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Abstract
With the advancement of technologies in synthetic speech generation, audio deepfake is becoming the
most common source of deception. As a result, distinguishing between fake and real audio is becoming
increasingly difficult. Several studies were conducted based on machine learning approaches using
ASVSpoof or AVSpoof to deal with these challenges. This study experiments on the latest fake or real
(FoR) dataset. The audio samples of this dataset are generated using the best text-to-speech (TTS) models.
The proposed approach is based on optimal feature engineering and selecting the best machine learning
models to detect fake or real audio. Feature engineering employs various methods for extracting features
from audio. In contrast, the feature selection method employs the best-performing minimum features,
which are then fed to machine learning classifiers. The experiments use six machine learning (ML)
classifiers and three subsets of the FoR dataset. The experimental results show that the proposed approach
can accurately detect real or fake audio. The proposed method outperforms the baseline method by an
accuracy gain of 26%.
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1. Introduction

Deep fake is fake data generated using deep learning; though they are entertaining, we have
seen many examples where they could be misused and used to spread disinformation. In the
past couple of years, deepfakes have been intentionally used to spread fake news. With recent
breakthroughs in voice conversion algorithms and text-to-speech [1, 2], synthesizing human
speech will become much easier, opening the way for a future in which audio will play an
equivalent role in deepfake detection as video [3, 4]. This research investigates the interaction
between these two modalities, which might be essential in identifying audio-visual deepfakes.
Recent work has concentrated on recognizing visual artifacts and ’fingerprints’ from various
generating frameworks and detecting local texture inconsistencies produced by face-swapping.
Another area of research employs biometric signals, such as recognizing distinct facial motion
patterns inherent in certain persons; nevertheless, such ID-specific approaches are restricted in
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their capacity to generalize to new identities[5, 6].
In the fields of voice forensics and artificial intelligence, various automatic detection algo-

rithms for deepfakes have been created[7]. However, it has been observed that there is a shortage
of experiments on humans compared to machines’ comprehension of modified audio, mainly
controlled speech. Pictures and video data remain the center of human deepfake detection and
are the most studied. Many researchers have tried to compare the detecting abilities of humans
and machines [1, 8]. Their study was based on their unique deepfake video and picture database,
classified into three quality levels: original, high-quality deepfake, and low-quality deepfake.
They discovered that the AI detection method beats the human participants, particularly when
it comes to low-quality picture deepfakes. This means that humans have trouble differentiating
between actual and fraudulent pictures at lesser resolutions[9].

In [10], the most comprehensive video deepfake dataset to date was created and examined.
It consisted of three distinct online research that drew in 15,016 people. Participants were
either oblivious to AI detection predictions or were made aware of them. They discovered that
although naive human participants and AI detection systems had equal detection accuracy, they
were deceived by distinct characteristics. Humans made aware of the AI algorithm’s prediction
judgments performed better on the challenge. However, human accuracy would also suffer if the
AI model forecasts were incorrect [11, 12]. The capacity to recognize synthetically created sounds
is known as audio deepfake detection. The authors of [13] utilized the ASVspoof dataset to
determine if human-based subjective judgments of spoofed can be predicted automatically. They
conducted an inter-language investigation in which 68 native English and 206 native Japanese
listeners classified samples as faked or benign. They observed that the general trends in both
language groups were similar, with slight deviations. The study’s authors made no distinction
between people with and without IT technical experience. There is also a substantial body of
similar work [14, 15] that uses machine learning to detect abnormalities in audio waveforms
that may be diagnostic or distinctive of deepfakes. Artifacts such as noisy malfunctioning,
unable to match a phase, reverberation, or unintelligibility are examples of such artifacts [16].
There are additional abnormalities that humans do not generally sense, such as various sorts of
prolonged quiet, even though such artifacts are critical for AI identification of deepfakes[17]. In
this research, we are the first to investigate whether ML can recognize audio deepfakes (i.e.,
fake audio data generated using deep learning). We investigated how successfully machine
learning or deep learning could differentiate audio deepfakes from actual material and whether
specific characteristics aided detection performance.

