
Graph Neural Networks For Affective Social Media: A
Comprehensive Overview
Michail Karavokyris∗, Spyros Sioutas

Computer Engineering and Informatics Department, University of Patras, Patras 26504, Hellas

Abstract
Social media have become the main platforms for expressing and supplementing nuanced human activity such as engaging
in public and private conversations, creating and sharing multimedia content, participating to digital culture events, and
recently describing emotions about events, places, or even products. In this survey, we provide a comprehensive overview of
graph mining and machine learning on affective social media through graph neural networks (GNNs). The latter are capable
of performing a variety of tasks, such as graph and vertex classification, link prediction, and graph clustering using vertex
information, edge information, and topological structure. These capabilities are critical in harnessing the vast emotional
information available in social media in order to generate meaningful and scalable affective analytics.
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1. Introduction
Currently social media are widely considered to be the
digital reflection, or even the digital twin in certain cases,
of individuals and groups. Among the prime informa-
tion found in social media are affective indicators such
as the emotional polarity of posts or reactions to them.
This is especially true in Twitter which abounds with
long conversations full with emotionally charged replies
[1][2], whereas Facebook [3] and LinkedIn [4][5] have
dedicated emotional reaction buttons for each post. Even
Instagram contains images which have been reported to
elicit emotional responses [6].

Typically, in deep learning applications, such as fraud
detection, natural language processing (NLP), biomedical
image processing, and computer vision, the datasets are
represented as manifolds in the Euclidean space. How-
ever, recently the number of engineering scenarios requir-
ing non-Euclidean data and instead rely on graphs has
been rising. Therein topological relations and intercon-
nectivity play a major role. Graphs enable the modeling
of important problems in various scientific fields includ-
ing complex systems, social networks, protein-protein
interaction networks, logistics and long supply chains,
transportation networks, knowledge graphs, and others.

Graph Neural Networks (GNNs) constitute a broad
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class of neural network architectures depending strongly
on information propagation mechanisms such as mes-
sage passing between graph nodes or attention functions
between network layers to encapsulate the higher order
communication flow and interplay inherent in graphs.
Although their functionality may resemble that of other
architectures like the established multilayer perceptrons
(MLPs) found in many machine learning (ML) applica-
tions, it is fundamentally different mainly because the
role of higher order patterns is more intense.

The primary research objective of this conference pa-
per is the presentation of the predominant GNN architec-
tures and their primary properties as well as how they
can be applied to basic tasks related to affective social
network analysis. This will give the interested reader a
brief yet concise view of the research landscape of a field
which is the focus of intense interdisciplinary research.

Table 1
Notation Summary

Symbol Meaning First in
△= Equality by definition Eq. (1)
̇x First vector derivative Eq. (4)

tanh (⋅) Hyperbolic tangent Eq. (8)
deg (𝑣) Degree of vertex 𝑣 Eq. (1)
diag [𝑑1,1, … , 𝑑𝑛,𝑛] Diagonal matrix Eq. (1)
I𝑛 𝑛 × 𝑛 identity matrix Eq. (2)

The remainder of this work is structured as follows. In
section 2 the recent scientific literature regarding GNNs,
affective social media, and graph mining is overviewed.
Then in section 3 the primary properties of GNNs are enu-
merated in detail, whereas in section 4 the applications of
GNNs to affective social network analysis are presented.
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Future research directions are given in section 5. Capital
boldface letters denote matrices, small boldface vectors,
and normal small scalars. Acronyms are explained the
first time they are encountered in the text. Additionally,
the terms vertex and node are used interchangeably in
this work. The same holds true for the terms edge and
link. In function definitions parameters follow the re-
spective arguments after a semicolon. Finally, in table 1
the notation used in this work is summarized.

2. Related Work
As stated earlier GNNs are neural networks tailored for
natively handling graphs or any kind of linked data for
that matter [7]. Techniques for doing so include graph
embedding [8], message passing [9], and attention mech-
anisms [10], the latter primarily in the form of graph
attention networks (GATs) [11]. The current state of
the art in GNNs allows them to perform link prediction
[12], graph convolution [13], semi-supervised [14] and
unsupervised [15] graph clustering, and node classifica-
tion [16]. Regarding applications, GNNs have been used
to evaluate the affective coherence of ordinary [17] and
fuzzy [18] Twitter graphs, to perform content filtering
[19], to yield social recommendations [20], to compute
recommendations at large scale systems [21], to perform
image classification [22], to do vertex classification based
on their susceptibility in SIS-type propagation models
[23], for fake news discovery [24], and for rumor tracing
[25]. Comprehensive field reviews regarding GNNs can
be found in [26] and also in [27].

