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Abstract
In the drive to develop more powerful systems, AI practitioners sometimes forget that what they build is
motivated by human needs and intended ultimately to serve some human purpose. This paper traces
how decades of development have led to superhuman computer game players. It also demonstrates how
AI’s drive for skilled behavior can ignore significant aspects of intelligence and thereby lose functionality
important to society.
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1. Introduction

The premise of this paper is that artificial intelligence requires more than highly-skilled decision
making. Game playing serves here as a lens through which to examine AI’s development of
superhuman performance on a set of challenging problems. It clarifies what such systems have
lost in the drive to achieve their skill, and identifies to what AI must still aspire.

The formal study of AI began with the conjecture that

…every aspect of learning or any other feature of intelligence can in principle be
so precisely described that a machine can be made to simulate it. [1]

In this excerpt from the 1955 proposal to fund the Dartmouth Summer Research Project on
Artificial Intelligence, ”emulate” would have required AI to replicate how humans solve problems.
Instead, “simulate” gave researchers license to create a black box, a system with specified input
and output but without processing specifications. Although these innovative scientists intended
to share what they knew with a computer, ”learning” clearly indicates that they also expected
the machine to discover some knowledge on its own.

There is a difference between data and knowledge. Data is merely statements about experience
in the world: measurements, objects, events. In contrast, knowledge explains how data came
to be, that is, how some part of the world works to produce it. From data, learning acquires
and applies knowledge. In both humans and machines, however, learning about the world is
primarily inductive. Without data that encompasses every possibility, any learner can only
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generalize over what it has experienced. Nonetheless, a learner that can build a faithful world
model from its own experience, without instruction from humans, is impressive, particularly
when that model outperforms human experts.

Although AI systems increasingly succeed on problems once thought beyond their grasp,
human trust in those systems has rapidly declined. The recent flurry of calls to hold AI
accountable for its impact on humans is a response in part to those systems’ opacity. The issue
is explainability, that is, how an AI system can reveal its processes and clarify its answers to
support human understanding.

The key to explainability is knowledge representation, both how humans describe the problem
to an AI system and what the system manipulates to reason and learn about that problem.
Knowledge representation can be symbolic or subsymbolic. A symbolic representation is
necessarily transparent to its designers and made more accessible to others through natural
language and visualization. In contrast, a subsymbolic representation supports a computer’s fast
processing and frugal storage but is often data-hungry and opaque. Recent, widely publicized
subsymbolic systems have explained why a joke is funny [2], created pictures to match verbal
descriptions [3], and predicted proteins’ three-dimensional structures with atomic accuracy [4].
These programs, however, all employ what has been called “thinking fast” (subsymbolically)
rather than “thinking slow” (symbolically) [5].

Because games have challenged humans for centuries and intelligent behavior is often gauged
by competition, board games were a natural and early AI target. A game here is an activity on a
finite board where two players act with tokens (move). At any moment, a game’s state indicates
where each token is located and whose turn it is to move. A game’s rules specify its initial state
before any player has moved, and the moves permitted in each possible state. They also specify
which states are terminal (end play) and the outcome of a contest based on its terminal state:
win, loss, or draw from the perspective of the first player. (For clarity, “contest” here describes
one full experience at a game, from the initial state to a terminal state.) Both players know the
rules and have full and accurate (perfect) information about the current state. Furthermore,
every move is deterministic, that is, produces a single new state that is known in advance. A
game’s state space describes how moves transition play from one state to the next. Search is
organized movement through state space.

The competitive nature of games and the huge state space that challenging games engender
have forced multiple compromises in the development of expert game-playing programs. The
first compromise in their development was to abandon requirements for perfect decisions.
Perfect play is intractable in a challenging game because there are too many states to examine.
Given such a game, AI researchers initially sought to strongly solve it, that is, to produce
an algorithm that would achieve an optimal outcome in every contest, whether or not the
algorithm made the first move and regardless of the quality of both players’ moves. Tic-tac-toe,
for example, has so few possible states that it is trivial to produce a strong solver. To date,
however, few much larger games have been strongly solved. Indeed, an announcement that
a game has been “solved” typically means only that it has been weakly solved, that is, there is
now an algorithm that always wins or draws for one player, against any moves by its opponent
[6, 7]. Checkers, for example, has been only weakly solved [8].

