To exploit
such hierarchical structure, Zheng et al. [32] design a
convolutional neural network on top of a factorization
machine prediction model to extract from review’s words
a unique embedded representation for users and items.
The adoption of attention mechanisms may help refine
each review component’s importance on the recommen-
dation profile of users and items. In this respect, Liu
et al. [33] improve the previous approach by weighting
the importance of convolutionally-embedded reviews for
both users and items for the sake of explanation. Simi-
larly, Lu et al. [34] learn users’ and items’ attention fea-
tures by exploring different review components such as
words, sentences, and topics via a GRU-based network,
while Liu et al. [33] (based upon the solution described
in [35]) augment users’ and items’ collaborative latent
factors through features extracted from their generated
ratings and reviews. Wang et al. [36] leverage common
review properties (e.g., how helpful the reviews were for
other users) to assess its importance on users and items.

Only recently, very few works have injected the infor-
mative content of reviews into graph-based networks for
recommendation. Wu et al. [37] propose a model named
reviews meet graphs (RMG), a multi-view framework
that learns users’ and items’ representation by consid-
ering the word- and sentence-level of reviews and ex-
ploring two hops of the user-item graphs to access also
user-user and item-item relations. Gao et al. [38] present
a three-structured architecture that catches the short-
and long-term user preferences and item features, along
with the collaborative information encoded in the bipar-
tite user-item graph. Shi et al. [39] introduce a dual GCN
model, where one extracts and propagates review aspects,
and the other reuses the aspect for the graph.

Despite addressing recommendation through differ-
ent strategies, the presented algorithms generally work
by grouping reviews on both users and items profiles
but, in fact, limiting the exploration of users and items
neighbors at one hop (i.e., the nearest neighborhood).



Conversely, our proposed approach exploits reviews as
edge side information to describe user-item interactions
and propagate their informative content at multiple hops
to overcome theoretical issues in the way graph-based
recommender systems are usually designed (see later).

3. Methodology
The section presents and motivates our proposed method,
Edge Graph Collaborative Filtering (EGCF). We first in-
troduce some notation and preliminaries to graph models
for collaborative filtering. Then, we highlight a poten-
tially critical issue in the message-passing schema. Even
if weighting the importance of each neighbor node may
alleviate the problem, we discuss the insights and propose
an enhanced application of the importance weighting.

3.1. Notation and preliminaries
Let 𝒰 = {𝑢1, 𝑢2, . . . , 𝑢𝑁} and ℐ = {𝑖1, 𝑖2, . . . , 𝑖𝑀} be
the sets of 𝑁 users and 𝑀 items in the system, respec-
tively. Then, let us consider a bipartite and undirected
user-item graph that connects pairs of nodes when there
exists a recorded interaction among them. User and item
nodes are represented through embeddings in the latent
space, i.e., e𝑢 ∈ R𝑑, ∀𝑢 ∈ 𝒰 and e𝑖 ∈ R𝑑, ∀𝑖 ∈ ℐ .

Inspired by popular approaches [5], current graph-
based recommender systems refine users’ and items’ node
embeddings by exploring their multi-hop interconnec-
tions represented in the graph. Let 𝑢 and 𝑖 be the nodes
for a user and an item to be updated (i.e., the ego nodes),
and let 𝒩 (𝑢) and 𝒩 (𝑖) be the sets of nodes at one hop
from 𝑢 and 𝑖, respectively (i.e., their neighborhood). The
ego node embeddings e𝑢 and e𝑖 are updated by aggre-
gating their neighborhoods (i.e., messages):

e
(1)
𝑢 = 𝜔 ({e𝑖,∀𝑖 ∈ 𝒩 (𝑢)})

e
(1)
𝑖 = 𝜔 ({e𝑢, ∀𝑢 ∈ 𝒩 (𝑖)})

(1)

where e
(1)
𝑢 and e

(1)
𝑖 are the refined embedding versions

of user 𝑢 and item 𝑖 after one hop, while 𝜔(·) indicates
the aggregation function. This message-passing pattern
may be iterated 𝐿 times, thus exploring wider and wider
neighborhoods of the ego nodes. After two hops, the
refined embeddings of user 𝑢 and item 𝑖 are:

e
(2)
𝑢 = 𝜔

(︁{︁
e
(1)
𝑖 , ∀𝑖 ∈ 𝒩 (𝑢)