Neural network architectures are ubiquitous in ML
[28, 29], especially in conjunction with low rank tensor
approximation [30], and signal processing [31]. Bayesian
neural networks stem directly from non-classical signal
estimation theory [32]. Convolutional neural networks
(CNNs) are extensively used in image processing [33]. Re-
cently deep neural networks have been trained to obey
physical laws [34]. In [35] a sequence of social graphs
is compressed with the two dimensional discrete cosine
transform (DCT2) but expanded with a tensor stack net-
work (TSN) trained with information from the entire
sequence. Moreover, TSNs have been used for sound
classification [36] and large scale urban network speed
prediction [37]. Self organizing maps (SOMs) for cultural
content recommendation are described in [38]. Recent
and extensive reviews on neural network architectures
include [39] and [40], where an extended and neural net-
work taxonomy is described as well.

Graph mining aims at locating and extracting latent
and non-trivial knowledge from graphs such as cycle
lengths in massive graphs [41], higher order spatiotempo-
ral patterns [42], and triangles [43]. Techniques include
employing intelligent agents for autonomous mining

[44], approximating directed graphswith undirected ones
based on enegry criteria [45], managing graph streams
with relational algebra [46], computing graph topological
correlation [47], efficiently inferring graph isomorphism
[48] and performing generic pattern search [49] with
GNNs on graphs, and massive graph visualization with
feedback for graph matching [50]. Applications of graph
mining include among others co-author recommenda-
tion [51], efficient new drug discovery [52], consensus
protocols in blockchains [53], and energy management
in smart power grids [54]. Other considerations include
fairness [55], explainability and automation [48], and
application to the emerging field microservices [56].

Social network analysis, although it relies heavily on
graph mining [57], it is a distinct field since it also fo-
cuses on social media functionality [58], which includes
posts [59], conversations [60], and even digital trust as a
conditional extension of the one found in the real world
[61, 62]. Moreover, psychological aspects such as self-
esteem [63] and cognitive ones like consumer engage-
ment and online time [64] play a central role. Among the
numerous social media applications can be found stock
market trend prediction [65], the acceleration under suit-
able conditions of open innovation [66], the selection
database architecture according to social queries regard-
ing Twitter account influence [67], the alteration of the
value of NFTs depending on the Twitter influence of the
respective holder [68], and the data-driven deployment of
digital marketing [69]. Reviews of the field include [70]
which places special emphasis on community structure
discovery, [71] which explores the dynamics of academic
social networks and online communities, and [72] where
collaborative innovation processes are explored.

3. Graph Neural Networks

3.1. Overview
In this section first the most frequent tasks performed
by the GNN architectures are described. Then, the most
prominent GNN types and their properties are presented.

3.2. GNN Tasks
Typically, every application for affective social media fits
into one of the following basic tasks:

• Node classification: The goal is to predict miss-
ing node labels in a social network using the la-
bels of the neighbor nodes. For example, the emo-
tional state of a user can be predicted as a function
of the attributes of that user and of its neighbours.

• Link prediction: In this scenario the objective
is to predict the link between various entities in a
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network by utilizing a partial or otherwise incom-
plete adjacency matrix. This task is frequently
used in social network settings because it can pre-
dict whether any two vertices, which may well
be accounts, pages, or even entire communities,
are likely to be connected. Moreover, in certain
cases and depending on the available features, the
strength of this link may be estimated as well.

• Community detection: The case here is to allo-
cate nodes into clusters whose size is unknown be-
forehand, namely it is a clustering problem. This
can be done by partitioning the vertex sex based
on edge features like weights or, alternatively,
by viewing the nodes as items and by grouping
together items with comparable properties. For
instance, community detection can be used on
affective social media analysis to locate commu-
nities with similar emotional characteristics.

3.3. Architectures
GNNs constitute a class of neural networks based on the
dependence between the elements of the graph. The term
GNN does not refer to a single algorithm or architecture
but rather to a plethora of distinct algorithms. The com-
mon denominator for each GNN is the ability to exploit
the information inherent in graph topology in order to
compute a global steady state. This is more evident in
the message passing architectures, but this can also be
seen in some other of the most common GNN architec-
tures that have been developed in recent years like graph
convolutional networks (GCNs) and graph attention net-
works (GATs). In table 2 the architectures examined here
and their main properties are presented.

