
Specification and Validation of Quality Criteria for Git
Repositories using RDF and SHACL
Leon Martin1, Andreas Henrich1

1University of Bamberg, An der Weberei 5, 96047 Bamberg, Germany

Abstract
As part of quality management, it is important to ensure that Git repositories meet certain quality criteria
depending on the type of the respective project. In academia, for instance, repositories of finished
research projects should always comprise a readme file providing usage instructions. The range of
heterogeneous resources within modern Git repositories leads to a large number of conceivable quality
criteria, thus increasing the effort for validating Git repositories against the project type specific quality
criteria. At the same time, there is a lack of approaches and tools supporting this validation. Hence,
this paper proposes and discusses an approach based on RDF and SHACL for validating a given Git
repository against a set of quality criteria defined for its intended project type. QuaRe, a working
prototype implementing the approach, is provided and discussed.

Keywords
Applications of knowledge management, Representation of Git repositories, Git repository quality

1. Introduction

Today, the version control software Git1 and related platforms like GitHub2 are standard tools
for developing and sharing software. Version control systems store data within so called
repositories in the form of a filesystem tree [1]. Developers can connect to the repository and
edit the files in the tree as needed. Every committed change is registered and stored such that
older revisions of the files can be viewed retrospectively. On top of this core functionality,
platforms like GitHub provide a continuously growing number of powerful features like issue
tracking, release management, wikis, CI/CD [2], and many more. As a result, modern Git
repositories comprise many heterogeneous resources beyond pure software. Further increasing
the complexity, different relationships exist between the resources and the users of a repository:
There are one-to-one relationships, e.g., one repository can have exactly one description, one-to-
many relationships, e.g., one repository can comprise one or more branches, and many-to-many
relationships, e.g., one or more issues can be assigned to one or more contributors.

In software engineering, there are numerous tools and practices for producing high-quality
software [3]. Similarly, Git repositories should also comply with certain quality criteria de-
pending on the intended type of the respective project. Due to the complexity of modern

LWDA’22: Lernen, Wissen, Daten, Analysen. October 05–07, 2022, Hildesheim, Germany
Envelope-Open leon.martin@uni-bamberg.de (L. Martin); andreas.henrich@uni-bamberg.de (A. Henrich)
Orcid 0000-0002-6747-5524 (L. Martin); 0000-0002-5074-3254 (A. Henrich)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)
1https://git-scm.com (visited 2022/09/07)
2https://github.com (visited 2022/09/07)

mailto:leon.martin@uni-bamberg.de
mailto:andreas.henrich@uni-bamberg.de
https://orcid.org/0000-0002-6747-5524
https://orcid.org/0000-0002-5074-3254
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://git-scm.com
https://github.com


Git repositories, there is a range of conceivable quality criteria. In fact, all resources of a Git
repository can theoretically be the subject of some quality criteria, thus making it difficult to
evaluate the quality of one or even multiple Git repositories that have to follow certain criteria
across an organization consistently. At the same time, there is a lack of tools supporting the
validation of Git repositories against such quality criteria, thus motivating the present paper.

In this paper, an approach based on the Resource Description Framework (RDF) [4] and the
Shapes Constraint Language (SHACL) [5] is proposed for validating a Git repository against a
set of quality criteria defined for its intended project type. The approach follows a three-step
process to check whether a Git repository meets the quality criteria of its intended project type:

1. A representation of the project type and the corresponding quality criteria is created.
2. A representation of the repository and its heterogeneous resources is created with respect

to its intended project type.
3. An engine is leveraged to validate the repository representation against the representation

of the quality criteria of its intended project type.

We provide a prototypical tool called QuaRe3 implementing the approach. The tool allows
users to easily check wether Git repositories of interest comply with the quality criteria they
should fulfill according to their intended project type. Even though this paper focuses on
repositories of academic projects, the approach and thereby the tool can readily be applied to
other kinds of Git repositories.

