
Proceedings of the 29th C&ESAR (2022) 115

Setting Hardware Root-of-Trust from Edge to Cloud, and How to 
Use it 
Florent Chabaud 

1 

 
1 Atos Big Data & Cybersecurity, Rue du Gros Caillou – 78340 Les Clayes-sous-Bois – France 

 

  

Abstract  
For decades, Trusted Computing has tried to anchor trust in the hardware, and the existence of 

Trusted Platform Modules (TPM) in most modern design is evidence that this approach is now 

well understood. The default behavior of recent Operating Systems like Windows 11 is even 

to deny booting if this security feature is absent. But this approach is not sufficient in a modern 

world where one needs to trust remote platforms. To preserve confidence in security, one needs 

to limit the trusted computing base (TCB) of a system at a level where an assessment can make 

sense. Trusted Execution Architecture (TEA) is the result of a partnership with ProvenRun to 

implement a TCB in Atos servers in a consistent way, from Edge to High Performance 

Computing. This allows to envision security features based on some common Root-of-Trust 

known to different platforms, at different scales and levels of interaction.  
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1. Introduction 

In 1993, the NSA tried to introduce the Clipper Chip to promote Key Escrowed Encryption [1]. Even 

if this attempt failed [2] and backfired in promoting open-source encryption [3], it showed the 

importance of hardware in computer security, and paved the way to trusted computing. Soon, the 

Trusted Computing Platform Alliance, renamed as Trusted Computing Group [4], will emerge and 

promote another piece of hardware, the Trusted Platform Module (TPM), now standardized [5] and 

embedded in most platforms. But this concept is now revisited by another industry consortium, the 

Open Compute Project [6], which adds to the TPM some other security chips. Even if adding security 

hardware can make sense, it is always raising the question of how this new hardware can be trusted. 

Understanding the alleged improvement in terms of security is also important to assess the security 

benefit ratio, and in the end, other options can be envisioned. 

In this paper, we will bring a quick survey of the state-of-the-art of trust in hardware in section 2. 

We will discuss the rationale of Atos Trusted Execution Architecture (TEA) and the pros and cons of 

this software-oriented approach in section 3. We will then detail some aspects of the implementation in 

section 4. In the end, section 5 will sketch future innovative security in Atos HPC architectures, as 

allowed by the Atos TEA. 

2. Hardware Trust State-of-the-Art Overview 
2.1. Smart Cards 

Long before NSA tried to promote its Clipper Chip, the ideas of using small pieces of hardware to 

secure secrets arose in several places. Several patents were filed around this invention, but the seminal 

industrialization patent was the creation of the first portable support with both a processor and a 
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memory, allowing the small piece of plastic to cryptographically interact with its environment in an 

active way. Embedding the processor and the memory in the same single ship came rapidly after this, 

innovating the reign of smart cards. It is worth recalling that Michel Ugon, a French engineer of the 

Bull company later acquired by Atos was at the core of these inventions[8][9][10]. 

The large dissemination of smart cards makes them a primary target of a new class of cryptographic 

attacks: if the secret remains in the chip, maybe the way it is used leaks some information on the secret. 

A seminal attack of this kind is due to P. Kocher and al. who invented Differential Power Analysis 

(DPA) [11] which remains one of the threats a cryptoprocessor needs to deal with, among other types 

of side channel attacks.   

2.2. Hardware Security Modules 

Hardware Security Modules (HSM) are another example of devices which were designed to protect 

secrets. HSMs usually embeds features to physically protect their internals, and provide tamper 

evidence at physical (labels, screws…) and logical levels (logs, alarms…). Certification standards such 

as Common Criteria [12] or FIPS-140 [13] are developed with HSM in mind to evaluate the robustness 

of these security mechanisms. 

As usual, it is worth noting that being certified is not a guarantee of security. Depending on the 

security model, a certified HSM can be proven vulnerable to threats which are out of its protective 

scope. Interestingly, a recent example proved the need for HSMs to be self-protected against firmware 

tampering, not only on their crypto processors, but also on their applicative part [14]. Said differently, 

HSMs firmware also needs some Hardware Root-of-Trust! 

2.3. Trusted Platform Module (TPM) 

The Trusted Computing Group (TCG) promotes Trusted Computing concepts across personal 

computers around the use of a Trusted Platform Module (TPM). It has now become an international 

standard [5] for a secure cryptoprocessor providing several security functions: 

- Unique device keys: the TPM embeds some private keys which are normally certified by its 

manufacturer. 

