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Abstract
Ontologies play an important role in sharing and reusing knowledge. Several ontologies have been
developed to describe a particular domain but from different perspectives from communities of developers
and users. This has led to the existence of multiple ontologies covering the same or a different domain
with varying degrees of variability. Ontology Alignment is typically used to identify correspondences
between semantically related elements of two or more ontologies in order to address this problem.

We propose A-LIOn a system that learns alignments by combining lexical and semantic approaches
as well as machine learning. The system utilizes OWL EL reasoning for negative sampling which is
iteratively used to inform the correction of the learning of the alignments. We demonstrate that A-LIOn
produces alignments that are coherent with respect to OWL EL.
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1. Presentation of the System

Alignment Learning through Inconsistency negatives of the aligned Ontologies (A-LIOn) is
a system that discovers alignments between ontologies by combining various matching tech-
niques, ranging from entity-level label matching to structure-level taxonomy learning and
graph projection to logical reasoning and inconsistency detection and learning. This is the first
participation of A-LIOn in the Ontology Alignment Evaluation Initiative (OAEI).

2. Proposed Methods

An ontology 𝒪 can be defined over a signature 𝒪 ∶= (𝐶, 𝑅, 𝐼 ; 𝑎𝑥), where 𝐶 is a set of concept
names, 𝑅 is a set of relation names, 𝐼 is a set of individual names, and 𝑎𝑥 is a set of axioms.

Given two ontologies 𝒪𝑠, 𝒪𝑡, the purpose of ontology alignment is to find the pairs of entities
(𝑒𝒪𝑠𝑖, 𝑒𝒪𝑡𝑗) ∈ 𝐶𝒪𝑠 × 𝐶𝒪𝑡 that are considered as being equivalent or standing in a subclass relation
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within certain contexts.
A graph is defined as a tuple 𝐺 = (𝐸, 𝑅, 𝑇 ), where 𝐸 is a set of entities names, 𝑅 is a set of

relations names and 𝑇 ⊆ 𝐸 × 𝑅 × 𝐸 is a set of triples of the form (ℎ𝑒𝑎𝑑, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑡𝑎𝑖𝑙).
A projection of an ontology into a graph is a mapping 𝑓 ∶ 𝒪 → 𝐺 that maps the ontology

classes into graph nodes, ontology roles as graph relations, and ontology axioms as graph triples
following a particular set of rules.
Our method A-LIOn combines different matching techniques and consists of four main

components (see Figure 1):

• Learning lexical matching seeds.
• Graph construction from source and target ontology.
• Graph embedding and transformation learning.
• Consistency checking.

Those components cover element-wise, structure-wise, and formal semantics learning tech-
niques. (a) Element-wise techniques consider the entities in the ontology in isolation in order to
find alignments disregarding the fact that they are part of the ontology’s structure. This means
that we use the information belonging to an ontology class itself such as its textual annotations
and labels only. (b) On the other hand, structure-wise techniques analyze the entities as part of
their structure. In our case, we focus on adjacency structure within the ontology and extract
the structure in the form of a graph. (c) Finally, the semantic component consists of employing
formal semantics learning techniques and logical inference to identify correspondences and
repair inconsistencies.

2.1. Learning Lexical matching seeds

To begin learning ontology alignment, we need some known-to-be-positive seed alignments.
We chose to align the classes of both ontologies with the same IRI, or lexically matched labels
and relative IRIs. For lexical matching, we utilize fuzzy lexical matching, a method for finding
approximate string matching with a retrieved score representing the similarity between one
string to another. We begin with an exact matching score and then we decrease the threshold
iteratively until a sufficient number of seeds are obtained or a minimal accepted threshold is
reached. The number of matching seeds required is a parameter of our method.

2.2. Ontology Projection

We project each ontology as a graph in order to learn structure-level information from the
source and the target ontologies. We evaluate two graph construction techniques:

• Subsumption hierarchy: in this method, we only utilized the subclass axioms asserted
between the ontology classes to generate a directed graph for the source ontology and
the target ontology. We evaluated this technique for Anatomy, Conference, Biodiversity
and Ecology, and Material Sciences and Engineering tracks.
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Figure 1: A-LIOn system component workflow

• OWL Projection: This method was proposed in [1] where OWL axioms are transformed
directly into edges in the graph, and complex axioms are approximated in the graph to
avoid the use of blank nodes. Despite the fact that this transformation method does not
preserve exact logical relations, it enables correlation and learning alignments between
classes of the source and target ontologies as well as within the same ontology. We
evaluated this technique using the Phenotype ontology alignment.



2.3. Transformation Learning

After projecting an ontology, the result is a graph. Depending on the chosen projection method
(Section 2.2), these graphs would encode the taxonomical structure or relational information
found in the ontologies.