The remainder of this paper is organized as follows: Section 2 investigates important foun-
dations and related work. In Section 3, the approach is explained thoroughly. Then, Section 4
focuses on the implementation of the approach by introducing our working prototype. Sub-
sequently, the approach and the implementation are discussed in Section 5, before drawing a
conclusion in Section 6.

2. Foundations & Related Work

In the beginning, this section introduces a set of useful quality criteria with respect to literature
and our academic background, which is the first contribution of this paper. Afterwards, the
candidate technologies for implementing the proposed approach are investigated.

2.1. Quality Criteria for Git Repositories

Although Git and related platforms like GitHub are standard tools in software development today,
there is few scientific literature explicitly discussing quality criteria for Git repositories. Instead,
the available literature mainly discusses topics around so called data repositories for storing
datasets. Examples of such data repositories provide interactivity and support collaboratively
working on the data [6, 7]. Regarding quality criteria, there is, for instance, a paper concerned
with the consistency of data within such repositories [8]. Typical areas of application for data
repositories are the general scientific domain [6] and its various disciplines like medicine [7].

3https://github.com/uniba-mi/quare (visited 2022/09/07); pronounced like quare, the Latin word for why, which
is a reference to the tool’s ability to provide explanations why a repository’s validation did not succeed.

https://github.com/uniba-mi/quare


Actually, one could understand a modern Git repository as a highly collaborative and feature-
rich form of a data repository mainly for the software development domain. This is supported by
the fact that papers like [9] mention code as a part of the data stored in research data repositories.
Regarding quality indicators for code, the paper mainly elaborates on code reproducibility. To
achieve this, lists of required dependencies, documentation, user guides, and in the best case
virtual runtime environments provided via tools like Docker4 or platforms like Code Ocean5

are recommended.
Apart from the scientific literature, there are posts on blogs and Q&A sites addressing quality

indicators of Git repositories. For instance, answers to questions on StackOverflow6 and Quora7

state that comprehensive documentation, ease of installation, up-to-dateness, the activity on
the repository, the friendliness of the community, the extensibility of the provided code, and
the usage of software testing are important indicators.

In the end, the repository maintainers decide which quality criteria they want to enforce,
thus calling for a flexible approach. Based on our academic expertise and the literature, we
compiled a first set of generic quality criteria categories that can be useful for academic Git
repositories (and others). Table 1 gives an overview of the considered quality criteria categories
on the 𝑦-axis and the affected Git repository resources on the 𝑥-axis. As shown, we distinguish
five categories8: Existence criteria check if a resource is available at all, quantity criteria check
if the correct number of a resource is available, naming criteria check if a resource is named
appropriately, content criteria check if a resource comprises the correct contents, and status
criteria check a resource’s status.

Table 1
An overview of the five considered quality criteria categories (𝑦-axis) and some of the affected Git
repository resources (𝑥-axis). The × symbols indicate if there are quality criteria from the respective
categories that are applicable for the respective resources.

Re
po
si
to
ry

To
pi
cs

D
es
cr
ip
tio

n

Br
an
ch
es

Is
su
es

Re
le
as
es

Li
ce
ns
e

Re
ad
m
e
fil
e

Existence × × × × × ×
Quantity × ×
Naming × × ×
Content × × ×
Status × × ×

4https://docker.com (visited 2022/09/07)
5https://codeocean.com (visited 2022/09/07)
6See https://stackoverflow.com/questions/22527438 (visited 2022/09/07)
7See https://www.quora.com/How-do-you-measure-a-good-github-repository (visited 2022/09/07)
8There are numerous other conceivable quality criteria and criteria categories which, however, cannot be

covered here comprehensively. For instance, one could impose an exotic criterion addressing the quality of writing
of some file’s content (cf. [10]) or require criteria with respect to the FAIR data principles (https://www.go-fair.org;
visited 2022/09/07). The representations of constraints and Git repositories used by our approach allow adding other
criteria categories and specific criteria in the future.

https://docker.com
https://codeocean.com
https://stackoverflow.com/questions/22527438
https://www.quora.com/How-do-you-measure-a-good-github-repository
https://www.go-fair.org


We define that a repository 𝑅 is of high quality iff ∀𝑞 ∈ 𝑄𝑇(𝑐𝑜𝑚𝑝𝑙𝑖𝑒𝑠(𝑅, 𝑞)), where 𝑄𝑇 is the set
of all quality criteria of the intended project type 𝑇 and 𝑐𝑜𝑚𝑝𝑙𝑖𝑒𝑠 is a predicate that evaluates to
true if 𝑅 complies with 𝑞.

