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Abstract
There are already more than one billion people over the age of 60, and the World Health Organization
predicts that number will increase to 1.4 billion by the year 2030. As a result, the need for caretakers is
increasing, which could make society in the future unable to provide it. In this scenario, the need for
automated assistance increases as the global population ages. One area of robotics where robots have
demonstrated tremendous promise in closely collaborating with people is service robotics. Hospitals,
residences, and facilities for the elderly will all require the deployment of intelligent robotic agents to
carry out regular tasks. Cloth manipulation is one such daily activity and represents a challenging area
for a robot. The research goal of this paper focused on finding the grasping points of the highest wrinkle
(from a later point of view) of a folded hospital gown to then unfold it and help dressing a patient. The
wrinkle is detected using the Generative Grasping Convolutional Neural Network (GG-CNN2), while
the approach to the cloth by a manipulator is obtained by designing a visual servoing algorithm that
considers the input of the GG-CNN2. In conclusion, the results described in this paper tend to study by
deep some AI-based approaches for cloth manipulation capabilities; in particular, we concentrated on
studying how to identify the first wrinkle of a cloth by combining the visual servoing approach with a
neural network.
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1. Introduction

In both home and industrial contexts, detecting and manipulating cloth is a common activity,
however, due to the deformability of cloth, such tasks continue to be difficult for robots. Fur-
thermore, in many cloth-related tasks like laundry folding and bed making or in dressing a
person it is crucial to manipulate specific regions like edges, corners and wrinkles. Concerning
the detection of the edges and corners, in [1], the authors concentrated on the challenge of seg-
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menting and understanding these crucial sections. Their method taught a network to separate
folds and creases from the edges and corners of a piece of clothing in a depth image. The grip
location, direction, and directional uncertainty from the segmentation are also estimated using
a novel approach that they provided. There are many different ways to detect wrinkles and
grasping points in a cloth. The easiest one, as shown in [2], is to compute the binary image of
the apparel and some filters to the image to find the wrinkles as the darkest regions. In [3], the
authors used a four-step approach to analyse the input from a 3D camera and the challenge of
selecting the best grabbing postures for cloth-like deformable objects is tackled in this study.
The source point cloud is divided into the first stage, and a wrinkledness measure that can
reliably identify areas of the cloth that can be grasped is implemented in the second step. The
final stage involved fitting a piecewise curve to each individual wrinkle to identify it. The fourth
and final stage estimated a target clutching stance for each observed wrinkle. In another work,
[4], the same authors showed a wrinkledness measure to identify wrinkles in the cloth surface,
to robustly assign spline curves to the detected wrinkle-like structures and to estimate grasping
frames. In [5], the proposed visual perception architecture is able to parse the various garment
configurations by detecting and quantifying structures i.e. grasping triplets and wrinkles from
unfolded cloth with a dual-arm robot.
The main lack of previous works is finding wrinkles in folded clothes with a robot. Moreover,
detecting wrinkles and grasping points from a lateral point of view instead of detecting these
regions of the garment from a top point of view is a topic that has not been investigated. De-
tecting wrinkles from a lateral point of view is challenging since sometimes it is more ”natural”
for a person to take the garment from a lateral perspective. Our work tries to solve these issues
in detecting the highest wrinkle grasping point of a folded hospital gown from a lateral point of
view.
The contributions of our work are the following:

• detecting the highest wrinkle grasping point of a folded hospital gown from a lateral
point of view

• combining the Generative Grasping Convoulutional Neural Network (GG-CNN2) with a
visual servoing approach to move the robot near the highest wrinkle

2. Methods

The main idea of this work is to implement a method that finds the grasping point in the highest
wrinkle of the hospital gown. In the following subsection, the procedure to detect the grasping
point is shown.

2.1. Detecting the grasping points of the wrinkle of a folded hospital gown

This section’s major goal is to demonstrate how to locate the ideal grabbing rectangle in the top
wrinkle of a hospital gown, which is also the region that makes it easiest to unfold the fabric.
We employed a neural network dubbed the Generative Grasping Convolutional Neural Network
to do this (GG-CNN2) [6]



Figure 1: The architecture of the Generative Grasping Convolutional Neural Network 2: it is composed
by 6 convolutional layers, 2 MaxPooling layers and two Transpose Convolution layers.