3.3.1. Graph Convolutional Networks

Graph convolutional networks (GCNs), which seek to
imitate the functionality of ordinary CNNs, are currently
the prime candidate architectures for most real life ap-
plications. Specifically, the main idea behind GCNs is
to adapt CNNs to natively handle linked data, namely
graphs. CNNs in order to create highly expressive repre-
sentations can extract multiscale localized spatial infor-
mation and combine it in order to yield the final result. In
this sense, they exploit the higher order patterns inherent
in graphs. Since CNNs are able to capture meaningful
features across the entire data sets, GCNs adjust the oper-
ation of convolution from grid data to graph data. Graph
convolution uses the features of the neighbors of a given
node to make predictions by transforming the features of
a node in a latent space. The objective for these models is
to train a function of features on a graph where the input
is a set of nodes and edges which are described from a
feature vector that contains their attributes.

There are two different types of graph convolution
operations, which in turn determine the domain a given
GCN is defined on:

• Spatial convolution: These GCNs operate di-
rectly on the graph adjacency matrix as if were a
grid but with additional constraints. Thus, con-
volution is performed in a way similar to images
by using spatial features learned from the graph.
This is the equivalent to the time domain filtering.

• Spectral convolution: These GCNs utilize the
eigendecomposition of the graph Laplacian ma-
trix in order to propagate information across
nodes. Therefore, processing takes place in the
two-dimensional spatial frequency domain akin
to the transform domain adaptive algorithms.

Recall that the graph Laplacian of equation (2) can be
defined based on the graph degree matrix of equation
(1). Observe that nodes of zero degree essentially do not
contribute to the overall graph structure and thus are
considered to have been removed during a preprocessing
stage. Therefore, matrix D is always invertible.

D △= diag [deg (𝑣1), … , deg (𝑣𝑛)] (1)

With this knowledge the graph Laplacian matrix can
then be constructed from the respective adjacency matrix
A as shown in equation (2). The eigenexpansion of L is
the graph spectrum on the corresponding basis.

L △= I𝑛 − D−1A (2)

Although spectral GCNs can construct powerful graph
representations and act as convolutional filters for graph
classification with considerable accuracy, they fail to uti-
lize feature locality commonly found in most graphs. Ad-
ditionally, spectral GCNs come with great computational
cost, especially for large networks.

In order to address the issues of locality and computa-
tional complexity, ChebNets were developed in order to
combine CNNs with the spectral networks theory. Thus,
in ChebNets the representation of any feature vector
should only be influenced by the 𝑘-hop neighbors. There-
fore, ChebNets provide the essential algorithmic foun-
dation and effective schemes since the convolution is
computed using Chebyshev polynomials instead of the
eigenvectors of the Laplacian matrix. Therefore, spectral
GCNs can be considered as ChebNets where the neigh-
borhood depth equals one. The objective of this model is
to learn a function of features which operates on a graph
𝐺 represented as in equation (3):

𝐺 △= (𝑉 , 𝐸) (3)

Specifically, a ChebNet is designed to build an 𝑁 × 𝐹
output matrix where 𝐹 is the number of output attributes
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and 𝑁 is the number of vertices. Said matrix is iteratively
constructed given the following graph input.

• Feature description vectors, one for each of the
𝑁 nodes, are stacked are form a 𝑁 × 𝐷 feature
matrix where 𝐷 denotes the number of features.

• The 𝑁 × 𝑁 graph adjacency matrix. Therein are
contained all local patterns and its powers encode
all higher order ones.

Each network layer has a nonlinear function which
acts as the ChebNet propagation rule. Based in the choice
of the propagation rule and the numbers this is succes-
sively applied models may vary. The most common prop-
agation rule is ReLU operating on a linear combination
of the outputs of the previous layers. The features pro-
cessed at each layer are aggregated to form the attributes
of the following layer. This implies that each node in
the 𝑘-th layer will collect information from their 𝑘-hop
neighbors. It has been observed that a small number of
layers, typically at most four, suffices.

Since in this model the aggregated representation of
each vertex includes only local features, namely those
of its neighbors, this has to be taken into consideration
in the structure of the adjacency matrix. This is done in
two ways, by adding the identity matrix to it to allow
the construction of its powers and also by normalizing it
similarly to the graph Laplacian of (2). So when GCNs
and ChebNets are trained by stochastic gradient descent
algorithms, which tend to be sensitive to the scale of input
features, there are no vanishing or exploding gradients
which frequently delay or even derail training.