- Measurement: the TPM securely stores some Platform Configuration Registers (PCR) which are 

obtained by chaining the cryptographic hash of several memory areas in a specific order. 

Usually, the memory areas are the successive codes used during the booting sequence, therefore 

building a chain-of-trust. The PCR values can be locally verified by the operating system to 

check that the boot sequence wasn’t tampered. 

- Remote attestation: using its unique device keys, the TPM can sign its PCRs to remotely attest 

that the boot sequence was not tampered. This signature can be verified against the TPM 

manufacturer public key certification infrastructure.  

- Key wrapping: using its unique device keys, the TPM can encrypt other cryptographic keys to 

ensure their secure storage. This ensures that the locally encrypted keys cannot be decrypted 

without the TPM. 

- Random number generator: the TPM usually embeds some hardware random number generator 

suitable for cryptographic usage. 

 

It is important to understand that the TPM cannot guarantee the security of the CPU booting process 

by itself. It must be completed by some bootstrapping process to kick-off the measurements and take 

their results in account. 

2.4. Trusted Execution Environment (TEE) 

Following M. Sabt and al. [15] we take as a definition of a Trusted Execution Environment (TEE) 

“a tamper-resistant processing environment that runs on a separation kernel”. It aims at providing on a 

single CPU an isolation between a “normal” kernel and a “trusted” one, protected against software and 
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hardware attacks. Several TEE solutions exist but all of them are based on some hardware technologies 

such as Intel TXT [16] or ARM TrustZone [17]. The latter is widely used in mobile environments as 

stated by M. Sabt and al. 

The security of a TEE solution results from the hardware technology used, but it depends a lot more 

on the usage of this technology at software level. Even if the TEE is fully isolated at hardware level, its 

purpose is to exchange data with the normal world and process it in a secured environment. Any 

vulnerability in the driver which ensure communication between the two worlds can ruin the overall 

security of the TEE [18][19]. 

2.5. Secure Chips  

Other secure chips have been developed in different industries to ensure firmware integrity. 

Examples of solution are found in the Set-top-box area where control access system vendors ensure 

digital rights management (DRM) on video streams through hardware security features. For instance, 

Nagra On-Chip Security (NOCS) “brings the hardware “root of trust” that ensures platform security” 

[20]. Another example is the ARM-based cryptographic embedded controller [21] which proposes all 

the features to implement a TEE. 

2.6. Open Compute Project (OCP) 

The Open Compute Project (OCP) is an organization [6] that shares designs of data center products 

and best practices among several companies. It leads several projects around datacenter design. As usual 

in those types of organization, a sponsoring program is in place with different levels [7]. Being able to 

claim a product is OCP Inspired™ requires at least a Silver subscription. Curiously, the annual fee is 

decreasing from Silver to Platinum level, but this is compensated by the obligation to contribute to 

events and overall activity of the project. This may explain why the list of members is roughly split in 

two between Community members at lowest rates, and Platinum members. Platinum members 

encompass companies such as Alibaba, AMD, ARM, Cisco, Deutsche Telekom, Google, HPE, Huawei, 

IBM, Intel, Meta, Microsoft, Nokia, Nvidia, or Schneider Electric, among others. 

Through its Security project, the objective of the OCP could be summarized as an effort to gather 

all previous security technologies like TPM and secure chips in an organized standard able to ensure 

secure computing. Also all documentation is shared according to a Creative Commons license [22] 

allowing to share and adapt the material. 

2.6.1. OCP Platform Security Overview  

The overall organization of the OCP is somehow fuzzy, but two parallel approaches are identified 

which should eventually converge: 

1. The Datacenter Secure Control Module (DC-SCM) specification [23]. 

2. The OCP Platform Security Overview [24]. 

The main outcome of this last document can be summarized in the excerpted Figure 1. It introduces 

a new piece of hardware, the Platform Active Root-of-Trust (PA RoT). 

The role of this PA RoT, which could be ensured by the DC-SCM, is aligned with the NIST Platform 

Firmware Resiliency Guidelines [25]. This Special Publication was issued in May 2018, and its 

guidelines have soon become a de facto standard of what a platform needs to implement to improve 

their resiliency against a variety of known attacks, both at software and/or hardware level. It proposes 

a progressive approach with three different platform security levels: Protected, Recoverable, and 

Resilient. 
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Figure 1: Overview of Secured Platform Architecture according to OCP [24] – CC BY-SA 4.0 license [22] 
 

2.6.2. Attestation of System Components 

The OCP has issued some requirements and recommendations around attestation of system 

components [26]. The document goal is to allow a platform (verifier) to build its platform inventory 

containing a list of all security-relevant devices, whether they support authentication and attestation or 

not. Attestations are secured by a set of cryptographic keys and protocols which are used in attestation 

mechanisms. Cryptographic requirements refer to standard NIST documents. 