In our method, we start with two ontologies 𝒪𝑠 (source) and 𝒪𝑡 (target), which, after applying
the graph projection, will become two graphs 𝐺𝑠, 𝐺𝑡, respectively. When we deal with two
graphs, there are several graph alignment methods that can align two graphs from a small
number of seed alignments; we follow the method in [2].
To learn representations of the two graphs 𝐺𝑠, 𝐺𝑡, we define two vector spaces 𝑉𝑠, 𝑉𝑡, where

the entities (nodes and edges) of each graph will be processed separately. To learn the graph
embeddings we rely on knowledge graph embeddings methods such as TransR [3], optimizing
the following loss function:

𝑂𝑠𝑙𝑜𝑠𝑠 = ‖𝑀𝑟𝑠 ⋅ 𝑐𝑠𝑖 + 𝑟𝑠 − 𝑀𝑟𝑠 ⋅ 𝑐𝑠𝑗‖ (1)

for each relation 𝑟𝑠 in the source graph where the triple (𝑐𝑠𝑖, 𝑟𝑠, 𝑐𝑠𝑗) exists.

𝑂𝑡𝑙𝑜𝑠𝑠 = ‖𝑀𝑟𝑡 ⋅ 𝑐𝑡 𝑖 + 𝑟𝑡 − 𝑀𝑟𝑡 ⋅ 𝑐𝑡 𝑗‖ (2)

for each relation 𝑟𝑡 in the target graph where the triple (𝑐𝑡 𝑖, 𝑟𝑡, 𝑐𝑡 𝑗) exists.
Simultaneously, we use a transformation𝑀 ∶ 𝐸𝐺𝑠 → 𝐸𝐺𝑡 that takes the entities from the seeds

we found earlier (Section 2.1) from the source embedding space to the target space, using the
following loss:

𝐴𝑙𝑜𝑠𝑠 = ‖𝑀 ⋅ 𝑐𝑠 − 𝑐𝑡‖ (3)

2.4. Inconsistency negatives learning

OWL ontologies are based on Description Logic and facilitate the use of automated reasoners,
which in turn facilitate computing entailments of statements from the asserted ontology axioms.
In addition, these inferences can be investigated to determine if a class in an ontology is
satisfiable or unsatisfiable. A class is unsatisfiable if it cannot have any instances (i.e., the
axioms constrain the class in a contradictory way); an ontology is inconsistent if it has at least
one instance of a logical contradiction [4, 5]. We utilize the ELK reasoner [6] to find alignments
that lead to unsatisfiable classes. In order to find unsatisfiable classes in aligning 𝒪𝑠 and 𝒪𝑡,
we first merge both ontologies (i.e., we combine their axioms into a new ontology) and add all
alignments predicted by our model as equivalence class axioms to the merged ontology 𝒪𝑚𝑒𝑟𝑔𝑒𝑑.
We define this ontology as 𝒪𝑚𝑒𝑟𝑔𝑒𝑑 ∶= (𝐶𝑠 ∪ 𝐶𝑡, 𝑅𝑠 ∪ 𝑅𝑡, 𝐼𝑠 ∪ 𝐼𝑡, 𝑎𝑥𝑠 ∪ 𝑎𝑥𝑡, 𝐴), where 𝐶𝑖 is a set of
concepts from ontology 𝑖, 𝑅𝑖 is a set of relations form ontology 𝑖, 𝐼𝑖 is a set of individuals form
ontology 𝑖, and 𝑎𝑥𝑖 is a set of axioms from ontology 𝑖, 𝐴 is the predicted alignment.

Then we use the ELK reasoner [6] to identify unsatisfiable classes in the merged ontology. If
we identify an unsatisfiable class, we generate explanations for the entailment generated by
ELK; an explanation consists of a small set of axioms from which the unsatisfiability follows
directly; we specifically identify any of the equivalence class axioms we have added within the
generated explanations, as these are likely causing the class to become unsatisfiable. We remove
the equivalence class axioms causing unsatisfiable classes from the merged ontology and iterate.



Finally, we return to the transformation learning step with an updated loss to optimize for
alignment learning as follows:

𝐴𝑙𝑜𝑠𝑠 = ‖(𝑀 ⋅ 𝑐𝑠 − 𝑐𝑡) − (𝑀 ⋅ 𝑐𝑛𝑠 − 𝑐𝑛𝑡)‖ (4)

where 𝑐𝑠, 𝑐𝑡 are positive class pairs from source ontology and target ontology, respectively, 𝑐𝑛𝑠, 𝑐𝑛𝑡
are pairs of classes which gave rise to unsatisfiable classes and which we removed in the repair
step. The new iteration of our method now uses these pairs as negatives during training in the
alignment of both ontologies. We repeat this step until no more unsatisfiable classes remain.

3. Results

For this year’s evaluation, we tested A-LIOn in three tracks: Anatomy, Conference and Material
Sciences and Engineering (MSE). We have also tested our system on the phenotypes track using
last year’s evaluation tests.

3.1. Participation in OAEI

We selected tracks that align ontologies that contain disjoint class assertion axioms. Disjoint
class assertion axioms are a common cause of inconsistencies, and, therefore, we will be able to
observe the performance of our method in correcting and training to avoid inconsistencies. In
the anatomy track, the ontology file human.owl contains 17 disjoint class assertion axioms. In
the conference track, the number of disjoint class assertion axioms are as follows: 81 in cmt.owl ,
42 in Conference.owl , 15 in confious.owl , 129 in confOf.owl , 36 in crs_dr.owl , 1,221 in edas.owl ,
222 in ekaw.owl , 3 in iasted.owl , 12 in MICRO.owl , 384 in MyReview.owl , 237 in OpenConf.owl ,
396 in paperdyne.owl . Finally, in the Material Sciences and Engineering track 158 disjoint
class axioms was found in Matonto . All the results can be found in OAEI 2022 campaign page
http://oaei.ontologymatching.org/2022/results/.