It should be also mentioned that GCNs are mainly
used for semi-supervised node classification, whether
binary or multi-class by adding a softmax layer at the end.
Also by combining graph convolution layers with graph
pooling layers the GCN model will be able to predict the
class labels for an entire graph.

3.3.2. Graph Attention Networks

Analogous to GCNs, GATs average hidden attributes on
a local level. But unlike GCN, which compute the prop-
agation weights explicitly during training, GATs define
them implicitly. This is accomplished by the attention
mechanism, namely a learnable function to re-weight
synapses between neurons as a function of the values of
the hidden features. In this way, the significance of each
node can be specified by utilizing more information than
the structure of the graph and the connectivity patterns
contained in the latter. However, this local aggregation
has to be eventually compensated for when values are
propagated to other layers and this is in fact one of the
factors differentiating GATs.

In particular, the synaptic weights are computed as a
result of an attention mechanism which computes the

normalised coefficients from the unnormalized ones. Typ-
ically, the softmax function is the key to normalizing
these coefficients as it can convert a set of raw scores to
an exponentially weighted distribution.

3.3.3. Message Passing Neural Networks

Message passing neural networks (MPNNs) are decentral-
ized architectures which rely heavily on message passing
in order to perform a given computation. Such communi-
cation may take place synchronously or asynchronously.
Each node starts with a local ground truth vector and
progressively based on input from neighboring vertices
evolves into a steady state vector. Although initially the
information exchanged between vertices may be inaccu-
rate, this is remedied at later stages, provided the update
mechanisms are designed to do so. This is by no means
a trivial task as essentially this is a decentralized non-
linear control problem. Therefore, extended care must
be taken beforehand in order to avoid effects such as
Witsenhausen’s counterexample [73].

In contrast to other neural network architectures,
MPNNs have a flat architecture in the sense that there
are no layers. This implies that the diameter of the net-
work plays a crucial role as it represents the maximum
amount of time, measured in the number of hops, which
is necessary in order for a given piece of information to
be transmitted across the MPNN. Related metrics such
as the effective diameter reveal the links necessary for a
considerable segment of the graph to be reached. Strong
locality, expressed in the number of triangles or equiva-
lently in the clustering coefficient, contributes to quick
propagation. On the contrary, bridges may be congestion
points. In any case, topology is central in MPNNs and its
effects are more intense compared to other GNN types.

In table 2 are listed some of the most representative
convergence schemes proposed in the bibliography.

Table 2
GNN Architectures

GNN architecture Description

Message passing Communication with messages
Graph convolution Aggregation of hidden features
ChebNet Aggregation of attributes
Graph attention Self attention mechanism

3.4. Convergence
3.4.1. State Vectors

Convergence is a major topic since GNNs are distributed
and, hence, there is not a single point of centralized con-
trol. As such, various techniques based on traditional
control equations such as those describing continuous,
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linear, and time invariant systems as in equation (4) do
not directly apply. Therein A is the system plant, b is the
input distribution vector, and x is the state vector.

ẋ △= Ax + b𝑢, A ∈ ℝ𝑛×𝑛, b ∈ ℝ𝑛×1 (4)

In equation (4) ẋ is defined as the column vector con-
taining the first time derivatives of the control variables
𝑥 [1] to 𝑥 [𝑛] as shown in equation (5). The selection of
these variables essentially determines the graph model.

ẋ △= [𝜕𝑥 [1]
𝜕𝑡

𝜕𝑥 [2]
𝜕𝑡

…
𝜕𝑥 [𝑛]
𝜕𝑡

]
𝑇
∈ ℝ𝑛×1 (5)

Another control model based also on the concept of the
state vector which is more general but at the same time
less tractable is that of the nonlinear control model of
equation (6). In the latter 𝑓(⋅) is a nonlinear differentiable
vector valued function codifying network dynamics.

ẋ △= 𝑓(x, 𝑢), 𝑓∶ ℝ(𝑛+1)×1 → ℝ𝑛×1 (6)

Although the nonlinear control model of (6) covers
more cases than that of its linear counterpart of (4), there
are less analytical tools to explore and handle it. More-
over, many control related results depend heavily on the
properties of 𝑓(⋅). On the contrary, the control model
of (4) is appealing for a number of reasons including
tractability and explainability. To this end, often many
instances of (6) are linearlized with various methods to a
time varying version of equation (4) where the properties
of the latter hold true locally.