1.1. Motivation

The main motivations for this research are presented in this section. Audio deepfake has become
the most prevalent source of deceit as synthetic voice synthesis technology advances. Hence,
distinguishing between fake and real audio is becoming more challenging. This is why a system
that can detect authentic or fraudulent audio in a short amount of time is so important. Previous
research has been done on it. However, the present methodologies are computationally intensive.
Consequently, the suggested method comprises the best feature extraction methods, resulting
in higher classification results in less time.



1.2. Contribution

This study proposes a method for detecting fake audio and distinguishing deepfake audio from
non-synthetic or actual audio. The following are the specific contributions:

• Provides a unique method for distinguishing between real and counterfeit audios in FoR
dataset subsets using feature engineering and machine learning classifiers.

• The supreme feature engineering strategy is employed, which involves the best feature
extraction and feature selection approaches to extract the most appropriate features from
an audio source.

• Experimental results showed that the proposed approach accurately detects real or fake
audio. The proposed method outperforms the baseline method by an accuracy gain of
26%.

1.3. Organization

A detailed description of previous studies on deepfake audio detection is presented in section 2.
The explanation of the dataset used to detect fake or real audio is presented in section 3. The
proposed approach for detecting and classifying real and fake audio is presented in section
4. The experimental results detail is provided in section 5. Finally, this work’s future and
conclusion are presented in section 6.

2. Literature Review

Audio deepfakes are ML/DL-generated audio that appears to be real. To identify audio deep-
fakes, one must first understand the processes of creation. Detecting audio generated through
deepfakes is critical since audio deepfakes have been used in several illegal actions in recent
years. A replay attack is one of the three categories used before generative networks; speech
synthesis and voice conversion were the three subcategories of audio deepfake approaches. The
reader is given this part’s most recent and relevant research and tools for each category.

2.1. Replay Attack

Replay attacks can work by simply replaying a voice of a target speaker. The main concern is
detection, and there are two types of detection. Far-field and cut and paste detection assaults are
the two categories. The test segment in far-field detection replay attacks is a far-field microphone
recording of the target that has been repeated on a phone handset with a loudspeaker[18].
If a recording is created by cutting and pasting small recordings to simulate the sentence
required by a text-based system, it is referred to as a cut-and-paste detection system[19]. Text-
dependent speaker verification can be used to guard against replay assaults. Deep convolutional
networks are a recent technology for detecting end-to-end replay threats [20]. Some replay
attack detection techniques have been proposed by focusing on the network properties[21].
Replaying a voice recording of a target speaker. Far-field detection and cut-and-paste detection
assaults are the two categories. The test segment in far-field detection replay attacks is a
far-field microphone recording of the target that has been repeated on a phone handset with a



loudspeaker[22]. If a recording is created by cutting and pasting small recordings to simulate
the sentence required by a text-based system, it is referred to as a cut-and-paste detection
system[23]. Text-dependent speaker verification can guard against replay assaults[24]. Deep
convolutional networks are a recent technology for detecting end-to-end replay threats. Some
replay attack detection techniques have been proposed by focusing on the network properties.