2.2. RDF, SHACL & OWL

One strength of RDF [4] is its ability to semantically link heterogeneous data. For this purpose,
RDF encodes knowledge as subject-predicate-object-triples, i.e., statements that specify binary
relations between entities that are either Internationalized Resource Identifiers (IRIs), literal
values, or blank nodes. The predicates defining the binary relations are also referred to as
properties. Collections of such triples span so called RDF graphs, which can be queried using the
SPARQL Protocol And RDF Query Language (SPARQL). On top of this, the SPARQL Inferencing
Notation (SPIN) [11] allows specifying business rules in SPARQL against which a given RDF
graph can be directly validated. Said rules include various types of constraints on the nodes
and properties in the graph. It’s modern and more powerful successor, SHACL [5], uses so
called shapes graphs to model constraints. To validate an RDF graph, SHACL validators like
pySHACL9 check whether the graph of interest complies with the constraints specified in the
shapes graph.

An alternative for specifying constraints in the form of restrictions on RDF graphs is to
leverage the OWL 2 Web Ontology Language (OWL) [12] and class expressions. Building on
top of RDF, OWL greatly increases the expressiveness of RDF by introducing classes, properties,
individuals, and data values such that semantic reasoners can be applied to perform reasoning
on the data. One popular semantic reasoner is Pellet [13]. In this context, one typical inference
problem is testing the satisfiability of class expressions, which are used to impose certain
restrictions on the properties of classes [14]. Informally speaking, a class expression 𝐶𝐸 is not
satisfiable if there exists an individual of the class defined using 𝐶𝐸 that does not comply with
the restrictions specified by 𝐶𝐸, for instance.

The following section describes how these RDF-related technologies can be employed to
tackle the problem motivating this paper.

3. Concept

Modern platforms like GitHub typically provide comprehensive APIs and wrappers for accessing
and manipulating repositories in code. Given such an API, the straightforward option for
testing whether a Git repository complies with sets of quality criteria is to directly access the
API or employ one of the available wrappers to check the individual quality criteria directly
on the raw repository data. However, this approach has the drawback that an appropriate
representation of the quality criteria and an engine for validating the repository against them has
to be implemented single-handedly. For flexibility, it is thus more expedient to exploit already
available technologies that suffice for the use case. In our specific case, RDF is well-suited
for creating a generic and abstract intermediary representation of a Git repository because
1) platforms like GitHub already provide explicit Uniform Resource Locators (URLs), a subset

9https://github.com/RDFLib/pySHACL (visited 2022/09/07)

https://github.com/RDFLib/pySHACL


of IRIs, for most of the repositories’ resources and 2) the graph structures of RDF are able to
naturally model the complex relationships between the heterogeneous repository resources
and its users.

Regarding the actual validation, both OWL in combination with a semantic reasoner and
SHACL in combination with a SHACL validator are capable of checking wether an RDF rep-
resentation of a Git repository complies with certain quality criteria. In the former case the
quality criteria would be modelled as class expressions, in the latter as a separate shapes graph.
However, there is an decisive advantage of SHACL: Semantic reasoners for OWL like Pellet
terminate as soon as one violation of a class expression is encountered. As a result, only the
first violation can be reported to the user. Applied to our use case, users would only receive a
report mentioning one violated quality criterion even if the Git repository of interest potentially
comprises many more. In contrast, SHACL validators like pySHACL continue even if one or
more constraints are violated and ultimately provide a full report of all violations. Therefore,
SHACL was chosen for the approach that is mainly proposed and discussed in this paper. For
completeness, our tool also features an OWL-based approach, which will be mentioned in
Sections 4 and 5, too.