Another compromise was to accept expert behavior as an ideal. In game playing, data is
simply recorded experience, such as a set of training examples of the form (state, move), where



the player whose turn it was in state executed move. The ground truth about a training example
is whether or not move was indeed optimal from state. Because in challenging games the
ground truth may be unknown, the most valued training examples were collected from contests
between top human experts. A dataset of such training examples does not guarantee that it
represents optimal play, nor does it indicate how individual training examples relate to one
another or what motivated them. Therefore, knowledge that generalizes over such a dataset is
at best an approximation of expert decision making.

Yet another compromise was to limit what is remembered. Expert human players acquire,
maintain, and apply large stores of knowledge. They identify play in roughly three stages:
the opening, the middlegame, and the endgame. An opening is a sequence of moves by the
first player annotated with the opponent’s anticipated responses. Openings vary in length and
complexity, and branch in response to the opponent’s moves. A chess grandmaster, for example,
typically maintains an opening book of about a dozen well-practiced openings and replaces a few
of them annually. Expert human players also memorize many endgames, strongly solved states
where relatively few pieces remain in play. In addition, they have access to a wealth of historic
contests between experts. A plan is an intended sequence of actions to achieve a specified
goal. In games, however, a plan must anticipate the moves of the opponent. A tree-based plan
represents alternative decisions as a tree where a state with a set of legal moves has a branch
for each of the next states those moves produce. Openings are tree-based plans to gain an initial
advantage, and endgames are tree-based plans to reach a desired outcome.

The next section of this paper describes two early approaches to game playing, one that
sought to learn a model of how the world works and another that intensively engineered
software and hardware to explore millions of game states per second. Subsequent sections
examine how game-playing programs with symbolic knowledge representation matured and
how powerful subsymbolic approaches ultimately eclipsed them. The final sections discuss
what subsymbolic systems lose in their drive to outperform humans, and considers to what AI
should next aspire.

2. One-game players

Early game-playing programs, such as Arthur Samuel’s checker player, were restricted to a
single game [9]. To improve its skill, the program needed more knowledge. Rather than extract
and encode human expert knowledge, Samuel introduced the term “machine learning” and
identified two possible approaches to it: a network-like system that would be rewarded or
punished for its initially random behavior, and a “highly organized” system that would be
restricted to a specific challenge. Given the resources of 1959 computers and checkers’ 5 × 1020
possible states, he quite reasonably chose the specifically targeted approach.

Samuel’s early version of a checker player was both formative and prescient. It described
states with multiple, hand-crafted descriptive features (e.g., total mobility) intended to capture
significant properties of the game. The program reasonedwith an evaluation function, a weighted
linear sum of feature values that calculated a score for how “good” a state was. To evaluate the
quality of a move 𝑚 that led directly to state 𝑠, the algorithm searched ahead from 𝑠, growing a
game tree of states and moves to reach them as long as subsequent moves improved the next



state’s score. To conserve memory and speed search, the program used alpha-beta pruning, and
then extracted a path from the current state to the state with the highest computed score.

Samuel imbued his program with his own knowledge and then had it learn weights for its
evaluation function. The program drew its training examples from contests it played against a
human or against itself (self-play), and corrected its weights based on the outcome of the contest
from which the example was drawn. It also memorized some states along with the outcome for
the player who made the move. In later experiments, Samuel investigated the relevance and
interdependence among his 40 checkers features, and sought an optimally weighted evaluation
function on a subset of features [10]. While his work eventually resulted in presentable amateur-
level play, Samuel wrote that he longed for a better way to learn both weights and new, relevant
features.