}︁)︁
e
(2)
𝑖 = 𝜔

(︁{︁
e
(1)
𝑢 , ∀𝑢 ∈ 𝒩 (𝑖)

}︁)︁ (2)

3.2. A limitation in the message-passing
The user formulation in Equation (2) can be expanded
through Equation (1):

e
(2)
𝑢 = 𝜔

(︀{︀
𝜔
(︀{︀

e𝑢′ , ∀𝑢′ ∈ 𝒩 (𝑖) ∖ {𝑢}
}︀)︀

, ∀𝑖 ∈ 𝒩 (𝑢)
}︀)︀

(3)
What emerges is that, by propagating messages at two
hops, the node embedding of user 𝑢 is eventually refined
through the contributions from other users who inter-
acted with the same items as 𝑢. In other words, after two
hops, each user profile is influenced by the profiles
of other users who rated the same items.

Indeed, this assumption is aligned with the rationale
behind collaborative filtering, i.e., similar users are likely
to interact with the same items. However, not all user-
item interactions (i.e., graph edges) may be equally im-
portant to the users and items involved. Thus, indis-
criminately aggregating neighbor node embeddings into
the ego node could, after multiple hops, harm the node
updating process by bringing all contributions from the
neighborhood, even the noisy ones. We interpret this
as a node representation error, propagating with the
exploration hops in the graph.

For this reason, contributions coming from each neigh-
bor node are usually weighted before aggregating them
into the ego nodes, modifying the presented formula:

e
(2)
𝑢 = 𝜔

(︁
𝛼
(2)
𝑖→𝑢

{︁
𝜔
(︁{︁

𝛼
(1)
𝑢′→𝑖

e𝑢′ ,

∀𝑢′ ∈ 𝒩 (𝑖) ∖ {𝑢}
}︁)︁

,∀𝑖 ∈ 𝒩 (𝑢)
}︁)︁ (4)

where 𝛼
(𝑙)
𝑗→𝑘 stands for the importance that the neigh-

bor node 𝑗 has on the ego node 𝑘 after 𝑙 hops. These
weights are generally calculated by means of attention
mechanisms, and depend on the embeddings of the neigh-
bor and the ego nodes they refer to, e.g., 𝛼

(𝑙)
𝑗→𝑘 =

𝜙
(︁
e
(𝑙−1)
𝑗 , e

(𝑙−1)
𝑘

)︁
, where 𝜙(·, ·) is a neural network:

e
(2)
𝑢 = 𝜔

(︁ (□)⏞  ⏟  
𝜙
(︁
e
(1)
𝑖 , e

(1)
𝑢

)︁{︁
𝜔
(︁{︁ (△)⏞  ⏟  

𝜙(e𝑢′ , e𝑖) e𝑢′ ,

∀𝑢′ ∈ 𝒩 (𝑖) ∖ {𝑢}
}︁)︁

, ∀𝑖 ∈ 𝒩 (𝑢)
}︁)︁ (5)

that is, e(2)
𝑢 depends on (□) the importance each neigh-

bor item node 𝑖 has on the ego user node 𝑢 after one hop,
and (△) the importance all users interacting with the
same items as 𝑢 have on their items. Note that (□) may
be further expanded:

𝜙
(︁
e
(1)
𝑖 , e

(1)
𝑢

)︁
= 𝜙

(︁
𝜔
(︁{︁

𝛼
(1)
𝑢′→𝑖

e𝑢′ , ∀𝑢′ ∈ 𝒩 (𝑖) ∖ {𝑢}
}︁)︁

,

𝜔
(︁{︁

𝛼
(1)
𝑖′→𝑢

e𝑖′ ,∀𝑖′ ∈ 𝒩 (𝑢) ∖ {𝑖}
}︁)︁)︁

= 𝜙
(︁
𝜔
(︁{︁

𝜙(e𝑢′ , e𝑖)e𝑢′ , ∀𝑢′ ∈ 𝒩 (𝑖) ∖ {𝑢}
}︁)︁

,

𝜔
(︁{︁

𝜙(e𝑖′ , e𝑢)e𝑖′ , ∀𝑖′ ∈ 𝒩 (𝑢) ∖ {𝑖}
}︁)︁)︁

(6)



When merging Equation (5) and Equation (6):

e
(2)
𝑢 = 𝜔

(︁
(□)⏞  ⏟  

𝜙(e𝑢′ , e𝑖)