The remainder of this section uses the project type finished research project (𝑇𝐹) as a running
example to explain the SHACL approach. With respect to the currently supported criteria
from Table 1, we define that repositories of finished research projects, have to comply with the
quality criteria depicted in the upper section of Table 2. Note that the selected criteria reflect
our understanding of a finished research project, i.e., a project whose development has finished
but whose results, code etc. should still be usable by others. For comparison, the table shows
another project type, namely internal documentation (𝑇𝐼). Since repositories with this intended
project type are for internal use, we impose less constraints for it.

The following sections will explain how the three-step process from Section 1 is implemented
using the SHACL approach. Using this approach, the goal of the process is to evaluate the
formula ∀𝑞 ∈ 𝑄𝑇(𝑐𝑜𝑚𝑝𝑙𝑖𝑒𝑠(𝑅, 𝑞)) from Section 2.1 by checking the compliance of the repository’s
RDF representation with a shapes graph.

3.1. Creating a Representation of Project Types and Quality Criteria

As described previously, SHACL uses a separate shapes graph to specify the constraints for
another RDF graph. In the context of this paper, the created shapes graph provides specifications
for the supported project types. Every project type specification includes constraints on the
properties that entities of the project type have to comply with as defined by 𝑞𝑖 ∈ 𝑄𝑇. To
give an example, Figure 1 (a) shows the fragment of the shapes graph defining 𝑞5 ∈ 𝑄𝑇𝐹 . The
depicted properties with the leading sh prefix originate from the SHACL vocabulary [5]. More
specifically, the sh:property property links a project type entity to so called property shapes
which are structures for defining the constraints. The sh:path property defines the path in the
RDF graph to which the constraint applies. In the example, the properties sh:minCount and
sh:maxCount are leveraged to define the constraint that an entity with 𝑇𝐹 as its intended project
type has to possess exactly one instance of a property has_branch that links the entity to a
branch entity10. Similarly, shapes for all 𝑞𝑖 ∈ 𝑄𝑇𝐹 are created. The exact design of each shape has

10Section 4.2 provides more examples regarding the implementation of quality criteria.



Table 2
The sets of quality criteria 𝑄𝑇𝐹/𝑄𝑇𝐼 that repositories of projects with the type finished research
project (𝑇𝐹)/internal documentation (𝑇𝐼) have to comply with.

𝑞𝑖 ∈ 𝑄𝑇𝐹 Quality Criterion Category

𝑞1 The repository shall be public. State
𝑞2 There shall be at least one topic assigned to the repository. Quantity
𝑞3 There shall be a repository description. Existence
𝑞4 The repository shall provide at least one software release. Quantity
𝑞5 There shall be exactly one branch. Quantity
𝑞6 The branch from 𝑞5 shall further be called main. Naming
𝑞7 There shall be no open issues. Existence
𝑞8 There shall be a license. Existence
𝑞9 The license from 𝑞8 shall be a GNU GPL 3.0 license. Content
𝑞10 There shall be a readme file. Existence
𝑞11 The readme file from 𝑞10 shall include the sections Installation and Usage. Content

𝑞𝑖 ∈ 𝑄𝑇𝐼 Quality Criterion Category

𝑞1 The repository shall be private. State
𝑞2 There shall be a repository description. Existence
𝑞3 There shall be a readme file. Existence
𝑞4 The readme file from 𝑞3 shall include the sections Purpose. Content

to sufficiently capture the constraint but can otherwise be chosen according to taste because
the structure of the RDF representation is not determined yet. Nevertheless, we recommend
designing the shapes as concise as possible.

props:has_branch

sh
:p
ro
pe

rty sh:path

sh:minCount

sh:maxCount
1

types:FinishedResearchProject

(a)

pr
op

s:
ha

s_
br

an
ch

https://github.com 
/uniba-mi/quare

https://github.com 
/uniba-mi/quare 

/tree/dev

https://github.com 
/uniba-mi/quare 

/tree/main

"dev"

"main"

props:has_name

props:has_name

(b)

Figure 1: (a) The fragment of the shapes graph defining 𝑞5 ∈ 𝑄𝑇𝐹 . (b) A fragment of the RDF representa-
tion of QuaRe’s GitHub repository.