Decades later, as computational resources expanded, other AI researchers sought to engineer
optimal play with more knowledge and better search algorithms. Jonathan Schaeffer led a team
that developed Chinook, the first program ever to win a contest against a human checkers world
champion. Schaeffer used Chinook to support a 16-year effort that weakly solved checkers, that
is, he proved checkers was a draw with a game tree that considered all possible states if both
players played perfectly. Chinook represented states with a small set of handcrafted features. Its
reasoning merely extracted and executed a perfect line of play from the game tree, followed by
the relevant entry from the endgame database [8]. There was no learning; Chinook stored only
its game-tree proof and the endgame database. In retrospect, Schaeffer claimed that fast, clever,
deep search supported by carefully honed knowledge representation and parallel processing
implicitly garnered the knowledge necessary to solve checkers [11]. Chinook knew everything
necessary to play checkers perfectly. On the other hand, it could offer no explanation beyond
“there’s a better move” for why unrecorded choices would be incorrect.

Another major game target was chess, with a far larger state space and branching factor
(number of alternative moves to choose among). In 1997, Deep Blue was the first program to
defeat a human world chess champion, Gary Kasparov. To play a contest, Deep Blue began play
with an opening book that referenced more than 700,000 grandmaster contests. It then used its
8000-term weighted linear evaluation function to search a traditional game tree 6 to 8 moves
ahead (but occasionally as deep as 20). Once no more than five (sometimes six) pieces remained
on the board, Deep Blue followed the tree-based plan retrieved from its endgame database. The
weights for Deep Blue’s evaluation function were hand-tuned on training examples drawn from
thousands of expert contests, including some against Kasparov. Its tree-based plans were its
human-curated openings and endgames. A team of international grandmasters helped tune
its heuristic evaluation function and improve its knowledge base of openings and endgames
[12]. If asked why it had made a particular move 𝑚, Deep Blue might have been coded to cite
its opening, provide its endgame entry, or exhaustively list the 8000 weights and features that
scored 𝑚, perhaps with some lower-scoring alternatives.



3. In Search of Knowledge and Representation

3.1. The (Human) Expert Way

Because AI targets intelligent human behavior, research on game playing has long studied the
most expert human players. Although they may be drawn or encouraged toward a single game
quite young, there is currently no evidence that expert human players are born as experts.
Young experts-to-be play and study a single game obsessively, and traditionally receive intensive
instruction from more expert players. The top young Japanese Go students, for example, attend
boarding schools whose entire curriculum is Go, and often become professional players by age
12 [13].

Expert human players incorporate both strategies and tactics in their decisions. A tactic is a
sequence of moves that repeatedly threaten the opponent’s pieces (e.g., a fork), while a strategy
is a longer sequence of moves whose advantage is cumulative. Although the goal in chess is
to checkmate one’s opponent, chess analysts have written extensively about how tactics and
strategies differ from one stage of the game to the next.

Expert human players appear to perceive data and store knowledge in several forms. It is
difficult for human experts themselves to report what they see, although eye-tracking devices
can record where they look. Early studies suggested that chess masters saw a game board
as an assembly of chunks, small salient patterns [14]. Later, however, psychologists found no
evidence that Go masters relied on chunks or had an extensive memory of them [15]. Instead,
they appeared to have a representation that dynamically invested Go stones with multiple roles
in a parallel stream of ongoing skirmishes on different parts of the board. As for search, at least
as they report it, both chess masters and Go masters consider far fewer moves and search far
less deeply than their machine opponents [16, 17].

3.2. The GOFAI Way

For decades, expert game-playing programs relied on a carefully crafted or learned evaluation
function, extensive databases of openings, endgames and expert contests, plus search. This was
GOFAI (Good Old-Fashioned AI), symbolic computation pushed to its extreme. From every
possible move 𝑚 in the current state, the program would look multiple states ahead to predict
the outcome of the contest after 𝑚. Ideally, this search would eventually reach an extensive
endgame database that recorded an inevitable outcome and the moves to achieve it. Chinook’s
power, for example, relies heavily on an endgame database for each of the 39 trillion states
where 10 or fewer of the original 24 pieces remain on the board. More often, however, time
constraints halt search at an intermediate state where GOFAI can only estimate the outcome
with an evaluation function. In both cases, the highest scores are propagated backward along
the search path to evaluate a move under consideration.

