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Abstract 
Path planning is one of the important links in the control process of UAVs. However, the 
standard particle swarm optimization (PSO) algorithm has the shortcomings of slow 
convergence speed and easy falling into the "premature" phenomenon in UAV path planning. 
To solve this problem, this paper proposes an IPSO algorithm based on integrated improved 
PSO. A fitness function considering constraints including path minimization and smoothness 
is formulated in the configuration space to describe the path planning problem of UAVs. By 
introducing chaos initialization, the quality of particle distribution is improved; global search 
and local search power of particles are balanced with the help of dynamic inertia weights and 
learning factors. And the Cauchy variational operator is introduced for avoiding local optimal 
solutions and accelerating the convergence of the algorithm. Simulation results show that the 
IPSO algorithm is stable with fast convergence and a small path cost while avoiding obstacles. 
 
Keywords 
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1. Introduction 

With the development of the mobile robot industry, UAVs are widely used in military or civilian 
fields such as security inspection[1], emergency rescue[2], logistics distribution[3], agricultural 
irrigation[4], etc. due to their high flexibility, strong maneuverability, and low cost[5]. The applications 
of UAVs in the above aspects all involve UAV path planning. The so-called path planning [6] is to find 
an optimal or approximately optimal path from the starting point to the endpoint in an environment 
containing obstacles, and satisfy certain constraints, such as the shortest path, the least time-consuming 
and the highest security. 

Due to the traditional algorithms such as A* algorithm [7] and artificial potential field method [8], 
there are problems such as large amount of calculation, large memory occupation, complex process and 
poor efficiency in solving 3D paths. With the emergence of intelligent optimization algorithms, more 
and more researches focus on intelligent algorithms and their improved methods, and they are applied 
to solve the problem of robot path planning[9]. Particle swarm optimization was first proposed by 
Kennedy and Eberhart [10] in November 1995. The model was derived from the study of bird predation 
behavior in nature. Abstract each bird as a particle, each particle is a potential solution to the 
problem[11]. The particle evaluates the position through the fitness function and shares the information 
of the best position with the local neighboring particles. At the same time, the information is used to 
update the velocity and position, and the global optimal solution is obtained through iteration. PSO 
algorithm has the characteristics of simple operation, clear thinking, easy implementation ,and high 
efficiency, but it is also easy to have shortcomings such as long running time, unsmooth path, and easy 
to fall into "premature" phenomenon [12]. 
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In response to these problems in PSO, researchers have made many improvements in initialization, 
particle position and velocity update rules, adjusting parameters and combining them with other 
optimization strategies. Hu et al. [13] introduced the weight factor to improve the traditional objective 
function and introduced the crossover operator of the genetic algorithm into the PSO algorithm, which 
increased the diversity of the population, but the operation effect was unstable. Zhang et al. [14]used 
the natural selection mechanism of survival of the fittest to obtain a near-optimal solution for UAV 
trajectory planning, but because it reduces the diversity of the PSO population, it is not conducive to 
finding the global optimal solution. Dewang et al. [15] used the distance between the robot and the 
obstacle to construct a new objective function, so that the robot successfully avoided the obstacle, but 
there were still problems such as slow convergence speed and so on. 

Given the above problems, an improved particle swarm algorithm with faster convergence speed 
and better path cost is proposed in this study. Firstly, the obstacles are inflated and a 3D environment 
model of UAV flight is established in the configuration space. The adaptation function is constructed to 
increase the safety of UAV flight and the smoothness of the path by comprehensively weighing the 
influencing factors such as path length, obstacle collision, altitude change, and path smoothness. Then, 
chaos initialization is introduced to improve the quality of particle distribution and increase the stability 
of the algorithm. Dynamic inertia weights and learning factors are set to balance the global search and 
local search power of particles and improve the convergence speed. The Cauchy variational operator is 
introduced to improve the diversity of the population and avoid generating local optimal solutions. 
Finally, our simulation experiments show that the proposed method has a high success rate of planning 
results, fast convergence speed, small track cost, and the effectiveness and stability of the algorithm 
have been improved. 

