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e Social Network Analysis with Semantic Web data

o prior work by Peter Mika, Li Ding etc.
o goal: study network properties of multiple aspects — one RDF graph

as ‘master’
e |t is well-known that properties like degree distribution are skewed,
but how skewed exactly?
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Step 1: extraction query l ’

e Goal: one ‘master’ graph, multiple derived graphs
e How? with SPARQL, query language for RDF
o SELECT query — result table

o CONSTRUCT query — result RDF graph
o ASK

o DESCRIBE
e Example:

Icontent/authors/1

Icontent/authors/2

foaf:maker foaf:maker

prism:references

N

_—
—_

Icontent/articles/1

Icontent/articles/2

rdf:type rdf:type

1
e

Ins/structure/Article
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BASE <http://metastore.ingentaconnect.com> G

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX prism:
<http://prismstandard.org/namespaces/1.2/basic>

PREFIX ex: <http://example.com/ns/>

CONSTRUCT { 7authorl ex:cites 7author2 }
WHERE {
?artl a </ns/structure/Article> ;
foaf :maker 7authorl ;

prism:references T7art2 .
7art2 a </ns/structure/Article> ;
foaf:maker <7author2
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Step 2: secondary graph to SNA format H'

e This is optional, but... most RDF and FOAF tools are quite
limited

e Convert RDF to format for (social) network analysis

o Disadvantage: requires new conversion every time something changes
in source RDF
o through pyNetConv to Pajek, GML, GraphML, ...
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Unevenness H'

e Or: skewedness, inequality

e Intuitive notion, but how can it be expressed?
o studied in econometrics and informetrics
o several measures available (not all good)

e Lorenz curve: graphical measure

e Gini index: numerical measure
o equivalent to Pratt's measure
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e Gini index: G'(X) =




e Lorenz curve
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e Lorenz curve U
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Example: Agrippa B’

e Agrippa = catalogue and database of AMVC Letterenhuis,
Antwerp (see http://museun.antwerpen.be/amvc_
letterenhuis/index_eng.html)
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Example: Agrippa B’

e Agrippa = catalogue and database of AMVC Letterenhuis,
Antwerp (see http://museun.antwerpen.be/amvc_
letterenhuis/index_eng.html)

Contains information about

o archival materials (manuscripts, paintings, letters, posters etc.)
o creators of these materials (people and organizations)
o relations between these

Storage: Jena
Queried through: SPARQL protocol

Many interesting graphs can be derived
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Correspondence in Agrippa H‘

e Example: writers and recipients of correspondence in Agrippa
¢ |n other words:
o Nodes = persons (sometimes acting on behalf of an organization)
o Arcs = letters from writer to recipient
e Simple SPARQL query:
PREFIX agrippa: <http://anet.ua.ac.be/agrippa#>
CONSTRUCT A{
?sender <urn:agrext#writesLetterTo> 7recipient
} WHERE {
?context agrippa:haslLetterWriter 7sender .
7context agrippa:hasRecipient 7recipient

}
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Centrality

e Degree centrality: number of connections to a node
e Betweenness centrality: how important is this node for
establishing short paths between other nodes?

¢ Closeness centrality: how fast can other nodes be reached from

this one?

e Example of unevenness (in degree and out degree):

# of nodes
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Lorenz curves for centrality measures H’
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e According to Lorenz curve:

o BTC is more uneven than DC and CC
o slight overlap between DC and CC

e According to Gini: G'(BTC) < G'(DC) < G'(CC)
e Why such huge differences?
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Why such differences? G

e CC is quite even, due to the small world effect
o diameter D =11
o average length of shortest paths = 3.85
e BTC is very uneven due to the bow-tie/corona structure
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In summary. .. l ’

e Simple two-step methodology with central place for SPARQL:
balance between power and usability

Unevenness in network measures can be used to test
hypotheses regarding network structure
e Future:

o testing on other (kinds of) networks
o predictive power of unevenness?




Thank youl!
Any questions?
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