Because of these requirements, each device must be provided with a set of cryptographic keys: 

1. A Unique Device Secret (UDS) which is used to characterize the attester device. 

2.  A private authentication key unique to each device. The corresponding certificate is allowed 

for digital signature usage. This key is intended to be immutable and certified by the 

provisioner. 

3.  A private signature key unique to each device. The corresponding certificate is allowed for 

digital signature and content commitment usages. This key is intended to be updated and 

certified by the device owner. 

For the provisioner, the specification also requires some key management infrastructure using HSM 

to protect: 

1. The keys of the Provisioner’s Certificate Authority. 

2. The keys of the Updater role. 

3. The keys of the Firmware signer role. 

To be noted that there is a notion of ownership transfer that implies that the Updater and Firmware 

signer keys can be changed by the Device owner.  

Also, the requirement implies the existence of a root of trust within each attester, able to perform 

cryptographic operations, including random number generation with sufficient entropy. References to 

NIST publications and FIPS 140-3 [13] at level 2 is recommended. 

Once this is set, attester devices must be capable of communicating their authentication and 

attestation capabilities to the platform, and platforms must be capable of interrogating potential attester 

devices and recording their authentication and attestation capabilities. The two references used to 

implement the corresponding protocols are described in DMTF’s SPDM [27] (see 2.3.9) and 

Microsoft’s Cerberus [29]. A sample implementation of the DMTF’s SPDM specification is also a 

reference [28]. 
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3. Atos’ Approach 
3.1. Threat Model 

When dealing with firmware security, the threat model can drastically impact the level of protection 

needed. It is indeed a different story to protect the firmware integrity of a server lying in a physically 

isolated datacenter, or to address the same problem on a smart card which can be easily replaced by a 

copy. Also of importance is the scope of the intended protection. In our case, and in this paper, we focus 

on the security of the platform with an agnostic approach of the CPU/GPU components. We aim to 

ensure some security independently from the existing technologies at OS level. In particular, and as an 

example, the operating system can still use the TPM when it is present and leverage the CPU 

technologies to ensure it’s booted in a secured way. This will be further explained in section 4.4. But 

we want to ensure a certain level of security of the platform even if none of these security features is 

used. So, let’s first identify the type of attack scenario which one would like to prevent in this context. 

3.1.1. Physical RAM Access 

The first scenario of attack is basic. If one has physical access to the server, he or she could leverage 

this access to reprogram the memories of the hardware and have the platform firmware execute 

unwanted operations. For instance, in the context of an HSM which would protect secret keys, 

reprogramming the firmware could be a simple way to get a given secret key copied on an external 

interface, hence compromising it. 

3.1.2. Supply Chain Attack 

Physical RAM access may be assumed as limited in time. If the physical access is possible for days, 

like during shipment, the attack possibilities in altering firmware are much more important. 

Components could be replaced which would try to mimic the behavior of the original ones while 

preserving some backdoor, for instance. 

3.1.3. The Persistent Remote Attack 

As the firmware will have some critical vulnerabilities discovered, the security objective is to make 

the platform able to recover from such attack and to avoid its persistency. If such an attack can change 

every piece of data in the platform memories, then it is pretty clear that the attack can remain, since the 

platform relies on its memories to boot. The use of some immutable data seems therefore mandatory to 

ensure security.  

3.1.4. Rogue Developer 

The internal threat remains a possibility for any vendor, and whatever the source code tainting 

approach. The effects are the same in case of an intrusion on the development infrastructure. Controlling 

the code can mitigate this risk only if these controls are not by-passed. A good way to ensure that the 

code is controlled at least once is to have it signed with a properly protected cryptographic key. This 

ensure as well a resilient posture in case of late discovery of some rogue activity. In this case, the root-

of-trust remains the cryptographic keys which are used to sign the firmware. 

3.2. Sovereignty Principle 

From a security perspective, a platform MUST use a Hardware Root-of-Trust (HW RoT). It is the 

only way to ensure some protection against software attacks and to achieve a level of resilience. Without 

it, any of the above listed attacks, if successful, would achieve a state where trust would be damaged in 
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an irreversible way. On the other hand, if the Hardware RoT exists, the platform may be rebuilt from 

this basis. This is the approach specified by OCP with its Platform Active Root-of-Trust and promoted 

by the NIST Platform Firmware Resiliency Guidelines [25]. 