(△)⏞  ⏟  
𝜙(e𝑖′ , e𝑢)⏞  ⏟  

𝜙
(︁
e
(1)
𝑖 , e

(1)
𝑢

)︁{︁
𝜔
(︁{︁ (□)⏞  ⏟  

𝜙(e𝑢′ , e𝑖) e𝑢′ ,

∀𝑢′ ∈ 𝒩 (𝑖) ∖ {𝑢}
}︁)︁

, ∀𝑖 ∈ 𝒩 (𝑢)
}︁)︁ (7)

The node embedding for user 𝑢 after two hops depends
on (□) the importance of all users interacting with the
same items as 𝑢 on those items, and (△) the importance
of all items interacted by 𝑢 on user 𝑢. In other words,
weighting the importance of each neighbor node on the
ego node before the aggregation allows, after two propa-
gation hops, to calculate to what extent each user pro-
file is influenced by the profiles of the other users
who rated the same items. Without loss of generality,
a similar consideration could be made after a number of
hops greater than two.

3.3. Enhancing neighborhood weighting
through reviews

As known, graph-based models in machine learning are
affected by oversmoothing [16, 17]. This phenomenon
leads node embeddings, after multiple propagation hops,
to become closer and closer in their representation in
the latent space, eventually flattening their existing dif-
ferences. As this behavior would profoundly weaken
models’ performance, exploration of the neighborhood
generally tends to be constrained to very few hops (e.g.,
a maximum of two hops in attention-based weighting).
However, in recommendation scenarios, limiting
the exploration of the user-item bipartite graph
may represent an inconsistency to the idea of col-
laborative filtering, where users are connected to share
preferences and tastes for similar items.

Under this assumption, we believe the neighborhood
weighting process could be further enhanced by exploit-
ing other sources of information that are not usually
taken into account. In the majority of popular online
platforms for e-commerce (e.g., Amazon), reviews are
fundamental tools to share opinions and comments
about interacted items, as they convey the multi-faceted
aspects that drove a user to interact with an item. Lever-
aging such side information on the connections exist-
ing among users and items in the bipartite graph (i.e.,
graph edges) can improve the learning of the importance
weights by reducing the oversmoothing effect because
each user/item node embedding is conditioned on the
opinion conveyed by the review.

Let 𝒲𝑢𝑖 = {𝑤1, 𝑤2, . . . , 𝑤𝑅} be the set of 𝑅 words
that compose the review written by user 𝑢 about item
𝑖. After an initial tokenization step, the sets of tokens
for 𝒲𝑢𝑖 is defined as 𝒯𝑢𝑖 = {𝑡1, 𝑡2, . . . , 𝑡𝑇 }. Tokens are

mapped to word embeddings, which are injected into an
opinion-based model pretrained to predict the rating ex-
pressed by the user through specific terms in the review.
While the output model carries the single information
about the predicted review score, the activation of a hid-
den layer would unveil a richer source of textual features
(i.e., an embedding) which drove the opinion-based model
to predict that score. High-level features extracted from
pretrained deep learning models can boost the recommen-
dation performance of recommender systems leveraging
items’ side information (e.g., visual-based recommender
systems [40, 41]). We deem these textual features to de-
serve a pivotal role in this weighting process.

Let r𝑢𝑖 ∈ R𝑓 be the textual embedding extracted from
the review of user 𝑢 about item 𝑖 through the pretrained
opinion-based model. First, we project r𝑢𝑖 ∈ R𝑓 to the
same latent space as e𝑢 ∈ R𝑑 and e𝑖 ∈ R𝑑 with a one-
layer neural network:

p𝑢𝑖 = LeakyReLU (Wr𝑢𝑖 + b) (8)

where p𝑢𝑖 ∈ R𝑑 is the projected review embedding,
while W ∈ R𝑓×𝑑 and b ∈ R𝑑 are the projection matrix
and the bias, respectively. We seek to retain only those
textual features of review r𝑢𝑖 which can be significant
to later calculate the interdependence between this
embedding and user/item ones.