3.4.2. Brower’s Fixed Point Lemma

For most message passing architectures an alternative
methodology to monitor convergence lies in the Brower’s
fixed point lemma (BFPL). The latter states that any con-
tinuous function 𝑓(⋅)mapping any interval 𝐼0 to itself has
at least one fixed point 𝑠0 ∈ 𝐼0 as shown in (7).

𝑠0 = 𝑓(𝑠0), 𝑓 ∶ 𝐼0 → 𝐼0 (7)

The existence of the fixed point 𝑠0 guarantees that the
MPNN cannot escape from it and as such it is in one of the
potentially many steady states. However, that requires
that a significant number of neurons reach that state
before they start propagating it to their neighbors. More-
over, methodologies based on the BFPL are considered to
be indirect in the sense that they monitor the output of
each node 𝑠 and not their internal state vector s as before.
Therefore, the global convergence is tracked through
individual vertices. Still, they have been applied success-
fully, especially when the processing involves smooth
functions, in cases where the local computation is yields
a single scalar. For instance, BFPL has been applied to

MPNNs which employ with proper scaling the sigmoid
or hyperbolic function as activation function as shown
in equation (8).

𝜑(𝑠; 𝛼0, 𝛽0)
△= 𝛼0 tanh (𝛽0𝑠)

△= 𝛼0
𝑒𝛽0𝑠 − 𝑒−𝛽0𝑠

𝑒𝛽0𝑠 + 𝑒−𝛽0𝑠
(8)

As stated earlier, topology plays a central role in con-
vergence, since it determines the average and maximum
rate of spatial information propagation in terms of the
number of links between any two processing vertices.

In table 3 are listed some of the most representative
convergence schemes proposed in the bibliography.

Table 3
Graph Neural Network Convergence Criteria

Type Description

BFPL Based on continuous maps
State convergence Aggregation of local convergence

3.5. Learning Tasks
Irrespective of their architectural classification GNNs
are called to perform the following fundamental algo-
rithmic tasks across a broad spectrum of applications.
These include discovering graph community structure,
setting a message passing mechanism, performing vertex
classification, and doing graph convolution.

Figure 1: Graph community discovery.

Graph community structure discovery is paramount
in graph mining as it reveals latent dynamics as shown
in figure 1. Still, in the scientific literature there is more
than one definition of what makes a community as this
may well depend on the semantics of the underlying
domain. For instance, graphs may be weighted, signed,
or undirected. Each such property adds constraints to
community discovery. Moreover, since this task relies
on higher order patterns, it is also computationally chal-
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lenging. Consequently, a number of diverse heuristics
have been developed for it.

Message passing mechanisms are crucial in most engi-
neering scenarios involving graphs, even indirectly since
most networks are set up in order to achieve coherency
and communication. Especially in MPNNs selecting the
attributes represented in the ground truth vector of each
vertex is of paramount importance since that determines
what is exchanged during communication. A static snap-
shot of message passing is shown in figure 2.

Figure 2: GNN message passing.

Node classification is another important task where
each vertex is assigned one out of many possible labels
drawn out of a finite label set based on a decision rule.
This functionality is shown in figure 3. Labels may be
repeated and, depending on the problem, some vertices
may already have a label. Moreover, this task has close
ties with the community discovery task, although in clas-
sification nonadjacent nodes may have the same label.
More recently ML models which can utilize structural
and functional attributes, whenever the latter are avail-
able, have been proposed in the literature. It should be
noted though that functional features depend heavily on
the underlying domain, whereas structural attributes can
be applied to any scenario.

Graph convolution is an operation involving a pair of
graphs and yields a larger one whose topology depends
on theirs. This allows the efficient discovery of local
patterns and, depending on how convolution is defined,
even their variants or incomplete ones. This operation
initially appeared in the field of computer vision and has
found numerous applications in social media analysis
and ML. Figure 4 shows an instance of this operation.

Finally in figure 5 the task of link prediction task is
shown. It is an important task where given a partial
graph or an evolving one and a decision rule must be
devised which can predict whether a link between any

Figure 3: Node classification.

Figure 4: Graph convolution.