But Atos also wanted to limit unknown hardware to increase trust and confidence in the solution. 

Even if some of the proposed PA RoT are open source like the Open Titan [31], adding new hardware 

increases the attack surface and the complexity of the server. And one also must take in account the 

delays to qualify and stabilize the new hardware [32]. In the end, the trust in the resulting hardware is 

disputable and will eventually come from wide usage, as the story of the TPM told us.   

 We therefore limited the HW RoT to some public cryptographic key anchored in the silicon, whose 

corresponding private keys are handled in an HSM developed by Atos: the Trustway Proteccio 

netHSM [30]. This HW RoT is then propagated through a Chain-of-Trust applied to: 

1. A secure boot sequence (Chain-of-Trust for Detection – CTD). 

2. A secure firmware update (Chain-of-Trust for Upgrade – CTU). 

These chains-of-trust will be later detailed in section 4.1. 

3.3. Baseboard Management Controller 

Most of the modern servers have a Baseboard Management Controller (BMC), which is responsible 

for the power-on of the main CPUs, and the management of the firmware. From a security perspective, 

it is already a piece of the platform you need to trust. And it has already been proven that it can be a 

source of weakness for a server [33]. 

For the servers developed by Atos, the BMC is hosted in a System-on-Chip (SOC). We decided to 

leverage this existing hardware and to elevate it as the Platform Active Root-of-Trust for the platform. 

The Figure 2 modifies the original figure from OCP (see Figure 1) to illustrate the approach. 

The server's CPUs are therefore seen as symbiont devices relative to the BMC. The advantage of the 

approach is that this hardware is mandatory in all servers, as it is the interface to the management 

infrastructure to power-on the platform or upgrade its firmware. It also plays a key role in the overall 

integrity of the platform, and its security should be hardened. 

 

 

 

3.4. Security Implications 

The current implementation of the Atos BMC is based on Open BMC [34], a Linux Foundation 

collaborative open-source project whose goal is to produce an open-source implementation of the BMC 

Firmware Stack. The Open BMC project has already security in mind with firmware signature 

       ARM 
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Figure 2 – Trusted Execution Architecture (TEA) of Atos servers – adapted from a CC BY-SA [22] 
licensed material by OCP [24] 
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verification during secure boot [35]. But this doesn’t appear sufficient to reach the security level needed 

for a PA RoT. And even hardening Open BMC Linux kernel would not achieve hardware-like security. 

But the underlying hardware embeds an ARM core with TrustZone technology [17]. Leveraging this 

technology makes possible to achieve a decent level of security, even without a dedicated security 

component. This is the implementation we will detail in section 4. Assuming this technology is 

efficiently implemented, what are the impacts on the above threat model: 

1. Reprogramming the firmware of the server assumes the possibility to reboot the server with 

a rogue firmware. This possibility is prevented as the BMC will verify the signature of 

firmware during boot sequence. And the cryptographic keys used for this verification are 

out of reach for a standard physical access. 

2. Changing components of the platform is the threat covered by the device/peripheral 

attestation mechanism. Of course, the security of this mechanism depends on the existence 

of the PA RoT, which could be replaced in our case by another BMC. This rogue SoC would 

have to implement a backdoor in a way that resist subsequent firmware upgrade of the BMC 

using Atos firmware. This seems an acceptable residual risk. 

3. The persistent remote attack risk is covered in the same way as the direct reprogramming of 

the firmware memories. The BMC will verify the signature of the firmware during boot 

sequence. The firmware upgrade feature which is present in the BMC will also verify 

signature of the firmware before authorizing the upgrade. 

4. The public keys anchored in the hardware make possible to recover from a situation of a 

trapped development as long as the private keys are duly protected. 

Of course, the use of a non-dedicated hardware for security has some drawbacks. For instance, it is 

envisioned to implement a firmware TPM in the Atos BMC. This would allow to add this security 

feature in HPC environment where no TPM is usually implemented for physical space reason. But it 

cannot be claimed the same level of security, since the TPM chips are usually certified at high level of 

security (see for instance [36]). For the threat model we described, dedicated to Platform security and 

Firmware integrity, there is no significant change in the risks. However, for cryptographic storage of 

user keys, which is one of the key features of a TPM for the end user, the risk assessment would have 

to be considered accordingly.   