Then, we propose to enhance the neighborhood
weighting procedure at hop 𝑙 by conditioning the im-
portance weights also on the projected embedding of the
review connecting user 𝑢 and item 𝑖. For instance, the
importance of the neighbor item node 𝑖 on the ego user
node 𝑢 after 𝑙 hops is calculated as:

𝛼
(𝑙)
𝑖→𝑢 = 𝜙

(︁
e
(𝑙−1)
𝑖 , e

(𝑙−1)
𝑢 ,p𝑢𝑖

)︁
(9)

Note that, sincep𝑢𝑖 cannot increase the impact of the
oversmoothing effect (because it is not dependent
on the hop 𝑙), its usage in the importance weight
formula becomes even more beneficial. Let us focus
on the weighting function 𝜙(·, ·, ·). Many approaches
from the literature propose to leverage attention mecha-
nisms, usually implemented as a neural network trained
in the downstream task to predict the importance of the
neighbor node on the ego node. In our solution, we opt
for a simplified and lightweight formulation that seeks
to calculate the similarity between the neighbor and the
ego nodes, conditioned on the opinion embedding
of the review connecting them. Specifically:

𝛼
(𝑙)
𝑖→𝑢 = cos

(︁
e
(𝑙−1)
𝑖 ⊙ p𝑢𝑖, e

(𝑙−1)
𝑢 ⊙ p𝑢𝑖

)︁
(10)

where ⊙ is the element-wise multiplication, and cos(·, ·)
is the cosine similarity. Note that we suppress nega-
tive similarities to zero as such weights are usually non-
negative. Multiplying both node embeddings by the re-
view opinion embedding provides the interplay between



each node feature and the opinion features, thus produc-
ing a modified version of the node representation
that conveys a richer source of information. No
trainable projection weight is learned in the presented
formulation since the contribution of the review embed-
ding is meaningful enough.

3.4. A double message-passing schema
The proposed neighborhood weighting procedure can
help correct the representation error generated in the
traditional message-passing schema. However, the idea
is not to completely replace it, as several recent works
from the literature have demonstrated its efficacy, espe-
cially in producing accurate recommendations [8]. The
proposed approach involves a double message-passing
schema, where two graph models are trained to refine
their own user/item node representations. While
the first one aggregates the contributions coming from
the neighbor nodes into the ego nodes by weighting the
neighborhood importance on the ego node statically,
the second one aggregates the neighborhood’s messages
which are also weighted through the opinion embed-
dings from reviews.

We define the two graph convolutional networks as
GCN𝑒 (error-affected) and GCN𝑐 (correction) and assign
the node embeddings e* to GCN𝑒, and the node embed-
dings c* to GCN𝑐. As for the aggregation function, in
both cases, we sum the weighted messages coming from
the neighbor nodes. As such, the update of the user node
embedding 𝑢 after 𝑙 hops is calculated as:

e
(𝑙)
𝑢 =

∑︁
𝑖∈𝒩 (𝑢)

𝛼𝑖→𝑢e
(𝑙−1)
𝑖 =

∑︁
𝑖∈𝒩 (𝑢)

e
(𝑙−1)
𝑖√︀

|𝒩 (𝑢)|
√︀

|𝒩 (𝑖)|

c
(𝑙)
𝑢 =

∑︁
𝑖∈𝒩 (𝑢)

𝛼𝑖→𝑢𝛼
(𝑙)
𝑖→𝑢c

(𝑙−1)
𝑖 =

=
∑︁

𝑖∈𝒩 (𝑢)

cos
(︁
e
(𝑙−1)
𝑖 ⊙ p𝑢𝑖, e

(𝑙−1)
𝑢 ⊙ p𝑢𝑖

)︁
√︀

|𝒩 (𝑢)|
√︀

|𝒩 (𝑖)|
c
(𝑙−1)
𝑖

(11)

Note that 𝛼𝑖→𝑢 is static and only depends on the topol-
ogy of the bipartite graph, while 𝛼(𝑙)

𝑖→𝑢 varies along with
the exploration hop and depends on the embeddings of
ego/neighbor nodes, and the opinion review embedding.
After 𝐿 propagation hops, the final embedding represen-
tation is obtained as:

e𝑢 =

𝐿∑︁
𝑙=0

1

1 + 𝑙
e
(𝑙)
𝑢 , e𝑖 =

𝐿∑︁
𝑙=0

1

1 + 𝑙
e
(𝑙)
𝑖

c𝑢 =

𝐿∑︁
𝑙=0

1

1 + 𝑙
c
(𝑙)
𝑢 , c𝑖 =

𝐿∑︁
𝑙=0

1

1 + 𝑙
c
(𝑙)
𝑖

(12)

where we apply the scaling factor 1/(1+𝑙) to further alle-
viate the oversmoothing problem. A schematic overview
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Figure 2: Overview of the node refining algorithm proposed
for EGCF. A statically-weighted GCN network affected by
node representation error (a) is corrected through another
GCN network (b), where an opinion-based embedding is ex-
tracted from each review as edge side information to weight
the importance of the neighbor nodes on their ego nodes.