3.2. Creating an RDF Representation of the Git Repository

In SHACL, the shapes graph is independent from the RDF graph that is validated against
the shapes graph. To ensure compatibility between the shapes graph and the repository
representation, the repository representation has to be created based on the same properties
that are used for the constraints in the shapes graph and their structure. The naive option
would be to just create the representation such that all 𝑞𝑖 of all supported 𝑄𝑇 in the shapes
graph could be validated based on them. This way, the time to create the representation
becomes unnecessarily long and the representation itself unnecessarily big due to the diversity
of possible quality criteria, though, without any benefit. To mitigate this problem, the RDF
representations of repositories could be cached by exploiting RDF’s serialization capabilities.
However, caching comes with the risk that older versions of repositories are validated. This is
problematic because the most recent versions might have new problems regarding the quality
criteria while some problems might already have been fixed. For this reason, it is more expedient
to choose another option which is to create a minimal representation just-in-time that only
comprises the information that is necessary to check the constraints of the intended project
type. Due to the diversity of possible quality criteria, one cannot rely on the API to directly
provide exactly the information that is required to represent each 𝑞𝑖 ∈ 𝑄𝑇 with respect to the
shape structures determined in the first step, though. Instead, the derivation of each triple from
the available repository data has to be implemented manually as the algorithm in Algorithm 1
shows: After initialization, the wrapper is used to fetch the repository data that is relevant
for each 𝑞𝑖. Based on the retrieved data, RDF triples are derived that sufficiently reflect the
characteristics of the repository with respect to the SHACL constraints. The derived triples
constitute the minimal RDF representation of the repository.

Algorithm 1 Generating a minimal RDF representation of a Git repository.

Require: The 𝑢𝑟 𝑙 of the repository, the set of quality criteria of the intended project type 𝑄𝑇,
and an empty set of triples 𝐺, i.e., the RDF representation of the repository.
𝑤𝑟𝑎𝑝𝑝𝑒𝑟 ←𝑖𝑛𝑖𝑡𝐴𝑝𝑖𝑊 𝑟𝑎𝑝𝑝𝑒𝑟(𝑢𝑟 𝑙)
for 𝑞𝑖 ∈ 𝑄𝑇 do

𝑑𝑎𝑡𝑎 ← 𝑤𝑟𝑎𝑝𝑝𝑒𝑟 .𝑓 𝑒𝑡𝑐ℎ𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐷𝑎𝑡𝑎(𝑞𝑖)
𝑡𝑟 𝑖𝑝𝑙𝑒𝑠 ← 𝑑𝑒𝑟 𝑖𝑣𝑒𝑇 𝑟 𝑖𝑝𝑙𝑒𝑠(𝑑𝑎𝑡𝑎) ▷ The derivation depends on the respective 𝑞𝑖.
𝐺 ← 𝐺 ∪ {𝑡𝑟 𝑖𝑝𝑙𝑒𝑠}

end for
return 𝐺

To give an example, Figure 1 (b) shows a fragment of the RDF representation of QuaRe’s
GitHub repository3. As depicted, two instances of the props:has_branch property are created
that link the repository entity to entities representing the branches available in the repository,
i.e., one branch entity with the name dev and one branch entity with the name main. The result
of the second step is therefore an RDF representation of the Git repository that is adequate in
the sense that it reflects the repository appropriately with respect to the properties used in the
shapes graph such that it can be validated against the shapes graph in the upcoming third step.



3.3. Validation

Finally, a SHACL validator implementation, in our case pySHACL, is used to validate the Git
repository’s RDF representation from the second step against the shapes graph from the first
step. If the RDF representation complies with the project type specific constraints defined in
the shapes graph, the repository is of high quality as specified by the formula in Section 2.1. As
depicted in Figure 1, QuaRe’s repository features two branches while only exactly one branch
is permitted by 𝑞5 ∈ 𝑄𝑇𝐹 , thus causing pySHACL to report that this constraint is violated when
the repository is validated against 𝑄𝑇𝐹 .