4. Atos’s PA RoT Implementation 
4.1. Ownership Transfer Preparation 

Allowing the change of cryptographic keys to the platform owner is difficult to ensure while 

preserving the overall security, since the purpose of anchoring RoT in the hardware is to prevent 

software-based attacks which could change the keys used for firmware verification. Even if these keys 

are public, their integrity is of utmost importance to the security objectives. 

Signed firmware is used to authenticate firmware before critical functions: 

1. CTD: During boot sequence to ensure that the next step of the boot sequence will activate an 

authenticated binary code. 

2. CTU: During updating process to ensure that the firmware image is authenticated before 

flashing it in RAMs. 

These two chains are independent and complementary.  

Three types of keys can therefore be identified to verify the signature of a firmware: 

1. At the beginning of the boot sequence, to benefit from Hardware root-of-trust (red key in the 

Figure 3). 

2. During boot sequence where a public key embedded in firmware can be used to pursue the 

chain-of-trust in a flexible way (orange key in the Figure 3). 
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3. Before flashing, where a public key can be used to verify the signature of the firmware payload. 

The corresponding public key can be stored either in a hardware secured part of the SOC, or in 

a firmware provided it is protected by another chain-of-trust (see green public key in the Figure 

3 as an example). 

Figure 3 - Type of firmware signing cryptographic keys 
 

Except the root-of-trust key secured at hardware level, all public keys used to verify firmware 

integrity and/or boot chain integrity must be part of a signed firmware. This ensures that the 

modification of the verification keys is authenticated provided the key store is properly implemented. 

It is important to understand that the hardware secure boot is very limited in practice. It only secures 

the first stage of booting, a little program which cannot exceed a few kilobytes of code (63 K for ARM), 

because it will be loaded in ARM memory for signature verification. All the other operations of a chain-

of-trust for detection (CTD) or chain-of-trust for upgrade (CTU) will exceed this limit and will therefore 

rely on software-based security.  

Yet, this also allows ownership transfer provided the customer trusts its vendor, which seems a 

legitimate hypothesis. Indeed, at least the CTD key is included in the first stage booting code, which 

ensures the possibility to change it, while preserving the overall security of the scheme. Depending on 

the needs, CTD and CTU keys may be owned by the vendor or not. Consequently, in theory, the chain-

of-trust keys can be changed for each owner provided at least one signature is performed involving the 

hardware RoT key owned by Atos. 

4.2. Firmware Key Management 

The root of trust is the initial public key which must be inserted and secured by hardware security 

measures. The root-of-trust must be immutable once the hardware security measure is in place. 

Therefore, the corresponding private key is of critical importance in a production environment. Due to 

the hardware hardening it is not possible to update a root-of-trust key by firmware upgrade. The only 

allowed operation may be to invalidate a compromised key. It is therefore mandatory to anticipate the 

compromise of such key by organizational measures and by generating several backup keys that will 

be injected in the hardware in case of a compromise (see 4.2.2). 
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4.2.1. ARM Secure Boot Specification 

For intellectual property reason, we cannot here reproduce the precise way the ARM Secure Boot is 

implemented. We will therefore just sketch the main points to help understanding how the TEA root-

of-trust key is managed. 

By default, secure boot is not enabled. This is mandatory in the design process since initialization 

of the ARM component will need to boot the CPU. The usual chicken-and-egg situation mandates the 

component to be initially insecure. Several ways to activate secure boot are available. To simplify, let’s 

say that we have: 

1. A reversible way to activate hardware secure booting through jumpers on hardware pins. 

2. An irreversible way to activate hardware secure booting through one-time-programmable 

hardware memories in the SoC. 

The first option is intended for development, testing, and qualification. In the end of the production 

process, the second option will be used to set the component in secure mode. 

Once set in secure mode, only a signed first stage can be used to boot the SoC (see Figure 3). The 

signature will be verified against the keys which have been inserted in the component.  

Consequently, it is possible and recommended to introduce the public keys in the ARM core as soon 

as possible in the factory process. It has no immediate impact and no risk to brick the SoC provided the 

secure boot is left in reversible mode. It has the advantage to personalize the component early in the 

process, making it more difficult to tamper with (see Table 1). 