Table 1
Statistics of the tested datasets.

Datasets #Users #Items #Interactions Density
Average

interactions
per user

Baby 4,669 5,435 29,214 0.00115 6.3
Boys & Girls 8,806 4,165 57,928 0.00158 6.6

Men 3,218 7,605 60,299 0.00246 18.7

of the node refining algorithm proposed for EGCF is dis-
played in Figure 2.

Given the learned error-affected and correction embed-
dings from above, EGCF predicts if a user 𝑢 may interact
with item 𝑖 through the following formulation:

𝑦𝑢𝑖 = e⊤𝑢 e𝑖⏟  ⏞  
error-affected

+ c⊤𝑢 c𝑖⏟  ⏞  
correction

(13)

Thus, we apply the error correction to the user/item
embedding representation only when predicting the
user/item interaction. We optimize EGCF with the state-
of-the-art Bayesian Personalized Ranking (BPR) [42].

4. Experiments and Discussion

4.1. Experimental Setup
Datasets. We use three popular [43, 44] datasets from
Amazon’s Baby, Boys & Girls, and Men categories [18]
which contain historical user-item interactions and re-
views. We retain only interactions with non-empty re-
views, then keep the 20k and 10k most popular items for
Baby and Boys & Girls/Men, respectively. Finally, we ap-
ply the 5- and 15-core on items and users on Baby/Boys
& Girls and Men, respectively. Statistics are in Table 1.
Baselines. We compare our approach with eight state-of-
the-art models spanning several families: (i) traditional
CF (BPRMF [42] and MultiVAE [4]); (ii) review-based



CF (ConvMF [31] and RMG [37]); (iii) graph-based CF
(NGCF [7] and LightGCN [8]); (iv) graph-based CF with
attention (GAT [11] and DGCF [15]).
Reproducibility. We adopt the temporal leave-one-out
to split the datasets, where the last two recorded inter-
actions are included in the validation and test. We tune
hyper-parameters with [45] and follow the baselines pa-
pers, and fix the batch size to 256 and epochs to 400. As
for EGCF, we extract review embeddings through a pop-
ular pre-trained model1. Datasets and codes are publicly
available2. All models are implemented in Elliot [46].
Evaluation protocol. We measure the model accuracy
by adopting the recall (𝑅𝑒𝑐𝑎𝑙𝑙@𝑘), the normalized dis-
counted cumulative gain (𝑛𝐷𝐶𝐺@𝑘), and the mean av-
erage recall (𝑀𝐴𝑅@𝑘) [8, 15]. Additionally, consider-
ing the influence of novel and diverse recommendation
lists [47, 48] on both user’s and business’s interests, we
also assess beyond-accuracy metrics such as the expected
popularity complement (𝐸𝑃𝐶@𝑘) and the expected free
discovery (𝐸𝐹𝐷@𝑘), along with indices measuring con-
centration and coverage, i.e., the 1’s complement of the
Gini (𝐺𝑖𝑛𝑖@𝑘), the Shannon entropy (𝑆𝐸@𝑘), and the
item coverage (𝑖𝐶𝑜𝑣@𝑘). Specifically, the 𝐸𝑃𝐶@𝑘 and
the 𝐸𝐹𝐷@𝑘 refer to long-tail items and stand for the ex-
pected number of recommended unknown items which
are also relevant, and the expected number of recom-
mended known items which are also relevant, respec-
tively. Furthermore, the 𝐺𝑖𝑛𝑖@𝑘 and the 𝑆𝐸@𝑘 are
used to assess items’ distributional inequality, i.e., how
unequally a recommender system shows different items
to users, and the 𝑖𝐶𝑜𝑣@𝑘 quantifies the number of items
that the model recommends. For all metrics, higher val-
ues mean better performance. We leave the assessment
of complexity measures for the proposed model in future
extensions of the work.