2. Path planning problem description 

In the path planning of UAV, some influencing factors need to be considered, such as the path length 
of UAV flight, obstacle threat, flight height and so on. The path planning problem of UAV is expressed 
through the fitness function, which can calculate the cost of the path, and compare the cost value of 
different paths to judge the quality of the path[16]. The constraint functions are as follows: 

2.1. Constraint description 

The planned path needs to be optimal under certain criteria according to different application 
scenarios and purposes. In this study, we choose to minimize the path length, and let the Euclidean 
distance of two path nodes be expressed as 𝑙௜௝ = ฮ𝑃௜௝𝑃௜,௝ାଵฮ, and the cost function of the path length 
be: 

𝐹ଵ(𝑋௜) = ෍ฮ𝑃௜௝𝑃௜,௝ାଵฮ௡ିଵ
௝ୀଵ (1) 

In UAV path planning, it is also necessary to guide the UAV safely through the obstacles caused by 
the threats. Let K be the collection of all threats, and each threat is represented by a cylinder [17] with 
the central coordinates of the projection of the obstacle being 𝐶௞ and the radius being 𝑅௞. In order to 
make the threat cost of the UAV more accurate, the size of the UAV is considered here, and the diameter 
size of the UAV is set as D. Introduce the configuration space and expand the range of obstacles based 
on the size of the drone in the environment map to obtain the collision zone. In this environment, the 
robot can be used directly as a particle for path planning. 

Due to the influence of various external factors and unstable positioning accuracy in the actual flight 
environment, the UAV still has the probability of collision with obstacles, so these factors are taken 
into account and the secondary expansion is carried out. The distance S from the collision zone is 
referred to as the danger zone. S can choose the length according to the environmental situation as 
shown in Figure 1. 
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UAV flying in an obstacle area will encounter three situations: If the UAV is outside the danger 
zone, its cost is 0; when the UAV enters the danger zone, the collision occurs, and its cost is infinite; if 
the UAV is between the danger zone and the collision zone, its obstacle threat cost can be calculated as: 𝐹ଶ(𝑋௜) = ෍ ෍(𝑆 + 𝐷 + 𝑅௞) − 𝑑௞௄

௞ୀଵ
௡ିଵ
௝ୀଵ + 𝑅௞ (2) 

 

 
Figure 1 Obstacle cost situation determination. 
 

In order to prevent the UAV from colliding with obstacles, the UAV must increase or decrease its 
altitude, so it is necessary to constrain the variation of the UAV's flying altitude. The variance of the 
path height can describe the stability of the flight altitude, and it can be computed as the height change 
cost as follows： 

𝐹ଷ(𝑋௜) = ඩ1𝑁 ෍ ൭𝑧ௗ − 1𝑁 ෍ 𝑧ௗ஽
ௗୀଵ ൱ଶ஽

ௗୀଵ (3) 

Where, D represents the total number of track nodes, and 𝑧ௗ is the height value at the dth track node. 
For UAV, it is not only necessary to shorten the path length as much as possible, but also to reduce 

the ups and downs of the path in complex environments to make it go to the termination point smoothly. 
The smoothness of the path is determined by the angle between two imaginary lines connected by two 
continuous positions of the target point and the UAV in the iterative process. Calculating the smoothing 
cost requires calculating the turning angle and climbing angle. The turning angle 𝜎௜௝  is the angle 
between the horizontal plane projections of two consecutive path segments, Path segment 𝑙௜,௝ =𝑃௜௝𝑃௜,௝ାଵ and 𝑙௜,௝ାଵ = 𝑃௜,௝ାଵ𝑃௜,௝ାଶ in the horizontal plane projection vector respectively to remember 𝑙ప,ఫሶ = 𝑃పఫሶ 𝑃ప,ఫାଵሶ  and 𝑙ప,ఫାଵሶ = 𝑃ప,ఫାଵሶ 𝑃ప,ఫାଶሶ . Then the turning Angle can be computed as: 𝜑௜௝ = arctan ቆฮ𝑙ప,ఫሶ × 𝑙ప,ఫାଵሶ ฮ𝑙ప,ఫሶ ∙ 𝑙ప,ఫାଵሶ ቇ (4) 