There are several reasons to be chary about such search. Because it depends on estimation
by a heuristic evaluation function, the result may be deceptive; trouble may lurk just beyond
where search stopped. (Quiescence algorithms check to confirm that the score of particularly
attractive states is maintained several moves deeper [18].) Typically, multiple moves are worthy
of consideration from each state and the order in which they are searched is also determined



heuristically. When more than one sequence of moves can reach the same state, a tradeoff arises
between the cost to re-evaluate states and the bookkeeping necessary to remember their scores.

Expert human knowledge has traditionally been important in computer game playing. Many
strong programs were coded by researchers who were already expert or master players at that
particular game. Those programmers designed state features that reflected their own knowledge
or intuition about the game and took pains to calculate their features efficiently. They also
observed and revised the evaluation function to drive it toward the decisions they believed
were correct, often with help from human master players. For example, a newly-involved team
of grandmasters received much of the credit for the difference between Deep Blue’s loss to
Kasparov in 1996 and its triumph in 1997.

At the AAAI-1998 Hall of Champions exhibition. three of the programs on display made clear
why GOFAI succeeded. They all had extensive knowledge bases and relied on deep, fast, clever
search, but the key to their prowess in every case was the way they most often made decisions:
their evaluation function. They played backgammon [19], Othello [20], or Scrabble [21] at the
same level as their human champion opponents, and their creators agreed that learning the
right evaluation function had been essential.

All the learning for those evaluation functions occurred offline, however, in advance of any
competition. GOFAI could no longer contend with the size of the state space and the branching
factor of these games, and construction of specific hardware for each new game was not an
option. Moreover, there were targeted games like shogi where the branching factor increases
rather than decreases as a contest progresses, so that search toward the end of play is more
demanding. Indeed, a speaker at AAAI-1999 warned that game targets like shogi and Go would
not succumb to GOFAI, and encouraged researchers to revisit how humans make decisions [22].

4. Knowledge and Symbols

Initially, Samuel considered “switching networks” to ferret out useful knowledge, but dismissed
the idea as impractical because they seemed slow to learn and computationally expensive [9].
Artificial neural networks (ANNs) are the modern version of what Samuel had in mind. Figure
1 is an example of a simple feed-forward network, where data flows from left to right. Each
circle in Figure 1 represents a functional unit that sums the weighted input values it receives,
applies a function (e.g., sigmoid or tanh) to introduce some nonlinearity, and then forwards the
result as its output. Each edge in Figure 1 represents transmission of some weight times the
value output by its left endpoint as input to the unit at its right endpoint.

Layers of units (shown vertically in Figure 1) are connected only to units in the immediately
preceding layer and the immediately following one. Each unit in the input layer reports a feature
value; each output unit reports a result (e.g., outcome probability) given its input. Between the
layers for input and output, intermediate hidden layers also form weighted combinations of
values. This compositionality is a powerful computational tool that allows each hidden layer to
construct new features from the features built in the preceding layer. Indeed, any continuous
function can be approximated to arbitrary accuracy by a network with two hidden layers,
although more layers may lead to simpler networks [23].

The key to expert decisions, as Samuel realized, is a good evaluation function, one with



incisive features and appropriate weights. Given a feature-based state representation as input
for state 𝑠, an ANN can calculate a weighted non-linear score for 𝑠. Moreover, given a large
dataset of (state,move) training examples, temporal-difference learning can train an ANN’s
weights to score each move highest for its associated state. When it is the program’s turn to
move in state 𝑠, it can then simply choose the move from 𝑠 that has the highest score. Samuel’s
other wish, to learn new features for a game, is provided by ANNs’ compositionality. Thus a
program with no information about an appropriate evaluation function might learn one with an
ANN that has multiple hidden layers and enough expert training examples. This is supervised
learning because the correct move is available to train the weights.