2.2. Speech Synthesis

Speech Synthesis can be artificially generating human speech with software or hardware
programs. Speech synthesis may be used for various reasons, including text reading and serving
as a personal AI assistant. Text-To-Speech is included in SS, which analyses the text and
generates speech following the text supplied using the norms of linguistic description of the text.
Another advantage of speech synthesis is providing multiple accents and voices instead of pre-
recorded human voices. Lyrebird, a significant voice synthesis company, employs deep learning
models to synthesize 1,000 phrases in a second. Text-To-Speech primarily relies on the quality of
the speech corpus to build the system; regrettably, creating speech corpora is expensive. Another
drawback of SS systems is that they do not detect periods or special characters[25]. The most
common are homographs, which occur when two words have distinct meanings yet are spelled
in the same way[26]. Char2Wav is a framework for speech synthesis production from start
to finish. PixleCNN is also the foundation of WaveNet[27], an SS framework. WaveGlow[28]
focuses on the second phase of text-to-speech synthesis systems, which typically involve two
phases (encoder and decoder). As a result, WaveGlow is concerned with converting time-aligned
information, such as a mel-spectrogram acquired from an encoder, into audio samples. Tacotron
was first proposed in 2017[1]. Tacotron features CBHG, which comprises a 1-D convolution
bank, a highway network, and a bidirectional GRU[29]. Tacotron 2[30] is made up of two parts.
The first component is an attention-based recurrent sequence-to-sequence feature prediction
network. This component’s output is an anticipated series of mel spectrogram frames. Deep
Voice3, a TTS framework, [31] includes three parts, encoder, decoder, and converter, a CNN-
based Network. MelNet, a TTS framework [32], predicts a distribution element-by-element
over the time and frequency dimensions of a spectrogram in an autoregressive manner. The
network comprises many computational stacks that extract characteristics from various input
bits. Then, these elements will be summed collectively to provide the overall context. The
frequency-delayed stack’s previous-layer outputs are the time-delayed and centralized stacks’
current-layer outputs. The last layer of the frequency-delayed stack outputs is utilized to
compute the audio-generating parameters. Using neural network TTS synthesis, it is possible
to create speech sounds in the voices of numerous speakers, including those who have not
been trained. This took only five seconds[33]. Char2Wav, end-to-end speech synthesis with
a reader and a neural vocoder, was the first model to synthesize audio straight from text[34].
Deep Voice 1 was the first to use deep neural networks for text-to-speech in real-time, laying
the groundwork for end-to-end neural speech synthesis[35], while Deep Voice 2[36] was able
to replicate many voices using the same technology. Furthermore, most neural network-based
speech synthesis models are auto-regressive, which means they condition audio samples on
prior samples for long-term modeling and are straightforward to train and deploy[28]. Because
the SS detection systems are also utilized for voice conversion detection, the detection methods



for these two categories were examined in the VC summary section.

2.3. Voice conversion (VC) and Impersonation

The last type of audio deepfake is voice conversion, which takes the speech signal from the
first speaker, the source, and alters it to seem like the second speaker uttered the target speaker.
Impersonation is a type of VC in which one pretends to be someone else. Using improved
technology, it is now faster to imitate, and one business called Overdub1 can produce an
imitation of any voice with one minute of sample audio. GANs may also be utilized for voice
mimicry[37]. The joint density Gaussian mixture model with maximum likelihood parameter
trajectory generation considering global variance is one of the essential foundations for VC[38].
This approach also serves as the foundation for the open-source Festvox system, which served
as the primary VC toolkit in "The Voice Conversion Challenge 2016." Other voice conversion
methods, such as neural networks and speaker interpolation, can also be used. However, given
their versatility and high-quality outputs, GANs have recently been increasingly popular for
VC. The Griffin Lim approach was utilized to rebuild time-domain data using a neural network
architecture to imitate the voices of different genders. As a result, the model produced persuasive
examples of impersonated speech. There are also other systems for detecting audio faking.
ResNet, which was initially employed for image recognition, serves as the foundation of the
audio spoofing detection system.

3. Dataset selection

We use the Fake or Real (FoR) Dataset in this research investigation [39]. It comprises over
195,000 audio samples. These audio samples were created by a computer utilizing the most
up-to-date speech synthesis technologies. The dataset was built by integrating many datasets
from various studies. The primary purpose of developing this dataset is to train algorithms for
identifying phony speech [40, 41, 42]. The FoR dataset is divided into four subsets: (i) for-orig,
(ii) for-norm, (iii) for-2sec, and (iv) for-rerec. The experiments in this work are confined to three
datasets:: for-norm, for-2sec, and for-rerec.

3.1. For-Norm

The norm dataset is composed of 69400 audio, including duplicate audio signals. We removed the
duplicate values from the original dataset and obtained 53868 unique audio samples. The dataset
contains audio of different gender and target class (fake/real). The dataset can be preprocessed
to remove duplicate values, set the sampling rate, and set the volume and number of channels.

3.2. For-2sec

The dataset contains a training set of 17720 audios and a testing set with 3731 audio samples.
The dataset contains an audio length of 2 seconds. The dataset is completely balanced in terms
of target class and gender. The sampling rate of audio samples of this dataset is 41000.

1https://www.descript.com/overdub



3.3. For-rerec

This dataset also contains an audio length of 2 seconds. The dataset contains 13268 audio
samples with various genders and real and fake classes. The dataset has been trimmed to focus
more on the signal and extract more insights from it. The sampling rate of audio samples is
similar to the For-2sec audio dataset, which is 441000.