2.1.1. Generative Grasping Convolutional Neural Network

The network GG-CNN2 used in our work derives from the GG-CNN network [6] . The ad-
vantages of GG-CNN over other state-of-the-art grasp synthesis CNNs are twofold. First, the
authors do not rely on sampling of grasp candidates, but rather directly generate grasp poses
on a pixel-wise basis, analogous to advances in object detection where fully convolutional
networks are commonly used to perform pixel-wise semantic segmentation rather than relying
on sliding windows or bounding boxes [7]. Second, the GG-CNN has orders of magnitude
fewer parameters than other grasp synthesis networks, allowing our grasp detection pipeline to
execute fast enough for closed-loop grasping.
In [8], [9], [10], [11] the grasp representation proposed by [8], and then simplified by [12],

was used to generate antipodal robotic grasps using RGB-D images of objects. The grasp
representation is defined by the following formula:

𝑔 = {𝑥, 𝑦 , 𝜙, ℎ, 𝑤}, (1)

The function 𝑔 represents a five dimensions rectangle that includes the center of the rectangle
(𝑥, 𝑦), the orientation of the rectangle relative to the horizontal axis of the image 𝜙, its width
(ℎ), and height (𝑤). Morrison et al. [6] proposed a new representation of robotic grasps that
changes the function 𝑔 into this representation:

𝑔 = {𝑝, 𝜙, 𝑤, 𝑞}, (2)

where 𝑝 = (𝑥, 𝑦 , 𝑧) is the center position of the gripper, 𝜙 is the rotation angle relative to the
horizontal axis of the image plane, 𝑤 is the gripper width, and 𝑞 is the grasp quality. Concerning
the computation of 𝑞, which represents the chances of grasp success, each grasping rectangle
has set the corresponding area of 𝑞 to a value of 1. All other pixels are 0.
Robotic grasps are detected in the depth image 𝐼 = ℝ𝐻× 𝑊 with height ℎ, and width 𝑤. In the
image space 𝐼, the grasping point is represented by

�̃� = {𝑠, ̃𝜙, �̃� , �̃�}, (3)



where 𝑠 = (𝑢, 𝑣) represents the center point in pixels coordinates, ̃𝜙 denotes the rotation relative
to the camera frame around the z-axis, �̃� denotes the gripper width in pixels, and �̃� the grasp
quality.
The grasp map G proposed by Morrison et al. [6] is :

𝐺 = {Φ,𝑊 , 𝑄} ∈ ℝ3×𝐻×𝑊 (4)

Φ is an image which describes the angle of a grasp to be executed at each point, W an image
which expresses the gripper width of a grasp to be executed at each point, Q an image which
defines the quality of a grasp executed at each point (u,v). Φ, 𝑊,𝑄 are each in ℝ1×𝐻×𝑊 and each
pixel contains the values ̃𝜙, �̃�, and q respectively at each pixel s. Following [6], the authors used
this network to generate a grasp g for each pixel in depth image I, which denotes the pixel-wise
representation:

𝑀(𝐼 ) = 𝐺, (5)

where the map function 𝑀 is a deep NN, and then the best grasp can be found by :

𝑔 = max
𝑄

𝐺. (6)

The Mean Squared Error loss is applied to predict grasp pose, grasp quality �̃�, gripper width
�̃� and rotation ̃𝜙 .

2.2. Image Visual Servoing

The term visual servo (VS) control describes the use of computer vision data to regulate a robot’s
movements. The camera that collected the visual data might be directly attached to a robot
manipulator or on a moving robot, in which case the camera moves along with the robot, or the
camera can be fixed in the area so it can see the robot’s movements from a position of stillness.
Other arrangements might be imagined, for example, many cameras installed on pan-tilt heads
watching the robot’s motion.
The aim of all vision-based control schemes is to minimize an error e(t), which is typically
defined by

𝑒(𝑡) = 𝑠(𝑚(𝑡), 𝑎) − 𝑠∗ (7)

The vector 𝑚(𝑡) is a set of image measurements (e.g., the image coordinates of interest points,
or the parameters of a set of image lines or segments). These image measurements are used to
compute a vector of 𝑘 visual features, 𝑠(𝑚(𝑡), 𝑎), in which 𝑎 is a set of parameters that represent
potential additional knowledge about the system (e.g., true or approximate camera intrinsic
parameters or a model of the object to be tracked). The vector 𝑠∗ contains the desired values of
the features. Note that the order of the desired and actual values in Equation (7) is reversed
with respect to the common convention for feedback control systems. Visual servoing schemes
mainly differ in the way that 𝑠 is designed.
There are several visual servoing approaches including image-based visual servo control