4. Implementation

Based on the SHACL (and the OWL) approach, the single-page application QuaRe3 was imple-
mented, which allows testing one or multiple GitHub repositories against the quality criteria of
their intended project type via a web interface. The web interface is implemented using Svelte11

and is connected to a backend written in Python which is executed on the same machine. For
working with RDF and ontologies, the backend employs the rdflib12 and Owlready213 libraries
as well as pySHACL and Pellet. For interaction with the GitHub API, the PyGithub14 wrapper
is leveraged. In its current stage, the application comprises two pages, which are described in
the following sections.

4.1. The Validation Page

The Validation page (cf. Figure 2) provides a form for entering an arbitrary number of GitHub
repositories and their respective intended project types. By pressing the + and − buttons users
can add or remove input fields as needed. Users can also provide their personal GitHub access
token, which is required if they want to validate private repositories or make multiple validation
requests in short succession. Via a switch, users can choose if the backend should use the
SHACL or the OWL approach. When the form is submitted using the designated button, one
individual request for each repository name and project type combination is sent to the backend
triggering the execution of the chosen approach. If the validation in the backend succeeds,
a green check mark is displayed. Otherwise, a red error symbol is shown accompanied by a
button revealing the pySHACL or Pellet explanation when pressed. Since the raw explanations
are not useful for users unfamiliar with SHACL and OWL, a basic template-based verbalization
feature was implemented that extracts the parts of the explanation addressing the reasons why
the validation failed and transforms them in natural language. The verbalized explanations are
presented alongside the raw explanations. Furthermore, there is a button for saving the form
inputs locally such that they do not have to be entered every time.

11https://svelte.dev (visited 2022/09/07)
12https://github.com/RDFLib/rdflib (visited 2022/09/07)
13https://github.com/pwin/owlready2 (visited 2022/09/07)
14https://github.com/PyGithub/PyGithub (visited 2022/09/07)

https://svelte.dev
https://github.com/RDFLib/rdflib
https://github.com/pwin/owlready2
https://github.com/PyGithub/PyGithub


Figure 2: A screenshot of QuaRe’s Validation page after a request to validate QuaRe’s repository against
𝑇𝐹 using the SHACL approach was issued. As shown, the validation has failed and the button revealing
the raw and verbalized explanations has been pressed. Note that the screenshot was taken when the
repository was still almost empty which is why basically all constraints of 𝑇𝐹 were violated.

4.2. The Specification Page

The other page provided in the web interface is the Specification page (s. Figure 3) where the
available project type specifications can be viewed. Users are able to choose if they want to view
the SHACL specifications, as defined by the employed shapes graph, or the OWL specifications,
as defined by the used class expressions. The screenshot shows that there are currently four
supported projects types, namely finished research project, internal documentation, i.e., 𝑇𝐹 and
𝑇𝐼 from above, ongoing research project, and teaching tool. To give an example of a project
type specification, the tab of the teaching tool project type is expanded revealing its quality
criteria as defined by the SHACL shapes graph in the form of a list. Each list entry corresponds
to another quality criterion. Using the has_branch example from Section 3, the forth entry
in the list defines that the RDF representation of a Git repository containing a teaching tool
has to comprise at least two instances of the has_branch property. The final entry shows a
more sophisticated constraint stating that there has to be a node that is 1) reachable via the
has_readme and has_section properties and 2) has the literal value Usage. The combination
of the sh:qualifiedValueShape, sh:pattern, and sh:qualifiedMinCount properties define
a so called sh:QualifiedMinCountConstraintComponent [5]. In other words, the criterion
states that there has to be a readme file with a Usage section in the repository.



Figure 3: A screenshot of QuaRe’s Specification page where the project types and the associated
quality criteria can be viewed. At the moment, there are four supported project types. Editing the given
specifications or adding additional ones currently requires manual changes in the backend.