4. Proposed Approach

The proposed approach of this study is presented in Figure 1. We use Fake or Real (FoR) to
perform experiments in this study. The dataset is divided into three subsets. In the first step, we
analyze the dataset, perform exploratory analysis, and extract useful information for deepfake
audio detection. Next, we convert the audio signal from the time domain to the frequency
domain to analyze the audio graphically. Furthermore, the most important feature extraction
techniques are utilized to extract the important features from an audio signal. The audio signal
is normalized and reduces the dimension of the features so that only valuable features may be
selected. We split the dataset into two sets; training and testing. 80% of the complete dataset is
used to train the models, and the remaining 20% data is used to measure the performance of the
models. We selected multiple machine learning (ML) models to detect fake or real audio from
the datasets.

Figure 1: Proposed methodology to detect fake audio

4.1. Data Pre-Processing

Preprocessing is a necessary step in machine learning to obtain better results. The primary
goal of audio data preprocessing is to transform the audio signal into a format that the machine
learning model can easily interpret; that is why it is important to perform standard preprocessing
steps before the model implementation. Data framing is a preprocessing of audio singles that
involves converting audio signals into a format that a machine can understand. We remove the
duplicate audio from the dataset and normalize the audio features in this step. We extract the
value after every second from an audio signal called audio sampling and set the sampling rate
of an audio signal is 44100. The sampling rate shows the frame rate value of an audio signal,
and it is defined by Equation 1.



𝐹𝑟𝑎𝑚𝑒𝑠 = 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑟𝑎𝑡𝑒× 𝑡𝑖𝑚𝑒 (1)

In this scenario, we set the sampling rate of each signal in the dataset using data framing.
The frequency-domain visualization of an audio signal is shown in the next step. As shown
in Figure 2, we plot a Mel power spectrogram, which indicates the audio strength at certain
time intervals and shows distinct frequency levels. It displays a Mel power spectrogram of a
2-second audio stream. The frequency is presented on the vertical axis of the spectrogram and
has a range of 0-8KHz, while the time of the signal is indicated on the horizontal axis. The color
combination in the spectrogram represents the signal’s amplitude, while the signal’s volume
is indicated by decibels (𝑑𝐵). The standard scaler is used to normalize the characteristics. We
utilized it to scale the characteristics into a particular range. The goal of Standard Scaler is
to normalize characteristics such that they are fairly evenly distributed. As demonstrated in
the equation 2, it reduces the variance to one and eliminates the mean of the data. Sc is our
standardized version of "i".

𝑆𝑐 =
(𝑖− 𝜇)

𝜎
(2)

Figure 2: Mel Power Spectrogram Audio signal

4.2. Feature Extraction

Each audio in the FoR dataset contains useful characteristics we need to extract and feed to the
ML model for better results. In this study, we applied various feature extraction approaches
to obtain the features from the audio signal. In the first step, we converted the audio signal
into machine-readable form, and then we applied MFCC, spectral_rolloff, spectral_centroid,
spectral_contrast, spectral_bandwidth and zero_crossing_rate features extraction approaches to
extract features from the signal. This results in an array, then the mean, median, and standard
deviation is computed, yielding the final value of the feature for that specific audio signal.

We discovered that all 270 characteristics taken from a single audio file are unimportant and
increase the classification time of ML models. Thus we used the feature reduction strategy.
The 270 features from each audio are extracted using the sliding window technique. We
employed Principal Component Analysis (PCA) to identify the most significant characteristics.
We experimented with various numbers of n components, but in the end, we adjusted the PCA
n component to 65 and got superior results. To evaluate the usefulness of selected features, we
computed the explained_variance_ratio, which is 97%. It shows that this approach selected very
suitable features. .Finally, 65 unique characteristics out of 270 are passed to ML classifiers to
identify actual and fake audios.



4.3. Classification Models

This study performed experiments by extracting features from the audio signal Moreover,
applying different ML classifiers to these audio features to detect real or fake audio. After
pre-processing the audio sample, 270 features are retrieved using various feature extraction
approaches. However, with just 2 seconds of audio and 270 features, the classification procedure
takes a long time. We reduced the feature vector length, and 65 feasible features were fed to
the classification models. For the classification, six ML classifiers, SVM [43], MLP [44], DT [45],
LR [46], NB [47] and XGB [48] are implemented, and their performance was compared. We
used the default parameters of these classifiers. These models’ output determines whether a
particular audio signal is authentic or fake.