(IBVS), in which s consists of a set of features that are immediately available in the image,
and pose-based visual servo control (PBVS), in which 𝑠 consists of a pose, which must be



estimated from image measurements. In this paper, we consider the IBVS and we will call it as
VS approach.
As concerns IBVS, the image measurements 𝑚 are usually the pixel coordinates of the set
of image points (although this is not the only possible choice), and the parameters 𝑎 in the
definition of 𝑠 = 𝑠(𝑚, 𝑎) in Equation 7 are nothing but the camera intrinsic parameters to go
from image measurements expressed in pixels to the features.
A three-dimensional world point with coordinates X = (𝑋 , 𝑌 , 𝑍) in the camera frame projects
into the image plane of a conventional perspective camera as a two-dimensional point with
normalised coordinates x = (𝑥, 𝑦). More precisely we have:

⎧

⎨
⎩

𝑥 = 𝑋
𝑍
=

𝑢 − 𝑐𝑢
𝑓 𝛼

𝑦 = 𝑌
𝑍
=

𝑣 − 𝑐𝑣
𝑓

(8)

where 𝑚 = (𝑢, 𝑣) gives the coordinates of the image point expressed in pixel units, and a =
(𝑐𝑢, 𝑐𝑣, 𝑓, 𝛼) is the set of camera intrinsic parameters, 𝑐𝑢 and 𝑐𝑣 are the coordinates of the principal
point, 𝑓 is the focal length, and 𝛼 is the ratio of the pixel dimensions. In this case, we take
𝑠 = x = (𝑥, 𝑦), the image plane coordinates of the point.
Taking the time derivative of the projection Equation (8), we obtain

⎧

⎨
⎩

̇𝑥 =
̇𝑋

𝑍
− 𝑋 ̇𝑍

𝑍 2 =
̇𝑋 − 𝑥 ̇𝑍
𝑍

̇𝑦 =
̇𝑌

𝑍
− 𝑌 ̇𝑍
𝑍 2 =

̇𝑌 − 𝑦 ̇𝑍
𝑍

(9)

We can relate the velocity of the 3-D point to the camera spatial velocity using the well-known
equation

Ẋ = −𝑣𝑐 − 𝑤𝑐 × X =
⎧

⎨
⎩

̇𝑋 = −𝑣𝑥 − 𝑤𝑦𝑍 + 𝑤𝑧𝑌
̇𝑌 = −𝑣𝑦 − 𝑤𝑧𝑋 + 𝑤𝑥𝑍
̇𝑍 = −𝑣𝑧 − 𝑤𝑥𝑌 + 𝑤𝑦𝑋

(10)

where 𝑣𝑐 = (𝑣𝑥, 𝑣𝑐𝑦, 𝑣𝑧) and 𝜔𝑐 = (𝜔𝑥, 𝜔𝑦, 𝜔𝑧). Inserting Equation 10 into 9, grouping terms,
and using Equation 7 we obtain

{
̇𝑥 = −

𝑣𝑥
𝑍

+
𝑥𝑣𝑧
𝑍

+ 𝑥𝑦𝑤𝑥 − (1 + 𝑥2)𝑤𝑦 + 𝑦𝑤𝑧

̇𝑦 = −
𝑣𝑦
𝑍
+
𝑦𝑣𝑧
𝑍

+ (1 + 𝑦2)𝑤𝑥 − 𝑥𝑦𝑤𝑦 − 𝑥𝑤𝑧
(11)

which can be written:

ẋ = 𝐿𝑥𝑣𝑐 (12)

where the interaction matrix 𝐿𝑥 is given by

𝐿𝑥 = (
−1
𝑍

0 𝑥
𝑍

𝑥𝑦 −(1 + 𝑥2) 𝑦

0 − 1
𝑍

𝑦
𝑍

(1 + 𝑦2) −𝑥𝑦 −𝑥
) (13)



In the matrix 𝐿𝑥, the value 𝑍 is the depth of the point relative to the camera frame. Therefore,
any control scheme that uses this form of the interaction matrix must estimate or approximate
the value of 𝑍. Similarly, the camera intrinsic parameters are involved in the computation of
𝑥 and 𝑦. We discuss this in more detail below. To control the six degrees of freedom, at least
three points are necessary. If we use the feature vector 𝑥 = (𝑥1, 𝑥2, 𝑥3) , by merely stacking
interaction matrices for three points we obtain

𝐿𝑥 = (
𝐿𝑥1
𝐿𝑥2
𝐿𝑥3

) (14)

In this case, there will exist some configurations for which 𝐿𝑥 is singular [13]. Furthermore,
there exist four distinct camera poses for which e = 0, i. e., four global minima exist for the
error function ‖𝑒‖, and it is impossible to differentiate them [14]. For these reasons, more than
three points are usually considered.