5. Discussion

In Section 2, we already mentioned the comprehensive validation reports of SHACL as one of
its main advantages compared to the alternative OWL approach. Apart from this, SHACL’s
underlying principle of separating constraints, i.e., the shapes graph, and actual data is another
strong point because it facilitates reviewing constraints for the supported project types. In
contrast, the ontology of the OWL approach includes both class expressions and the reposi-
tory representation impeding the readability. Thus, the SHACL approach surpasses the OWL
approach in terms of developer friendliness and maintainability, too.

Regarding our implementation, QuaRe lacks certain features that are planned to be added in
the future. First, we want to implement that users can edit the specifications directly in the app
on the Specification page, instead of editing themmanually in the backend. Although this feature
is important for QuaRe, its implementation was postponed because it addresses non-trivial
topics beyond the focus of this paper, i.e., the mapping of SHACL and OWL expressions to
and from user interfaces (cf. [15]). Similarly, the verbalization of the explanations has to be
improved significantly. Verbalization capabilities are planned to be added to the Specification
page, as well, such that inexperienced users can easily understand the shown quality criteria.



An assessment of the tool’s performance was also conducted. For this, the time it takes for the
backend to perform the SHACL and the OWL approach was measured on a standard desktop
PC. As repositories, the top twenty trending GitHub repositories15 were used, which are well
maintained and rather large. As intended project types, we used 𝑇𝐹 and 𝑇𝐼. Figure 4 shows that
the SHACL approach is faster in both scenarios even though Pellet stops the validation as
soon as a violation is encountered. Hence, the SHACL approach provides a complete picture
of the violations and is also faster. Furthermore, the figure shows that the project type does
not significantly affect the runtime. This is due to the fact that fetching the repository data
from GitHub is the most time-consuming part of the process. In fact, the steps 1/2/3 from
Section 1 account for 0.32%/91.75%/7.89% of the total duration using the SHACL approach and
for 0.10%/76.49%/23.36% using the OWL approach on average, based on our measurements.
Accordingly, comparatively large (in terms of branches, issues, etc.) repositories account for the
depicted outliers16. Finally, QuaRe only supports GitHub repositories at the moment. Support
for other platforms can be implemented as long as APIs and/or wrappers are available.

SHACL, TF OWL, TF SHACL, TI OWL, TI

5

10

15

20

25

30

Se
co

nd
s

Figure 4: The distribution of the time required to process the top twenty trending repositories on
GitHub. The labels on the x-axis indicate the used approach as well as the project types 𝑇𝐹 and 𝑇𝐼 against
which the repositories were validated.

6. Conclusion

This paper proposed a SHACL based approach for validating a Git repository against a set of
quality criteria specified by the type of project within the repository and compared it to an
alternative OWL based approach. For this, we also provided and discussed an implementation
of both approaches called QuaRe. It should be emphasized that the general idea of specifying
and validating requirements for certain artifacts based on RDF representations of them could be
applied in other contexts as well, even for software and software systems. In fact, conversions
and interfaces between the Unified Modeling Language (UML) and SHACL [16] have already
been studied. Apart from the already mentioned leads, future work could thus also explore how
such technologies can be leveraged to widen QuaRe’s repertoire of quality criteria.

15Retrieved from https://github.com/trending?since=monthly (visited 2022/03/31).
16To mitigate the impact of their size, the RDF representations of repositories could be cached by exploiting

RDF’s serialization capabilities. As discussed in Section 3.2, caching is not a good option for our use case, though.

https://github.com/trending?since=monthly


References

[1] C. M. Pilato, B. Collins-Sussman, B. W. Fitzpatrick, Version control with subversion -
the standard in open source version control, O’Reilly, 2008. URL: http://www.oreilly.de/
catalog/9780596510336/index.html.

[2] M. Shahin, M. A. Babar, L. Zhu, Continuous integration, delivery and deployment: A
systematic review on approaches, tools, challenges and practices, IEEE Access 5 (2017)
3909–3943.