ANNs are subsymbolic, that is, they extract a world model only from the experience in their
dataset. An ANN’s weights are initially set to small random values, without regard to what the
input features represent in the world they are intended to describe. ANNs achieved their first
successes on problems that involved perception, where there was ready access to vast quantities
of associated data but little knowledge about how to apply it. Those ANNs harnessed spatial or
temporal continuity in their input to detect relationships among its features. As the next section
indicates, with temporal difference learning ANNs can learn to apply those relationships and
thereby drive a program to make the right decisions.

5. Multi-game players

In 1979, Hans Berliner’s backgammon player BKG became the first program ever to defeat
a human world-champion at a challenging game [24]. BKG used tree search with only six
handcrafted, computationally intensive features in a linear evaluation function. Berliner was
also a world-class competitor in both chess and bridge. To simulate someone who learned to
play multiple challenging games expertly, GOFAI would require knowledge about how to learn
to play games in general, rather than how to learn a specific game. Subsymbolic programs have
risen to that challenge.

In the last few years, DeepMind has produced a sequence of increasingly ambitious game

Figure 1: A simple neural network.



learners with little or no expert knowledge. They all apply reinforcement learning to large,
deep (i.e., many-layered) neural networks, and their only input is the pixel values in a 19 × 19
image of the board’s initial state. The first target of these game learners was Go, a considerably
larger game than chess, with approximately 3361 possible states and a branching factor of 250.

AlphaGo was a semi-supervised reinforcement learning program for Go. It learned to play
first on 30 million expert training examples but, once it became a strong player, it continued
to learn only on examples drawn from self-play. This program had no Go-specific features,
no suggestions about expert strategy or tactics, and no endgame database or opening book.
Nonetheless, in 2016 AlphaGo became the first program ever to defeat a 9-dan professional
(top-ranked) human Go player, and thereby earned the same rank [25].

AlphaZero learned to play multiple games at a superhuman level, exclusively from self-play,
without any expert knowledge or expert training examples [4]. This was unsupervised learning;
each training example included only a state from a contest the program had played against
itself. Its targets were chess, Go, shogi, and a suite of 57 Atari games. For each game, AlphaZero
knew the rules and used them to learn a prediction network with Monte Carlo Tree Search
(MCTS). This method explores the value of a state with multiple rollouts, each a sequence
of randomly selected legal moves that ends in a terminal state [26]. Whenever it reached a
previously unexplored state 𝑠, AlphaZero performed a fixed number of rollouts and backed up
their’ rewards to calculate the expected value of the reward it would receive after each possible
move from 𝑠. It also tabulated a probability distribution to describe how likely each move was
to be the best choice.

MuZero pushed the envelope further [27]. MuZero does not know the rules when it begins
to learn a new game, so it cannot look ahead with tree search. Instead, it learns the rules. When
it is MuZero’s turn to move, it is given the legal moves from the current state, and when the
contest ends it receives a numeric reward. Like AlphaZero, MuZero has no expert knowledge.
The only features it begins with are the pixel values in an image of the initial state, and its
only goal is to accumulate rewards. It also stores in memory the most recent million contests it
has played against itself, along with prior network models it built for the game it is learning.
MuZero takes an approach similar to AlphaZero’s but learns three networks. First, because it is
given no sophisticated features to describe its states, MuZero learns a representation network
that imagines the current state as a hidden state. Second, instead of reinforcement learning’s
traditional transition table, MuZero learns a dynamics network to capture how moves change
hidden states. The dynamics network accepts the current hidden state and a move and generates
a reward and a new hidden state. Third, like AlphaZero, MuZero learns a prediction network
with MCTS, but MuZero must first infer the current state with its representation network. Then,
once it begins to grow an MCTS tree, it moves through it with the representation network
and the dynamics network, imagining a contest with hidden states and their outcomes. So
successful behaviors learned in MuZero’s imagined contests perform well during actual play, all
three networks are initialized at random and trained simultaneously on decision subsequences
randomly selected from its stored contests. Although it begins with less knowledge than
AlphaZero, MuZero learns faster, plays better Go, and plays the other games at least as well.