5. Experimental Results and Comparative Analysis

This section briefly describes results obtained from various classifiers (SVM, MLP, DT, LR,
XGB, and NB). We performed experiments using the Fake or Real (FoR) dataset and obtained
promising results. Except for the baseline technique, this dataset was not used in any other
research [49]. Existing research conducted experiments on the original dataset, but there is
presently no research available that works on the multiple variants of this dataset, so we
conducted experiments on the three subsets of the FoR dataset. The experiments involve six
classifiers and three datasets (For-Norm, For-2sec, For-rerec). The results of this study using
various datasets are presented in Table 1. We used accuracy evaluation metrics to evaluate the
classification performance of six classifiers on datasets (For-Norm, For-2sec, For-rerec). The
dataset was divided into two parts: training and testing. The first 80% of the whole dataset is
utilized for training the models, while the remaining 20% is used to measure model performance.
It is observed that all the ML models performed outstandingly on the given datasets. The SVM
model outperformed other ML models with 97.57% and 98.83% accuracy using the For-2sec
and For-rerec datasets. It can be observed that the XGB model obtained the highest accuracy
score of 92.60% using the For-Norm dataset. It was discovered that the XGB model performed
very well on average across all datasets, with an average accuracy score of 93.50 %. We also
conducted a larger comparison with state-of-the-art research.

The baseline approach performed its experiments on the original dataset, while this study
worked on various subsets of the FoR dataset. To our best knowledge, no prior work has been
done on the subsets of the FoR dataset. The goal of generating these subsets from the original
dataset is to improve classification while reducing computational costs. The proposed and
baseline approaches’ results are presented in table 2. The original dataset was divided into three
subsets(For-Norm, For-2sec, For-rerec) for better classification. We highlighted the best average
result of the proposed approach from three datasets generated using the XGB model. The
accuracy score of the XGB model shows that the proposed approach outperforms the baseline
approach with a 26 % accuracy gain. The highest accuracy of the baseline approach is obtained
from SVM, with 67 % model accuracy. It is concluded that the suggested strategy outperforms
the baseline approach in detecting real or fake audio from the FoR dataset. The best features
aid the classification process in accurately identifying real or fake audio in a short period.



Table 1
Machine learning models Accuracy(%) from each dataset

Models for-2sec for-norm for-rerec
SVM 97.57 71.54 98.83
MLP 94.69 86.82 98.79
DT 87.13 62.16 88.28
LR 89.92 82.80 88.31
XGB 94.52 92.60 93.40
NB 88.20 81.80 81.91

Table 2
Comparative Analysis of proposed approach with baseline approach results

Reference Algorithm Test accuracy(%)
Algorithms implemented in [49] SVM 0.67
Proposed Approach Result XGB 0.93

6. Conclusion and Future Work

Deepfakes have recently become a critical topic to be discussed. In manipulated audio-visual
content, this type of data spreads hate and misinformation to the entire world. Therefore, it is
very important to develop a system for the early detection of deepfake to prevent the spread of
misinformation. This research focuses primarily on the task of detecting deepfake audio. An
optimal feature engineering technique with machine learning approaches is used to classify
real and fake audio. We employed Fake or Real (FoR) datasets and their various subsets in this
study. The proposed approach is implemented on the subsets of FoR dataset. This study shows
that the SVM model has the highest test accuracy using For-2sec and For-rerec datasets, while
the XGM model exhibits the highest accuracy using the For-Norm dataset. The results show
that the proposed approach obtained better results than the baseline approach. This work can
be extended in the future by exploring the latest feature-extracting methodologies that will
aid in obtaining better results with both machine learning and deep learning. Furthermore,
the proposed system’s architecture is simpler than the models used in paper [49] and achieves
comparable accuracy. In addition, the deep learning model can exhibit better performance
than machine learning because of the feedforward and feed-backward strategy. However, Deep
learning models can also be used to implement amplitude-based classification. One limitation of
this work is that deep learning with audio features has not been utilized. Furthermore, we can
expand this work by using the original dataset and the subsets of the dataset and performing a
deep learning approach with new feature extraction approaches.
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