[3] A. Gillies, Software quality: theory and management, Lulu. com, 2011.
[4] R. Cyganiak, D. Hyland-Wood, M. Lanthaler, RDF 1.1 concepts and abstract syntax, W3C

recommendation (2014). URL: https://www.w3.org/TR/rdf11-concepts, visited 2022/09/07.
[5] H. Knublauch, D. Kontokostas, Shapes Constraint Language (SHACL), W3C recommenda-

tion (2017). URL: https://www.w3.org/TR/shacl, visited 2022/09/07.
[6] R. A. Rossi, N. K. Ahmed, The network data repository with interactive graph analytics

and visualization, in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 25-30, 2015, AAAI Press, 2015, pp. 4292–4293.

[7] M. G. Antonio, K. Schick-Makaroff, J. M. Doiron, L. Sheilds, L. White, A. Molzahn, Qualita-
tive data management and analysis within a data repository, Western Journal of Nursing
Research 42 (2020) 640–648. URL: https://doi.org/10.1177/0193945919881706.

[8] A. Henrich, D. Däberitz, Using a query language to state consistency constraints for
repositories, in: Database and Expert Systems Applications, 7th International Conference,
DEXA ’96, volume 1134 of Lecture Notes in Computer Science, Springer, 1996, pp. 59–68.
URL: https://doi.org/10.1007/BFb0034670.

[9] A. Trisovic, K. Mika, C. Boyd, S. S. Feger, M. Crosas, Repository approaches to improving
the quality of shared data and code, Data 6 (2021) 15.

[10] T. B. Hashimoto, H. Zhang, P. Liang, Unifying human and statistical evaluation for natural
language generation, CoRR (2019). URL: http://arxiv.org/abs/1904.02792.

[11] H. Knublauch, SPIN – overview and motivation, W3C Member Submission (2011). URL:
https://www.w3.org/Submission/spin-overview, visited 2022/09/07.

[12] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, S. Rudolph, et al., OWL 2 web
ontology language primer, W3C recommendation (2009). URL: https://www.w3.org/TR/
owl2-primer, visited 2022/09/07.

[13] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, Y. Katz, Pellet: A practical OWL-DL reasoner,
J. Web Semant. 5 (2007) 51–53. URL: https://doi.org/10.1016/j.websem.2007.03.004.

[14] I. Horrocks, B. Parsia, U. Sattler, OWL 2 web ontology language direct semantics,
W3C recommendation (2012). URL: https://www.w3.org/TR/owl2-direct-semantics, visited
2022/09/07.

[15] J. Wright, S. J. R. Méndez, A. Haller, K. Taylor, P. G. Omran, Schímatos: A SHACL-
based web-form generator for knowledge graph editing, in: The Semantic Web - ISWC
2020, volume 12507 of Lecture Notes in Computer Science, Springer, 2020, pp. 65–80. URL:
https://doi.org/10.1007/978-3-030-62466-8_5.

[16] E. Stani, Metadata quality: Generating SHACL rules from UML class diagrams, in: Pro-
ceedings of the 2018 International Conference on Dublin Core and Metadata Applications,
DCMI’18, Dublin Core Metadata Initiative, 2018, p. 63–64.

http://www.oreilly.de/catalog/9780596510336/index.html
http://www.oreilly.de/catalog/9780596510336/index.html
https://www.w3.org/TR/rdf11-concepts
https://www.w3.org/TR/shacl
https://doi.org/10.1177/0193945919881706
https://doi.org/10.1007/BFb0034670
http://arxiv.org/abs/1904.02792
https://www.w3.org/Submission/spin-overview
https://www.w3.org/TR/owl2-primer
https://www.w3.org/TR/owl2-primer
https://doi.org/10.1016/j.websem.2007.03.004
https://www.w3.org/TR/owl2-direct-semantics
https://doi.org/10.1007/978-3-030-62466-8_5

	1 Introduction
	2 Foundations & Related Work
	2.1 Quality Criteria for Git Repositories
	2.2 RDF, SHACL & OWL

	3 Concept
	3.1 Creating a Representation of Project Types and Quality Criteria
	3.2 Creating an RDF Representation of the Git Repository
	3.3 Validation

	4 Implementation
	4.1 The Validation Page
	4.2 The Specification Page

	5 Discussion
	6 Conclusion