 

Table 1 
PA-RoT states 

State DEV Key PROD Keys Secure Boot Usage 

OPEN Non present Non present Disabled SoC reception 

DEV Activated Activated Reversibly 
activated 

Development 

DEV-PROD Reversibly 
deactivated 

 

Activated Reversibly 
activated 

Qualification 
Validation 

CLOSED Irreversibly 
deactivated 

Activated Irreversibly 
activated 

Production 

 

4.2.2. Secure Boot Spare Keys 

For obvious security reason, the hardware secure boot public keys are also injected through OTP 

memories and cannot be changed once in secure mode. For a given component, the same keys will 

therefore be in use from day 1 of its production until its end-of-life. If the component is to be used for 

ten years, the corresponding private keys must be protected during this time. And on such long period, 

one must anticipate risks such as key loss, key compromise, identity usurpation on the firmware signing 

chain, etc. 

As a first consequence, HSM should always be used to protect hardware secure boot private keys. 

This seems consistent with the sensitivity of keys which cannot be changed in the field if an incident 

occurs. 

Secondly, the set of hardware secure boot keys should not be limited to one key. It is therefore 

separated in one production key, and several spare keys. Any of these keys could sign a firmware 

recognized by the BMC. But the only one in use is the production key. The spare keys are created just 

in case something weird happens to the production key. But they must be created at the same time 

because their public part will be injected in production. And the protection of their private part is of 

utmost importance.  
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4.2.3. Private Key Protection 

All the keys used to ensure trust in the platform do not deserve the same level of protection. For 

instance, DEV keys are considered insensitive. They will be deactivated in production and are therefore 

considered extractable from the HSM. This allows to have some outsourced development without 

having to give access to the HSM signature mechanisms. 

This is obviously not the case for PROD keys which are generated, stored, and used in an Atos 

Trustway Proteccio HSM [30] configured in RGS mode [37]. All production keys are saved in backups 

protected by a 3-out-of-6 Shamir scheme [38]. 

Besides, the access to the signature function is controlled: 

- By logical measures for Chain-of-trust keys. 

- By the use of a smart card for the HW RoT production key. 

- Using a smart card AND the possession of the key backup for the HW Spare production keys. 

4.3. Trusted Execution Architecture (TEA) 

The System-on-Chip (SoC) used in the BMC embeds the TrustZone technology which is part of its 

ARM Core [17]. This is used to host a hardened Operating System TeaCore provided by ProvenRun to 

implement a Trusted Execution Environment (TEE) as seen in section 2.4. The TEE is then used to 

secure the two Chains-of-trust related to secure boot and firmware upgrade (see Figure 4).  

TeaCore is based on the use of a proven operating system ProvenCore which has been certified by 

ANSSI at EAL7 level in a different context [39].  It ensures a better flexibility to later add new security 

features such as cryptographic keys secure storage, firmware TPM, and/or flash runtime monitoring. 

Together with the HW RoT key anchored in the silicium of the BMC, the TeaCore provides the 

architecture to implement a full Platform Active Root-of-Trust as proposed by OCP. As of today, the 

chains of trust for development and upgrade are implemented. Next steps could introduce attestation 

mechanisms. 

 

 

Figure 4 - Trusted Execution Environment of the Chains-of-Trust 
 

Atos BMC (Linux) TeaCore 

TA TA 

FW upgrade Secure Boot 

Normal World 

Crypto 
Sec. Storage Other 

TrustZone Secure World 

Secure Services 
Abstraction Layer 

TeaCore Secure Services 

TA 
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4.4. Full Secure Boot Sequence 

We have now all the information to understand the full boot sequence of an Atos server 

implementing the new Trusted Execution Architecture.  

For this example, we will use the case of a server based on an Intel CPU implementing the TXT 

technology [16]. This technology implements its own RoT which signs the Initial Boot Block (IBB), 

the first step of the Intel TXT secure boot sequence. If activated, the Intel RoT will prevent any change 

of the IBB which is not properly signed. The secure boot sequence of the CPU can also imply the TPM, 

either a physical one if present, or the firmware implementation by Intel [40], or the one Atos could add 

in TEA using the TrustZone technology. This boot process will end at Operating System level. In the 

case of Windows 11, BitLocker can use the TPM and check through the measurements that the boot 

process was sane.  

Atos TEA do not interfere with this process. It only adds at the beginning a preliminary verification 

of the IBB. Since the BMC is responsible for powering on the CPU, it will use its TrustZone to perform 

a signature verification of the IBB and won’t power-on the CPU in case of a signature error. The whole 

sequence will therefore start from the ARM secure boot sequence of the BMC and ensure firmware 

integrity through the different existing mechanisms (see Figure 5). The approach would work the same 

way for another type of CPU.  

