
Rhino: Efficient Management of Very Large
Distributed State for Stream Processing Engines
[Abstract]
Bonaventura Del Monte1, Steffen Zeuch1,2, Tilmann Rabl3 and Volker Markl1,2

1Technische Universität Berlin, Einsteinufer 17, 10587 Berlin, Germany
2DFKI GmbH, Alt-Moabit 91c, 10559 Berlin, Germany
3Hasso Plattner Institute, Campus II, Building F, 1st Floor, August-Bebel-Str. 88, 14482 Potsdam, Germany

Abstract
Scale-out stream processing engines (SPEs) are powering large big data applications on high velocity
data streams. Industrial setups require SPEs to sustain outages, varying data rates, and low-latency
processing. Thus, SPEs need to transparently reconfigure stateful queries during runtime. However,
state-of-the-art SPEs are not ready yet to handle on-the-fly reconfigurations of queries with terabytes of
state due to three problems. First, network overhead : a reconfiguration involves state migration between
workers over a network, which results in more resource utilization and latency proportional to state
size. Second, consistency: a reconfiguration has to guarantee exactly-once processing semantics through
consistent state management and record routing. Third, processing overhead : a reconfiguration must
have minimal impact on performance of query processing.

Today, several industrial and research solutions provide state migration. However, these solutions
restrict their scope to small state sizes or offer limited on-the-fly reconfigurations. Apache Flink [1],
Apache Spark [2], and Apache Samza [3], enable consistency but at the expense of performance and
network throughput. They support large, consistent operator state but they restart the running query
upon its reconfiguration. Research prototypes, e.g., Chi [4], Megaphone [5], and SEEP [6] address
consistency and performance but not network overhead. They enable fine-grained reconfiguration but
support smaller state sizes (i.e., tens of gigabytes).

To bridge the gap between stateful stream processing and operational efficiency via on-the-fly query
reconfigurations and state migration, we propose Rhino. Rhino is a library for efficient management of
very large distributed state compatible with SPEs based on the streaming dataflow paradigm [7]. Rhino
enables on-the-fly reconfiguration of a running query to provide resource elasticity, fault tolerance, and
runtime query optimizations, such as load balancing, in the presence of very large distributed state (i.e.,
up to TBs). To this end, Rhino applies a state-centric, proactive replication protocol to asynchronously
replicate the state of a running operator on a set of SPE workers through incremental checkpoints.
Furthermore, Rhino applies a handover protocol that smoothly migrates processing and state of a
running operator among workers. This does not impact query execution and guarantees exactly-once
processing.

Overall, our evaluation shows that Rhino scales with state sizes of up to TBs, reconfigures a running
query fifteen times faster than baseline solutions, and reduces latency by three orders of magnitude
upon a reconfiguration. Rhino was originally published as full research paper at the 2020 ACM SIGMOD
conference [8]. Currently, we use Rhino in our NebulaStream data management platform for unified
Cloud and Internet-of-Things environments [9].

Keywords
Distributed Stream Processing, Query Optimization, Fault Tolerance



Acknowledgments

This work was funded by the German Ministry for Education and Research as BIFOLD - Berlin
Institute for the Foundations of Learning and Data (ref. 01IS18025A and 01IS18037A).

References

[1] A. Alexandrov, R. Bergmann, S. Ewen, J. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich,
U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer, M. Sax, S. Schelter, M. Höger,
K. Tzoumas, D. Warneke, The stratosphere platform for big data analytics, The VLDB
Journal (2014).

[2] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, I. Stoica, Discretized streams: Fault-tolerant
streaming computation at scale, in: ACM SOSP, 2013.

[3] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst, I. Gupta, R. H. Campbell,
Samza: Stateful scalable stream processing at linkedin, PVLDB (2017).

[4] L. Mai, K. Zeng, R. Potharaju, L. Xu, S. Venkataraman, P. Costa, T. Kim, S. Muthukrishnan,
V. Kuppa, S. Dhulipalla, S. Rao, Chi: A scalable and programmable control plane for
distributed stream processing systems, VLDB (2018).

[5] M. Hoffmann, A. Lattuada, F. McSherry, V. Kalavri, T. Roscoe, Megaphone: Latency-
conscious state migration for distributed streaming dataflows, VLDB (2019).

[6] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, P. Pietzuch, Integrating scale out and
fault tolerance in stream processing using operator state management, in: ACM SIGMOD,
2013.

[7] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma, R. Lax,
S. McVeety, D. Mills, F. Perry, E. Schmidt, et al., The dataflow model: a practical approach
to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data
processing, PVLDB 8 (2015) 1792–1803.

[8] B. Del Monte, S. Zeuch, T. Rabl, V. Markl, Rhino: Efficient management of very large
distributed state for stream processing engines, in: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’20, Association for Computing
Machinery, New York, NY, USA, 2020, p. 2471–2486.

[9] S. Zeuch, A. Chaudhary, B. Monte, H. Gavriilidis, D. Giouroukis, P. Grulich, S. Breß, J. Traub,
V. Markl, The nebulastream platform: Data and application management for the internet of
things, in: Conference on Innovative Data Systems Research (CIDR), 2020.

LWDA’22: Lernen, Wissen, Daten, Analysen. October 05–07, 2022, Hildesheim, Germany
Envelope-Open delmonte@tu-berlin.de (B. Del Monte); steffen.zeuch@dfki.de (S. Zeuch); tilmann.rabl@hpi.de (T. Rabl);
volker.markl@tu-berlin.de (V. Markl)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:delmonte@tu-berlin.de
mailto:steffen.zeuch@dfki.de
mailto:tilmann.rabl@hpi.de
mailto:volker.markl@tu-berlin.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