4.2. Results and Discussion
Recommendation accuracy (RQ1). Table 2 reports
the results for accuracy measures on the top-10 recom-
mendation lists. Surprisingly, the sole introduction of
reviews does not seem to produce a consistent accuracy
boost. For instance, the strongest review-based method
(i.e., RMG) surpasses BPRMF only for the 𝑛𝐷𝐶𝐺 and
the 𝑀𝐴𝑅 on Baby (i.e., 0.0911 vs. 0.0785 and 0.1059
vs. 0.0980, respectively). Contrarily, adopting a graph
model can increase the accuracy to traditional CF. When
comparing LightGCN with MultiVAE, which obtain the
best performance in their respective recommendation
families, we observe that the former improves, on Baby,
the 𝑅𝑒𝑐𝑎𝑙𝑙 of 7% and the 𝑀𝐴𝑅 of 9%. However, the
observed difference even reverts on Men for the 𝑛𝐷𝐶𝐺
and the 𝑀𝐴𝑅. The application of attention mechanisms
1Please refer to our GitHub repository.
2https://github.com/sisinflab/Edge-Graph-Collaborative-Filtering.

Table 2
Accuracy metrics, i.e., 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑛𝐷𝐶𝐺, and 𝑀𝐴𝑅, for top-10
lists. Best value is in bold, while second-to-best is underlined.

Models Baby Boys & Girls Men

𝑅𝑒𝑐𝑎𝑙𝑙 𝑛𝐷𝐶𝐺 𝑀𝐴𝑅 𝑅𝑒𝑐𝑎𝑙𝑙 𝑛𝐷𝐶𝐺 𝑀𝐴𝑅 𝑅𝑒𝑐𝑎𝑙𝑙 𝑛𝐷𝐶𝐺 𝑀𝐴𝑅

MostPop 0.0940 0.0520 0.0627 0.1195 0.0647 0.0776 0.0702 0.0590 0.0672

BPRMF 0.1377 0.0785 0.0980 0.1821 0.1446 0.1666 0.1662 0.1314 0.1527
MultiVAE 0.1768 0.1262 0.1455 0.2224 0.1695 0.1990 0.2091 0.1656 0.1898

ConvMF 0.1230 0.0647 0.0800 0.1146 0.0831 0.0972 0.0838 0.0524 0.0584
RMG 0.1272 0.0911 0.1059 0.1512 0.1065 0.1325 0.1067 0.0727 0.0867

NGCF 0.1411 0.0916 0.1092 0.2006 0.1523 0.1783 0.1969 0.1461 0.1722
LightGCN 0.1892 0.1362 0.1590 0.2305 0.1743 0.2054 0.2124 0.1605 0.1882

GAT 0.1595 0.1051 0.1233 0.2069 0.1573 0.1846 0.1695 0.1254 0.1476
DGCF 0.1874 0.1352 0.1558 0.2249 0.1716 0.2023 0.2070 0.1554 0.1823

EGCF 0.1944* 0.1402* 0.1623* 0.2325 0.1792* 0.2089* 0.2195* 0.1703* 0.1988*
*statistically significant differences (p-value ≤ 0.05).

to weight the importance of neighbor nodes is rewarded
in Baby and Boys & Girls, where GAT always outper-
forms NGCF, reaching remarkable results such as the
𝑅𝑒𝑐𝑎𝑙𝑙 on Baby (i.e., 0.1595 vs. 0.1411) and the 𝑀𝐴𝑅 on
Boys & Girls (i.e., 0.1846 vs. 0.1783). Disentangling users’
intents on interacted items (i.e., DGCF) produces even
more accurate recommendations to NGCF on all datasets.
Nevertheless, LightGCN always performs better than
DGCF apart from very few cases (i.e., 𝑛𝐷𝐶𝐺 and 𝑀𝐴𝑅
on Men), even though DGCF’s calculated accuracy values
do not substantially differ from LightGCN’s ones (e.g., see
the 𝑀𝐴𝑅 on Baby). Noticeably, the proposed model (i.e.,
EGCF) outperforms the other baselines under all settings
and datasets, with near 100% statistical hypothesis tests
(i.e., paired t-test) showing that the results significantly
differ. This finding further motivates the goodness of
the solution. While we observe a substantial accuracy
improvement in traditional and review-based approaches
(e.g., +12% to MultiVAE for the 𝑀𝐴𝑅 on Boys & Girls
and +53% to RMG for the 𝑅𝑒𝑐𝑎𝑙𝑙 on Baby), introducing
an additional GCN-like network guided by users’ reviews
is even more beneficial to correct the representation error
observable in unweighted graph approaches. Particularly,
results show that such correction may lead to small accu-
racy improvements in some cases (e.g., see the 𝑅𝑒𝑐𝑎𝑙𝑙 on
Boys & Girls when correcting LightGCN) but also larger
ones in other cases (e.g., see the 𝑛𝐷𝐶𝐺 on Men when
correcting LightGCN). Such outcomes suggest that while
keeping the error-affected contribution in the final predic-
tion formula is useful to preserve the superior performance
of graph-based models to traditional and review-based ap-
proaches, the introduced correction term is useful to gain
even more accurate preference predictions than unweighted
graph architectures.
Recommendation novelty and diversity (RQ2). We
also assess how novel and diverse recommendation lists
are. The two novelty metrics in Table 3 (i.e., the 𝐸𝑃𝐶@𝑘
and the 𝐸𝐹𝐷@𝑘, left side) are discussed with concentra-
tion and coverage indices (i.e., the 𝐺𝑖𝑛𝑖@𝑘, the 𝑆𝐸@𝑘,
and the 𝑖𝐶𝑜𝑣@𝑘, right side) as in an ideal recommender
system, a loosely concentrated and large set of recom-