 

 

 
Figure 5 - Chains-of-Trust for Detection 

 

5. Potential Application in HPC 

Now that we have a TEE enabled in our servers, from Edge to Enterprise servers, let’s see the type 

of application we could envision in a High Performance Computing (HPC) environment. 

5.1. How an HPC Could Be a Unique Device 

One drawback of the Platform Active Root-of-Trust approach is that the secure component becomes 

a single point of failure for the system. This is especially true when comes the definition of the Unique 

Device Secret (UDS). As introduced in section 2.6.2, the attestation mechanism assumes the 

implementation of some hierarchical certification where each vendor attests the integrity of its product 

using some public key infrastructure mechanism. The PA RoT will therefore use all these UDS to 

control the authenticity of the platform components with some signature mechanism, and the 
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verification of the certificates of the public keys. The trusted cryptoprocessor PA RoT is also the 

privileged place to store the UDS of the platform itself, allowing it to become attester to the remote 

management infrastructure (verifier). But this approach reaches some limits when it comes to big cloud 

infrastructure or high-performance computers. As an example, one of the recently deployed Atos HPC 

platforms counts 300 000 computing cores shared among roughly 4500 CPUs [41]. Which one of those 

components will host the UDS and identify the HPC in a unique way? 

5.2. An HPC Architecture Overview 

It is not the purpose here to detail the architecture of an HPC installation. Besides, this is an evolving 

matter. Schematically, an HPC framework will gather nodes of different types exchanging data through 

an Ethernet or Interconnect fast network. Management Nodes or Rack Management Controllers (RMC) 

can exist to manage a physical cluster of a hundredth of computing nodes. Each cluster is interconnected 

with the other clusters to form the overall HPC (see Figure 6).  

 
Figure 6 – Cluster architecture 

 

From an operational point of view, the access to the computing power is devoted to some login 

nodes, and one of the management software roles is to schedule the job requests submitted to the login 

nodes to optimize the computing power. Each job will get allocated some computing nodes and storage 

resources for an amount of time, depending on the pre-requisites of the job request. The whole purpose 

of the architecture is to avoid latency in messages exchange between the computing nodes and in 

input/output writing on the storage nodes, while dealing with astronomically high amount of data. In a 

standard attestation approach, a compute node would have to check the attestation status of the storage 

node before sending data to it. This would mean data exchange between the nodes consuming the 

interconnect bandwidth. Even if it may sound marginal, keep in mind that these machines are pushing 

the specifications at their limits, and are subject to some avalanche effects when unwanted events occur. 

On the other hand, all the development framework around HPC has already incorporated error events 

because the scale of the HPC makes plausible to encounter errors when the machine is in use. Hardware 

faults, hot swaps, are part of the normal use of an HPC computer. This can be a drawback in a classical 

platform firmware attestation mechanism, but it can also be turned to our advantage. 

5.3. The HPC DNA: a Patented Approach 

Under the hypothesis that the Trusted Execution Architecture is implemented, an immediate benefit 

arises from it. All nodes will get a TEE through their BMC (see Figure 7). Of course, the same would 

occur if each node would come with a TPM or any form of PA RoT secured chip. But the truth is that 
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adding some secure element in these nodes is not that easy for physical constraints (power alimentation, 

cooling, space) while a BMC is mandatory anyway. So now, we have this trusted capacity on all our 

nodes, and we can leverage it. 

  

 

 
Figure 7 – Example of the management network of a cluster 

 

Like a living body can identify its cells through characteristics determined by the DNA common to 

all cells, the idea of a local hardware-secured zone keeping some DNA-like secrets shared by all the 

machine nodes, makes possible for each node of the machine to perform the access controls, without 

relying on a remote server to determine if a communication is tampered or not. In other words, this 

generalizes the notion of Unique Device Secret (UDS) to a global platform such as a High-Performance 

Computer (HPC) or a Cloud-based infrastructure. 

Any node of the machine will assume that its counterpart possesses the shared secret. It is therefore 

possible to encrypt communication under this assumption. If the counterpart fails to decrypt it, this will 

be treated as a glitch or hardware failure using the normal exception mechanisms of HPC development 

libraries. 

5.4. Unique Secret Generation 

The powering-on of an HPC machine is done in several steps. For instance, a rack will be powered-

on before its computing blades can be powered-on. There is no guarantee on the order of the powering-

on. Some computing blades can be powered-on before another rack is powered-on. The hypothesis is 

that all nodes will eventually establish a connection through a management network, without guarantee 

that all connections are feasible. For simplification, we will assume that a Rack Management Controller 

exists, which can be seen as a BMC dedicated to the management of all the BMCs of a rack. We will 

also assume that the sequence of initialization starts an RMC before the BMC it manages.  