The climb angle is the angle at which the current waypoint is pitched vertically to the next waypoint. 
If the vertical height difference between two adjacent waypoints is 𝑧௜,௝ାଵ − 𝑧௜,௝, then the climbing angle 
constraint can be computed as: 𝜃௜௝ = arctan ቆ𝑧௜,௝ାଵ − 𝑧௜,௝ฮ𝑙ప,ఫሶ ฮ ቇ (5) 

The path smoothing cost associated with turning and climbing angles can be expressed as: 𝐹ସ(𝑋௜) = 𝑎ଵ ෍ 𝜑௜௝௡ିଶ
௝ୀଵ + 𝑎ଶ ෍ห𝜃௜௝ − 𝜃௜,௝ିଵห௡ିଵ

௝ୀଵ (6) 

32



Here, 𝑎ଵ and 𝑎ଶ are the penalty coefficients for the turning angle and the climb angle. 

2.2. Overall cost function 

In this paper, four constraints are weighed in this paper: path length, obstacle threat, flight altitude, 
and path smoothing. Define the total fitness function according to equations (1)-(6) as: 𝐹(𝑋௜) = ෍ 𝑤௞𝐹௞(𝑋௜)ସ

௞ୀଵ (7) 

Where 𝑤ଵ, 𝑤ଶ, 𝑤ଷ and 𝑤ସ are constants, which represent the weight values of different costs, and 
their proportions are related to the tasks performed by the UAV. 𝐹(𝑋௜) is the total cost. 𝐹ଵ(𝑋௜) is the 
path length cost; 𝐹ଶ(𝑋௜) is the obstacle threat cost; 𝐹ଷ(𝑋௜) is the flight altitude cost; 𝐹ସ(𝑋௜) is the path 
smoothing cost. 

3. Improved PSO path planning 

3.1. Standard PSO path planning 

For the three-dimensional space path planning problem discussed in this paper, suppose that in a D-
dimensional search space, the total number of particles is N, and the position of the ith particle is 
represented by a d-dimensional vector: 𝑋௜ = (𝑥௜ଵ, 𝑥௜ଶ, ⋯ , 𝑥௜஽), The velocity of the ith particle is also a 
d-dimensional vector, denoted as 𝑉௜ = (𝑣௜ଵ, 𝑣௜ଶ, ⋯ , 𝑣௜஽). Particles have the ability to remember, which 
can save the optimal position 𝑃௕௘௦௧,௜ = (𝑝௜ଵ, 𝑝௜ଶ, ⋯ , 𝑝௜஽) during the ith particle iteration, and also have 
social learning ability, which can share the optimal position 𝐺௕௘௦௧ = (𝑔ଵ, 𝑔ଶ, ⋯ , 𝑔஽) among all particles. 
Then for the ith particle of the kth generation, the velocity and position of the particle are updated 
according to equations (8) and (9) as follows: 𝑣௜௝௞ାଵ = 𝑤𝑣௜௝௞ + 𝑐ଵ𝑟ଵ൫𝑝௜௝௞ − 𝑥௜௝௞ ൯ + 𝑐ଶ𝑟ଶ൫𝑔௝௞ − 𝑥௜௝௞ ൯(8) 𝑥௜௝௞ାଵ = 𝑥௜௝௞ + 𝑣௜௝௞ାଵ (9) 

where 𝑖 = {1,2, ⋯ , 𝑁} is the serial number of the particle,𝑗 = {1,2, ⋯ , 𝐷} is the dimension. 𝑤 is an 
inertial factor that affects the particle's global search ability and local search ability. 𝑐ଵ  and 𝑐ଶ  are 
individual learning factors and social learning factors, respectively, which affect the ability of particles 
to acquire information. 𝑟ଵ and 𝑟ଶ are random numbers in the range ሾ0,1ሿ and are used to increase search 
randomness. 