Finally, all the games discussed thus far have been deterministic, that is, when a player in
state 𝑠 makes move 𝑚, their opponent must then move from the next state 𝑠′ which is known to
both players. In a stochastic game, however, 𝑠′ is modified non-deterministically into a chance



state 𝑠″ from which the opponent is to move. For example, backgammon is a stochastic game
because on each turn a player rolls a pair of dice to determine their next legal moves. Given a
perfect stochastic simulator of dice rolls to predict 𝑠″, AlphaZero learned to play backgammon
as well as GNUbg Grandmaster, a superhuman, state-of-the-art backgammon player with a
perfect dice-roll simulator and multiple backgammon-specific features [28]. MuZero, however,
is deterministic and so lacks any knowledge about how dice behave. As a result. MuZero played
backgammon less well than AlphaZero. To address this, a new version, Stochastic MuZero, now
learns an additional network that calculates the chance state and applies it to perform stochastic
tree search. This allows Stochastic MuZero to match the performance of both AlphaZero and
GNUbg on backgammon [29]. Moreover, if allowed an order of magnitude more rollouts than it
used for its other games, Stochastic MuZero outplays GNUbg. To date, however, there are no
available results for the program on any other two-person stochastic game.

6. Aspirations for Intelligence

Samuel’s two approaches to game playing culminated in the GOFAI archetype Deep Blue and the
subsymbolic archetype MuZero. Deep Blue derived its prowess from improved search, human
expert knowledge, and special-purpose hardware tailored to its knowledge representation and
reasoning. It represented game states with human-designed handcrafted features and was
tuned to play one game very well. Deep Blue reasoned with a learned weighted linear model,
relied on game-specific hardware and software that drove fast, clever search, and drew on an
extensive memory of experts’ openings, endgames, and historical expert contests. In contrast,
MuZero learns to play multiple games in only days (or even hours) of processing, on hardware
and software designed for rapid parallel computation. From a single image, MuZero learns an
unknown representation and an unknown model of the world that it uses to make decisions. All
its knowledge is represented in three large neural networks whose weights it learns with tensors,
mathematical objects that represent relationships in vector space but are not problem-specific.
MuZero remembers only the last million contests it has played against itself and old versions of
its three networks.

Both Deep Blue and MuZero play as if they were experts. Consider, however, another excerpt
from the first paragraph of the Dartmouth proposal:

An attempt will be made to find how to make machines use language, form abstrac-
tions and concepts, solve kinds of problems now reserved for humans, and improve
themselves.[1]

Clearly as AI agents Deep Blue and MuZero are incomplete. Their missing aspects are discussed
next, as aspirations for AI that go beyond game playing.

6.1. Remembering and Forgetting

Consider Fool’s Mate, a full but brief contest to which novice chess players are routinely
introduced. White, the first player to move, need make only two seemingly innocuous initial
choices to find itself in checkmate after four moves. There are eight different lines of play
for Fool’s Mate, along with several six-move variations. All of them result in checkmate by



Black’s queen, although in the initial state that queen is constrained by its own pawns from any
movement and quite far from White’s king. Chess players recall the first time they encountered
Fool’s Mate with a smile or a grimace but rarely with indifference.

Fool’s Mate is a salient lesson for two reasons. First, it is important to learn from failure as
well as from success. Knowledge that can be harnessed only to win is often deceptive when
one tries to transfer it. (For example, expert play of tic-tac-toe has no obvious resemblance to
expert play for lose tic-tac-toe, a game where players must avoid three pieces in a row, column,
or diagonal.) The lesson to be learned from Fool’s Mate is that mobile but geographically
distant pieces are threats too, but if queried Deep Blue and MuZero could only report that
there are better openings. Second, human memories often come with emotional tags that elicit
appropriate actions. Deep Blue only saves expert openings, and after a million contests MuZero
could eventually forget Fool’s Mate. In contrast, humans’ selective memory facilitates the
retrieval of significant experience that both cues behavior and might spur exploration.