In our work, the GG-CNN2 network outputs the pixels (𝑢, 𝑣) of the grasping rectangle of the
highest wrinkle but this rectangle is not centered in the image of the camera. The main purpose
of this part of work (concerning visual servoing) is to ”translate” the grasping rectangle in the
image center to then move the manipulator forward (on the z-axis) to grasp the hospital gown.

3. Experimental Set-Up

An RGB endoscopic camera that is mounted in the gripper of a Kinova Gen3 arm was used to
capture photographs of the hospital gown (see Figure 2). The camera is mounted on the bottom
part of the gripper and it is parallel to the wrinkle. The hospital gown position was changed
during the trials. The dataset, collecting the images of the hospital gown, was trained on a PC
running Ubuntu 18.04 LTS. The code was written in Python and it will be publicly available.
The library mainly used for the implementation is Pytorch and the experiments are in real-time.

3.1. Dataset

We added jitter and white noises, salt and pepper noise, and median blur to our dataset
because it is quite small compared to datasets like the Cornell dataset and the Jacquard
dataset used to train the GG-CNN2. We obtained a dataset of roughly 3000 photos following
the augmentation (the original dataset consists of 121 RGB images). The hospital gown is
displayed in isolation on a soft tabletop scenario with a neutral background in the photographs
that make up the dataset. Rectangles with clutching hands are used to manually label the
figures. Then, we divided the training and testing of the GG-CNN2 by 80/20. We trained
the network by altering several parameters in order to find the optimal network design. (Table 1).

4. Results

In this section, the results related to detecting the grasping point of the highest wrinkle of a
folded hospital gown are shown.



Figure 2: The experimental set-up: it is composed by a Kinova Gen3 arm, a costumized gripper with an
endoscopic camera mounted on it, and a hospital gown.

4.1. Qualitative Results

To test the method that combines GG-CNN2 with visual servoing approaches, 20 trials were
carried out to see if the manipulator could identify the first wrinkle of the folded hospital gown.
From the tests performed, we achieved 90% of accuracy.
In Figure 3, the four steps related to the identification of the grasping point on the highest

wrinkle of the hospital gown are shown. At the beginning the robot is in its initial position;
then the robot, conbining the ouptut of visual servoing and of the GG-CNN2, approaches the
hospital gown until it arrives in detecting the highest wrinkle.

5. Discussions

In this section, the discussions related to the detection of the highest layer grasping point of the
hospital gown are pointed out.
Concerning the experimental trials, issues appeared when the robot did not move correctly due
to some mechanical problems or when the GG-CNN2 does not predict good grasping rectangles
(on the highest wrinkle of the folded cloth) or when the visual servoing ouput is wrong. Future
works should study in depth different approaches that involve newer networks compared to

Table 1
Internal parameters of the GG-CNN2.

batch-size 18
epochs 100

batches-per epochs 1000
val-batches 250



Figure 3: Example of identification of the highest wrinkle of the folded hospital gown.

our approach to obtain higher accuracy and a better performance.

6. Conclusions

The study and development of AI-based strategies for fabric manipulation capabilities were pro-
vided in this paper; specifically, the primary subject covered in this work was the identification
of gripping spots for manipulating clothing.
The goal of this study was to identify the location where the highest wrinkle of a folded

hospital gown could be observed (from a later perspective). The wrinkle grabbing point is located
using a Generative Grasping Convolutional Neural Network (GGCNN2), and the manipulator’s
approach to the fabric is determined using a visual servoing algorithm that considers the
GGCNN2’s input. During the experimental set-up, we benchmarked this method on the Kinova
Gen3 arm and achieved a validation accuracy of 90%. The trained accuracy is 98%.
Future research should be done in-depth on the long-term goal of examining how well

AI-based tactics can manipulate fabrics.
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