3.1.1. Anatomy

In terms of precision, recall, and F-measure, the matching performance of A-LIOn in the
anatomy track were below the string equivalence baseline. The main issue that affected our
performance in this track is the small number of the predicted alignments and the small
number of inconsistencies discovered using the OWL EL reasoner. The main issue affecting the
performance of A-LIOn in the anatomy track is the limited number of initial seeds discovered
based on the parameters settings we used, which substantially affected recall. To overcome this
limitation, an adaptive method that uses a specific pairs of ontologies to determine parameters
(such as for seed matching) could be developed and used to overcome this limitation.

3.1.2. Conference

The Conference track contains information about conference organization. This track comes in
two versions: standard and uncertain. The standard version of the Conference track contains
a reference alignment which was the result of a “Consensus Workshop” in 2008. However,

http://oaei.ontologymatching.org/2022/results/


some of these alignments may not be possible to detect either by a computational algorithm or
manually by humans [7, 8]. For that reason, the uncertain version of the conference track was
generated by consulting a group of experts and computing the ratio of agreement on each match.
As a consequence, the uncertain track is more realistic because it removes the controversial
alignments (i.e., the ones for which the experts could not reach a consensus). For that reason,
when the evaluation is done on the uncertain version of the track, it is expected that systems
increase their performance. A-LIOn has the highest increase with respect to the standard
version among all the systems. This suggests that A-LIOn is capable to detect non-controversial
alignments more easily than the controversial ones.

The current version of A-LIOn uses OWL EL reasoning to detect and exclude alignments that
cause inconsistencies. However, the results show that A-LIOn does not detect all inconsistent
alignments. The main reason for this lack of removing all incoherent alignment is the use of
more expressive description logics than OWL EL. A-LIOn only uses OWL EL reasoning because
computing entailments in expressive description logics has a high computational complexity
and may not always be successful for larger ontologies, such as those used in the biomedical
domain. However, the ontologies used in the Conference track are small compared to ontologies
in other tracks such as Anatomy. In a future version of A-LIOn, we may include additional
reasoners, including reasoners for more expressive logics.

3.1.3. Material Sciences and Engineering

There are three test cases for the Material Sciences and Engineering track. The first and second
test cases align MatOnto ontology to the Material Information ontology, and the third case
EMMO ontology to Material Information ontology. MatOnto contains 158 disjoint class axioms
and could thus introduce useful inconsistencies that can be exploited by our method. The results
indicate that A-LIOn had the highest recall, and an F-measure comparable to the other tested
methods. However, there is one test case where A-LIOn failed to parse the labels in the ontology
(the EMMO ontology); consequently, A-LIOn failed to produce any alignments.

3.2. Phenotype matching use case

We tested the OWL projection method in the problem of aligning phenotype ontologies. To test
this approach, we utilized the datasets provided last year [9] for aligning Human phenotype
ontology (HP) [10] and Mammalian Phenotype Ontology (MP) [11]. The seed alignments we
used are exactly matching IRIs of classes, as well as lexical alignments for HP and MP classes
only. We tested two different approaches for generating the graphs from source and target
ontologies (Section 2.2). Results are shown in Table 3.2 where we included the results for some
of the participating systems from last year for comparison [12, 13, 14, 15]. Comparing the
results of the various graph generation techniques, we found that using the OWL projection in
the problem of phenotype mappings allows for the discovery of more mappings, whereas the
subsumption hierarchy produces alignments with high precision but finds fewer alignments,
thereby decreasing the recall.



Table 1
Phenotype use case test results on last year 5-consensus. We show the results for different variations of
A-LIOn, starting with the use of the subsumption hierarchy graph (SH), projected graph (P)

number of alignments Precision Recall F-score
LogMap 2,136 0.767 0.908 0.831
AML 2,029 0.810 0.910 0.857
ATMatcher 769 0.968 0.412 0.578
TOM 306 0.101 0.140 0.117
A-LIOn - (SH) 700 0.986 0.382 0.551
A-LIOn - (P) 1078 0.822 0.732 0.774

4. Conclusion

A-LIOn is a system that incorporates both entity-level and structure-level information in learning
alignments between two ontologies; A-LIOn also uses logical reasoning to correct alignments
that are likely faulty because they lead to unsatisfiable classes, and incorporates the results of
this symbolic step in the learning process to generate new negatives. In the future, we plan
to make our system able to learn better parameters based on the input ontologies features
and self-evaluate the predicted alignment. For example, using a different set of parameters for
anatomy and the first task on Material Sciences and Engineering tracks allowed us to increase
the F-score by 10% and 3.3% respectively. A further improvement will be the use of language
models in seed selection.
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