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Abstract
Scale-out stream processing engines (SPEs) are powering large big data applications on high velocity
data streams. Industrial setups require SPEs to sustain outages, varying data rates, and low-latency
processing. Thus, SPEs need to transparently reconfigure stateful queries during runtime. However,
state-of-the-art SPEs are not ready yet to handle on-the-fly reconfigurations of queries with terabytes of
state due to three problems. First, network overhead : a reconfiguration involves state migration between
workers over a network, which results in more resource utilization and latency proportional to state
size. Second, consistency: a reconfiguration has to guarantee exactly-once processing semantics through
consistent state management and record routing. Third, processing overhead : a reconfiguration must
have minimal impact on performance of query processing.

Today, several industrial and research solutions provide state migration. However, these solutions
restrict their scope to small state sizes or offer limited on-the-fly reconfigurations. Apache Flink [1],
Apache Spark [2], and Apache Samza [3], enable consistency but at the expense of performance and
network throughput. They support large, consistent operator state but they restart the running query
upon its reconfiguration. Research prototypes, e.g., Chi [4], Megaphone [5], and SEEP [6] address
consistency and performance but not network overhead. They enable fine-grained reconfiguration but
support smaller state sizes (i.e., tens of gigabytes).

To bridge the gap between stateful stream processing and operational efficiency via on-the-fly query
reconfigurations and state migration, we propose Rhino. Rhino is a library for efficient management of
very large distributed state compatible with SPEs based on the streaming dataflow paradigm [7]. Rhino
enables on-the-fly reconfiguration of a running query to provide resource elasticity, fault tolerance, and
runtime query optimizations, such as load balancing, in the presence of very large distributed state (i.e.,
up to TBs). To this end, Rhino applies a state-centric, proactive replication protocol to asynchronously
replicate the state of a running operator on a set of SPE workers through incremental checkpoints.
Furthermore, Rhino applies a handover protocol that smoothly migrates processing and state of a
running operator among workers. This does not impact query execution and guarantees exactly-once
processing.

Overall, our evaluation shows that Rhino scales with state sizes of up to TBs, reconfigures a running
query fifteen times faster than baseline solutions, and reduces latency by three orders of magnitude
upon a reconfiguration. Rhino was originally published as full research paper at the 2020 ACM SIGMOD
conference [8]. Currently, we use Rhino in our NebulaStream data management platform for unified
Cloud and Internet-of-Things environments [9].
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