6.2. Abstraction, Analogy, and Planning

It is not enough to memorize experience; for it to be useful it must be organized. Pattern
recognition helps humans organize their experience. When they detect a set of objects, events.
or actions that play a similar role in their environment, humans often abstract it as a concept.
Human game-playing concepts, for example, include “retreat”, “trap,” and “fork.” Within a single
game, a concept is a set of states with a similar relationship among their constituents. A fork in
chess, for example, is a move that involves at least three pieces, where one or more of a player’s
pieces threaten to capture at least two of the opponent’s, and no single move by the opponent
can prevent all captures. Deep Blue might have a term in its evaluation function to detect forks
but has no way to indicate how significant that term was in its decision. MuZero might have a
fork alert among its learned features, but likely an unrecognizable one.

Another way to organize experience is to store a sequence of actions with a descriptive label
and an executed solution. Many human decision makers, from emergency rescue teams to
military commanders, rely on such case-based reasoning to devise solutions in novel situations
under pressure [30]. This approach supports transfer learning that organizes experience with
thoughtful indexing to support rapid retrieval for pertinent analogical reasoning. Once a human
understands a fork in tic-tac-toe, for example, it is far easier for them to identify and employ
one in chess. Such analogical thinking is a hallmark of human intelligence. Concepts help
humans learn faster and develop expectations about what to look for when, for example, they
learn to play a new game or enter another competitive environment.

Humans also organize knowledge temporally, and even the fastest programs may benefit
from temporally-aware resource allocation. In a game, for example, the rules may limit elapsed
wall-clock time. Moreover, time measured by the number of moves prior to the current state
delineates openings and endgames.

Concepts often form natural hierarchies that support partial planning. For example, a fork is
a kind of attack. When a problem includes multiple agents, however, particularly human ones,
even partial plans are fragile. In such a dynamic world it may be necessary to replan when the
environment changes. For example, when the advantage shifts from one game player to another
it may be necessary to reconsider the provenance of the experience on which an original plan



was chosen. Rollouts, for example, may be less predictive than historical contests against the
current opponent.

6.3. Collaboration, Explainability, and Creativity

It is not enough to store and organize experience; to have extensive impact that knowledge
must be shared. Human experts dispense their knowledge with examples. When master players
teach or write about their game, they show why a move is a bad choice by the perils it creates
and the benefits that accrue from alternative moves. When human masters describe individual
tactics, they create illustrative situations, and when they describe strategies, they recount them
with important historical contests. This is when memorable failures like Fool’s Mare are as
salient as successes. All this, of course, requires natural language.

For collaboration, plans too should be readily translatable into natural language. Long or
elaborate plans may be better understood when described with higher-level concepts than with
a sequence of moves. Deep Blue’s plans are its openings and endgames designated by experts
and might succumb to some incisive natural language processing. MuZero’s plans are implicit
in its three networks; their description in natural language would be a daunting task.

Human experts collaborate. Chess grandmasters, for example, often travel to a tournament
with a team that analyzes contests immediately after they are played. The team attempts to
identify a particular opponent’s strategy and the crucial moves that supported a winning tactic.
Although they may not achieve unanimity, these discussions highlight salient experience and
provide fodder for analogy, all in natural language. An expert program that could communicate
in natural language could make important contributions to such a discussion.

MuZero’s most remarkable feature is its ability to learn without any indication from humans
about appropriate knowledge representations for states and moves. Its superhuman skill clearly
indicates that its representation network has learned knowledge well adapted to its stored
data and its learned prediction network. Such synchrony could support faster retrieval and
storage, so that parallel training processes retrieve more accurate information. MuZero may
also be discovering novel and incisive but opaque game-specific features; Deep Blue’s features
were fixed and weighted by grandmasters. In both cases, human experts could benefit from an
explanation of the features. When an expert calls a program’s move “creative,” they are really
saying that they have never seriously considered it before. A high-level explanation of the
motivation for that move, along with an illustrative example like Fool’s Mate, would be more
readily retrieved and repurposed.