https://github.com/sisinflab/Edge-Graph-Collaborative-Filtering


Table 3
Calculated novelty metrics, i.e., 𝐸𝑃𝐶 and 𝐸𝐹𝐷, on the left side, and diversity indices, i.e., 𝐺𝑖𝑛𝑖, 𝑆𝐸, and 𝑖𝐶𝑜𝑣, on the right
side, for top-10 lists. Best value is in bold, while second-to-best is underlined.

Models Baby Boys & Girls Men

𝐸𝑃𝐶 𝐸𝐹𝐷 𝐸𝑃𝐶 𝐸𝐹𝐷 𝐸𝑃𝐶 𝐸𝐹𝐷

MostPop 0.0108 0.0728 0.0135 0.0913 0.0112 0.0904

BPRMF 0.0164 0.1153 0.0306 0.2282 0.0259 0.2167
MultiVAE 0.0268 0.2088 0.0360 0.2874 0.0333 0.2912

ConvMF 0.0135 0.0930 0.0174 0.1219 0.0102 0.0857
RMG 0.0193 0.1488 0.0226 0.1787 0.0144 0.1226

NGCF 0.0194 0.1463 0.0323 0.2510 0.0292 0.2531
LightGCN 0.0289 0.2271 0.0371 0.3012 0.0323 0.2856

GAT 0.0223 0.1708 0.0334 0.2616 0.0248 0.2106
DGCF 0.0287 0.2228 0.0365 0.2945 0.0311 0.2734

EGCF 0.0298* 0.2359* 0.0382* 0.3120* 0.0343* 0.3066*
*statistically significant differences (p-value ≤ 0.05)

Models Baby Boys & Girls Men

𝐺𝑖𝑛𝑖 𝑆𝐸 𝑖𝐶𝑜𝑣 𝐺𝑖𝑛𝑖 𝑆𝐸 𝑖𝐶𝑜𝑣 𝐺𝑖𝑛𝑖 𝑆𝐸 𝑖𝐶𝑜𝑣

MostPop 0.0018 3.5313 18 0.0023 3.5724 18 0.0015 3.9332 32

BPRMF 0.0019 3.7819 40 0.0031 4.0921 203 0.0037 5.2991 192
MultiVAE 0.2139 9.9160 4,143 0.2671 10.2463 3,824 0.1085 9.8988 3,014

ConvMF 0.0018 3.5933 18 0.0030 3.9745 220 0.0029 4.6783 265
RMG 0.1059 9.4892 2,130 0.1567 9.7193 2,538 0.1146 10.0344 2,549

NGCF 0.0948 8.8700 2,641 0.3031 10.5595 3,668 0.1749 10.7116 3,651
LightGCN 0.1405 9.3105 3,417 0.2398 10.1586 3,647 0.2051 10.8815 4,384

GAT 0.1370 9.2024 3,102 0.2496 10.2821 3,449 0.1235 9.7802 3,530
DGCF 0.0673 8.3193 2,325 0.1800 9.7617 3,208 0.1304 10.2011 3,378

EGCF 0.2294 9.8535 4,490 0.3037 10.4545 4,030 0.2208 10.8876 4,920
Statistical significance is not reported since it is calculated only on user level.
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Figure 3: Recommendation performance of EGCF, i.e., 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 (histogram bars in teal blue) and 𝐸𝐹𝐷@𝑘 (histogram bars
in lime green), on top-10 recommendation lists, when varying the number of explored hops from 1 to 4.