Figure 5: Link prediction.

two given nodes exists. In order to determine whether
such link should be added to the graph, a segment of the
graph considered as ground truth is used along with the
assumption that scale free graphs exhibit self-similarity
in many levels. Alternatively, state vectors in every ver-
tex or structural patterns may be used to train an ML
model. Either case may require a considerable amount
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Table 4
Computational Tasks For Each Affective Computing Task

Affective task Computational tasks

Node affective state Graph attention, node classification
Edge emotional potential Node classification, message passing, graph attention
Post emotional potential Node classification, link prediction, graph convolution
Node affective influence Message passing, link prediction, node classification
Affective communities Community discovery, node classification, link prediction

of computational resources, depending on the algorithm.

4. Affective Social Media Analysis
Affective computing is a recent field which extends the
existing knowledge in social network analysis with emo-
tional attributes and their study. It has already bore fruits
[5, 4] and its prospects look bright with the advent of
sophisticated DL techniques such as the GNN architec-
tures described earlier but also like autoencoders, graph
adversarial networks (GANs), and CNNs. All these mod-
els operate on a plethora of affective attributes including
among others word length and polarity, number of sen-
tences, use of punctuation, mentions, and words having
special meaning such as modifiers, negations, and of con-
siderable emotional weight.

As stated above, affective social media analysis places
emphasis on the emotional state of social media accounts
through their posts as well as through the interactions be-
tween them. The methodologies most commonly found
in the scientific literature can be broadly divided into the
following categories. Furthermore, in table 4 is shown
how each of the affective applications presented in this
section can take advantage of the potential offered by the
learning tasks of GNNs.

The determination of the affective state of a node or a
group of nodes is paramount as it allows, among others,
for locating potential starting points for various online
digital campaigns with political, commercial, or social
topics. Moreover, it determines which sort or messages
are appropriate for a given node given its affective state.
To this end, a number of node classification techniques or,
more recently graph attention-based mechanisms, can be
applied. Given the phenomenon of homophily in social
media stating that nodes with similar behavior eventu-
ally tend to connect with each other, the neighborhood
of the vertex under consideration may as well provide
additional affective attributes.

In a sense the dual problem of the above is finding out
the affective potential of an edge as the latter is primarily
a function of the affective state of its endpoints. How-
ever, since links in a network may accommodate other
communication needs, for instance that of the respec-

tive communities in case of a bridge, it also depends on
its functionality. As such, in addition to node classifica-
tion and graph attention analysis pertaining to message
passing should be employed.

Tracing the emotional effect of a post is more challeng-
ing since a number of interconnected instances of the
previous problem should be studied as a post propagates
through a graph. Moreover, possible variations of or in-
tentional modification to the latter should be also taken
into consideration as well as the overall information con-
text of the adjacent edges and vertices. Consequently, the
entire route of a post should be analyzed in this case us-
ing graph convolutions and node classification, whereas
certain propagation patterns of important posts may be
explained with link prediction techniques.

The affective influence of a node can be considered as a
generalization of a potentially nonlinear combination of
determining the emotional state of a number of vertices
with evaluating the impact of the posts of the node under
consideration. This happens as influence is frequently
taken to be a function of the topological properties of its
high order neighborhood and of the emotional potential
of its post. In order to evaluate said affective influence,
node classification techniques, message passing, and link
prediction are frequently employed.

Finally, affective community discovery is perhaps the
most challenging of the tasks commonly encountered in
affective social media analysis since it entails the compu-
tation of various higher order influence metrics. There-
fore, a considerable portion of or even the entire graph
topology and, depending on the problem perhaps the
associated functionality, must be factored in. However, a
far more accurate insight into the total network dynam-
ics is obtained. Therefore, approximate analysis of an
evolving network for a number of steps can take place
before such a computation can be performed again.

5. Conclusions
This conference paper focuses on a comprehensive pre-
sentation of a large number of graph neural network
architectures tailored for performing affective analysis
on social media. The latter abound with heterogeneous
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human emotional information coming from sources so
diverse as text, music, images, and even direct emo-
tional markings. Therefore, there is more than sufficient
space in social networks to develop information process-
ing strategies aiming at deducing numerous affective at-
tributes such as word and sentence emotional polarities
Such attributes are critical in applications such as politi-
cal or commercial digital campaigns or even in assisting
professionals in timely diagnosing mental illness.

Regarding future research directions, more affective
applications of GNNs can be explored. Moreover, new
GNN architectures may be better suited for the tasks
presented here.
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