The process must therefore ensure the following properties: 

- If the machine is powered-on, a new secret must be generated by the first powered on RMC.  

- If the machine is powered-off, which is an unlikely event, a new secret must be generated on 

next power-on by the first RMC that will be powered on. 
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- If several RMCs are powered-on in parallel, a negotiation mechanism must converge towards 

a single secret. 

- Any new RMC or BMC that will be powered on must get the secret in a secure way.  

Generating a secret in the RMC could be a challenge from a cryptographic perspective, since we do 

not assume a physical random number generator is available on the BMC. It seems feasible as soon as 

a reliable random noise generator is available. One needs to avoid the repeatability of the boot process 

which could lead to the generation of the same secret on each boot. To ensure a proper source of noise, 

the global entropy must reach at least 256 bits. Fortunately, the RMC is gathering a lot of physical 

sensors information which can be leveraged to assembly enough noise in the random number generator 

of the device. 

When a new component is added to the management network, it can be of two kinds: 

- If it is a BMC, it will get the secret from its RMC. 

- If it is an RMC, it will negotiate its secret against the other RMC as follows. 

One cannot know in advance the order of RMC appearance in the management network. And in the 

life of the machine, some racks may be shut down for maintenance, then reconnected. One wants the 

secret to stabilize as soon as possible while preserving the history of the used keys. This is a possible 

application for blockchain technology and decentralized consensus making.  

If RMCa and RMCb have booted and generated their secrets Sa and Sb, one cannot choose among 

these secrets. But a cryptographic mechanism can take place to establish a common secret Sab. This 

secret is timestamped in the blockchain and becomes its first block. Two blocks are then added with Sa 

and Sb. 

If RMCc joins later with its secret Sc it will have to adopt the secret Sab. And the block Sc is added 

to the chain. The block chain length is therefore related to the number of racks whose secrets were 

changed so far. 

If two racks exchange two different block chains with the same initial secret Sab, the block chain is 

reconciled with the missing blocks. 

If the two initial secrets differ, the longer chain will be privileged. The blocks of the shorter chain 

will be added. If the chains have the same length the chain with the smaller hash will be kept. 

If an RMC has to change its secret after negotiation, it has to propagate the new secret to its rack 

components. The blocks to add in the blockchain indicate the other RMCs to inform of the secret 

change. 

5.5. Security Discussion 

To prevent the secrets from being compromised when a computing blade is extracted, the 

corresponding secrets are stored on RAM in an encrypted way. The component extraction powers the 

component off by design. This ensures that at least a portion of the encrypted key is erased. The 

encryption mechanism can therefore guarantee the disappearance of the key if a sufficient portion of 

the key is lost. This security mechanism is prone to cold boot attacks [42] but this kind of scenario is 

mitigated if the secret is updated regularly. 

Before delivering the secret to a new component of the machine, it is of course important to 

determine if the new component is sane. It is at this step that remote attestation protocol can be used.  

The UDS at node level makes perfect sense for this as it is inserted at factory time to build security 

upon trusted remote attestation of a component (see 2.6.2). 

This pre-inserted private key should never be exposed outside its security module. Zero-knowledge 

protocols can use the key to attest the authenticity of the TPM-like feature remotely. This way, a newly 

inserted component can be checked remotely for sanity before providing the secret. And the private key 

is needed to decipher the secret, protecting it on first communication. 

6. Conclusion 

Based on well-known concepts of Product Security, Atos has implemented a Trusted Execution 

Architecture (TEA), common to all its servers. The trust in this implementation is founded on: 

1. Public cryptographic root-of-trust keys anchored in silicon. 
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2. Private keys protected by an RGS certified Atos Trustway Proteccio HSM. 

3. The well-known ARM TrustZone technology embedded in the existing BMC component 

of our platforms. 

4. The hardened operating system TeaCore developed by ProvenRun on Atos specification 

and based on their formally proven and EAL7 certified operating system ProvenCore.  

This TEA is first used to ensure some Platform Firmware Resiliency through firmware signatures 

verified at boot time and before any upgrade. Its generalization to all Atos-made platforms makes 

possible some innovative security features. As an example, we presented an innovative approach to 

device attestation applicable to High-Performance Computing (HPC) environments which generalizes 

the notion of Unique Device Secret (UDS) to a global platform such as a HPC or a Cloud-based 

infrastructure. 
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