mended items should equally span different ranges of
popularity. As previously observed, EGCF is again the
best or second-to-best technique. While NGCF is not
as capable as LightGCN of proposing long-tail items on
Boys & Girls (e.g., 0.2510 vs. 0.3012 for the 𝐸𝐹𝐷), the
former surpasses the latter for the concentration indices
on the same dataset (e.g., 10.5595 vs. 10.1586 for the 𝑆𝐸).
Since NGCF adopts an ego-neighbor interaction compo-
nent, the concentration of explored and recommended
near items gets loose. Moreover, neighborhood weight-
ing leads to recommend items from the long tail (e.g.,
comparing GAT with NGCF, we observe a +17% for the
𝐸𝐹𝐷 on Baby). However, such a finding is not consis-
tent with the trend recognized for the concentration and
coverage indices (e.g., when comparing LightGCN with
DGCF, we notice 0.1304 vs. 0.2051 for the 𝐺𝑖𝑛𝑖 on Men),
as the neighborhood weighting procedure comes at the
expense of a limited hop exploration, not allowing such
models to explore wider catalog portions. Conversely,
injecting user-generated reviews brings new informative
content (e.g., RMG recommends a broader and less con-
centrated range of items from the catalog than DGCF on
the Baby dataset). Finally, weighting the neighborhood
importance and exploring long-distant user-item inter-
actions through reviews-enriched content (i.e., EGCF)
allows to retrieve larger portions of heterogeneous items
(e.g., EGCF outperforms LightGCN for the 𝐺𝑖𝑛𝑖 by +63%
on Baby and DGCF for the 𝑆𝐸 by +7% on Boys & Girls),

without retaining less popular items from the long-tail
(observing the same models, +3% for the 𝐸𝑃𝐶 on Baby
and +6% for the 𝐸𝐹𝐷 on Boys & Girls). Such outcomes
demonstrate that the content enrichment brought by the
extracted review features (injected into the representation
error correction) allows to explore user-item interactions at
multiple hops, leading to more heterogeneous recommen-
dation lists which also include items from the long-tail.
Effect of hop exploration number (RQ3). Figure 3
displays, for EGCF, the 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 and 𝐸𝐹𝐷@𝑘 perfor-
mance variation on top-10 recommendation lists when
exploring a number of hops in the range 1-4, where even
numbers stand for same node type connections (e.g., user-
user), while odd numbers refer to opposite node type con-
nections (i.e., user-item). As evident from the histograms
of Baby and Boys & Girls, the 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 consistently
increases from 1 to 4 hops (this is why we adopt four
hop explorations for EGCF on those datasets). The same
trend is not observable for Men, where two explored hops
seem to provide the highest accuracy boost, motivating
the adoption of 2 hop explorations for EGCF on the same
dataset. Such behavior could be due to the average num-
ber of users’ interacted items in Men (approximately 19,
see Table 1). The node refining probably does not re-
quire a broad exploration of its neighborhood. As for the
𝐸𝐹𝐷@𝑘, the Baby and the Men datasets seem to agree
on two exploration hops to produce the most diverse
item lists of recommendations because they leverage (as



previously recalled) user-user and item-item intercon-
nections (and similarities). The trend is also aligned with
the Boys & Girls dataset, where user-user and item-item
links are exploited even at a higher depth (i.e., four ex-
ploration hops). The emerged insights shed light on two
main contributions: (i) with the modified neighborhood
weighting process, which makes use of reviews to enhance
the informative content carried by user-item interactions,
EGCF is less limited in the hop exploration, thus providing
more accurate recommendations, and (ii) user-user and
item-item connections are the keystones on which building
more diverse item recommendation lists.

5. Conclusion and Future Work
This work proposes Edge Graph Collaborative Filtering
(EGCF), which incorporates users’ opinions extracted
from reviews into the edges of a GCN to weight the
neighborhood importance on the ego node. Extensive
experimental evaluation shows that EGCF outperforms
traditional, review- and graph-based models. The work
complements with an analysis of beyond-accuracy per-
formance and an extensive study on the number of lay-
ers. Leveraging the importance of graph edges through
node-node side information (e.g., users’ reviews) opens
to future directions, namely: (i) study the impact of this
re-weighting by making it a hyper-parameter, and (ii) an-
alyze the possible application of the proposed technique
to different tasks other than recommendation.
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