7. Conclusion

Problems are no longer “reserved for humans” as they were in 1955. AI now tackles many
challenging tasks, including language translation, disease diagnosis, and drug design. Research
starts small, on a relatively simple version of a problem. When it succeeds, researchers make
the problem harder. When progress eventually stalls, their drive for skilled behavior sacrifices
human-friendly components in favor of increasingly better “results.” Researchers want their
agents to make the right decisions and watch them carefully to see if they do. Modern game-



playing programs have taken this to an extreme — to gauge the skill of these superhuman
players, testing can now only pit them against one another.

The previous section illustrated what an artificial agent can lose when all that matters is
the win. While superhuman behavior is impressive, human society wants more from superior
expertise than skilled decisions. Humans are reluctant to trust “algorithms,” which they increas-
ingly blame for outcomes that disappoint or infuriate them. If humans are to trust an expert
program, it must help them build a mental model of how it perceives and reasons [31, 32]. It is
one thing to compete against an unknowable Go opponent, but quite another to submit oneself
to an unknowable surgeon. Humans want algorithms that are both skilled and knowledgeable.
They want clear explanations, not reams of data accompanied by trillions of weights.

Challenges still remain in game playing. For example, the models built by subsymbolic
programs are based on finitely-many possibilities sampled with rollouts and chance nodes.
Real-world problems, however, often include real-valued features that offer infinitely many
choices. Moreover, learning that induces knowledge, even if it is asymptotically correct, can
still lead to costly mistakes. AI practitioners, those who tout AI, and those who seek to control
AI must all remember that while machine learning enables generalization over more data than
people ever experience, a perfect inductive learner remains unreachable.

Fundamentally, what intelligence seeks is an omniscient model of a world, a model that
accurately predicts what will happen as a result of taking any action in any state. This paper
has described how AI research progressed through a sequence of superhuman programs for
challenging games. Along the way, like humans, AI abandoned perfection for reliability. AI
also accepted that experience and memory are finite. GOFAI modeled human knowledge and
behavior, but to learn to play all games that way would have required a team of multi-game
human experts — or a vast dataset of game-playing experience. Self-play generated massive
quantities of data within which subsymbolic programs found powerful opaque patterns, but
they should not be viewed as solutions.

As subsymbolic programs sometimes dazzle us and sometimes fumble, researchers must
remember that AI is intended to serve society. It is increasingly clear that human experts
will collaborate extensively with computers to develop expertise, both their own and that
of the machine. A machine’s drive to win, however, may not be enough. Problem solving
requires a toolbox of methods, many of which are cued by human behavior; developers should
not dismiss them as computationally intractable or unnecessary. Programs that “think fast”
(subsymbolically) can react to protect humans and achieve surprising skill, but they remain
insistently opaque. Programs that “think slow” (symbolically), can more readily be adapted to
plan and converse and collaborate with humans. AI needs both: a pair of experts for a problem,
one fast and data-laden, the other slow and more accessible.

The premise of a program like Stochastic MuZero is that random sampling of states in a
dynamic world will ferret out its most important elements. Randomness lacks the emotional
tags humans attach to salient experience, and relies only on fortuitous exploration for creativity.
Even if a program successfully imagines a complex dynamic reality, however, a limited memory
will eventually discard well-understood pitfalls or significant concepts it might have used to
instruct others. That would be a significant loss. A problem, after all, is about more than its
answer.

Human expert players develop only with years of training and typically excel at only one



game. When human players perceive a state, how they represent it to support reasoning remains
unknown. Either they learn representations that are different from those that programs learn
or they reason with them differently, or perhaps both. Protocols indicate, however, that human
experts remember and apply lessons drawn from some states, and formulate and execute partial
plans. Moreover, they embed all this knowledge and learning in natural language laden with
illustrated concepts that label experience. It could be that humans do all this to compensate for
their fallible and limited memories. Or perhaps humans are playing for more than the win.
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