Before each particle flight, determine whether 𝑣௜௝௞  has crossed the set speed range. If crossed, the 
velocity boundary value is substituted for the current speed. After flying, determine whether 𝑥௜௝௞  exceeds 
the maximum search space. If it is exceeded, the boundary value is also replaced by the current value. 
Update the 𝑃௕௘௦௧,௜  and 𝐺௕௘௦௧  in the particle swarm according to the corresponding change in fitness 
value, and the update equation is: 𝑃௕௘௦௧,௜௞ାଵ = ቊ 𝑃௕௘௦௧,௜௞  ,   𝐹൫𝑥௜௝௞ ൯ ≤ 𝐹൫𝑃௕௘௦௧,௜௞ ൯ ,𝑥௜௝௞ାଵ , 𝐹൫𝑥௜௝௞ ൯ > 𝐹൫𝑃௕௘௦௧,௜௞ ൯, (10) 

𝐺௕௘௦௧௞ାଵ = ቊ 𝐺௕௘௦௧௞  ,   𝐹൫𝑃௕௘௦௧,௜௞ ൯ ≤ 𝐹൫𝐺௕௘௦௧௞ ൯ ,𝑃௕௘௦௧,௜௞  , 𝐹൫𝑃௕௘௦௧,௜௞ ൯ > 𝐹൫𝐺௕௘௦௧௞ ൯, (11) 

3.2. Comprehensively improved PSO 

3.2.1. Chaos initialization 

The stability and solution of the PSO algorithm are affected by the initial particle distribution. Chaos 
initialization can improve the quality of particle distribution, speed up algorithm initialization, and 
improve the stability of particle swarm optimization. Considering the good uniform distribution of 
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Logistic chaos[18], Logistic chaos is used to initialize the position of the particle swarm. The basic 
formula is as follows: 𝑥௡ାଵ = 𝜇𝑥௡(1 − 𝑥௡) (12) 

Where 𝑥௡ represents the nth chaotic variable; 𝜇 is a preset constant. When 𝜇 = 4, the system is in a 
chaotic state at [0,1]. 

3.2.2. Adaptive parameter adjustment 

A larger inertia weight is more conducive to global search, while a smaller inertia weight is more 
conducive to local search. Moreover, the particle has strong nonlinearity in the search process, and the 
nonlinear adjustment control parameter is beneficial to adjust the local and global search ability of the 
particle and improve the convergence speed of the algorithm. Therefore, a nonlinear inertia weight is 
proposed to dynamically adjust the inertia factor during the search process of the algorithm. As shown 
in Equation (13): 𝑤(𝑘) = 𝑤௠௔௫ − (𝑤௠௔௫ − 𝑤௠௜௡) × ቈ2𝑘𝑇 − ൬𝑘𝑇൰ଶ቉ (13) 

Where k is the current iteration number; 𝑤௠௔௫ and 𝑤௠௜௡ are the maximum and minimum values of 
inertia weight, respectively. T is the maximum number of iterations. 

The learning factor has a certain influence on the direction of particle search. By adaptive amplitude 
modulation design of the learning factors, the particle population can accelerate the approach to the 
optimal solution in the iterative learning process, and at the same time avoid the population falling into 
the local optimum. As shown in Equations (14) and (15): 𝑐ଵ = 𝑒௖భ೘೔೙ା௞(௖భ೘ೌೣି௖భ೘೔೙)் (14) 

𝑐ଶ = 𝑒௖మ೘೔೙ା௞(௖మ೘ೌೣି௖మ೘೔೙)் (15) 

When c2 is large, it can guide the search direction of the global optimal solution of the particle, 
which is suitable for the early iteration and helps to improve the convergence speed. When c1 is large, 
the searchability of particles can be strengthened, and it is generally set in the late iteration to prevent 
the algorithm from falling into the local optimum. 𝑐ଵ௠௔௫,𝑐ଵ௠௜௡ is the maximum and minimum values 
of individual learning factors; 𝑐ଶ௠௔௫,𝑐ଶ௠௜௡ is the maximum and minimum values of the social learning 
factor. 

3.2.3. Cauchy mutation 

The traditional PSO algorithm lacks the diversity of the particle population, and the Cauchy 
mutation[19] is introduced into it, which can generate large disturbance near the current individual 
particle, expand the search space, increase the population diversity, and avoid falling into the local 
optimal solution. 

If 𝑥 ∈ (−∞, +∞) satisfies the condition given by equation (16), it becomes a Cauchy distribution. 𝑓(𝑥; 𝑥଴, 𝛾) = 1𝜋 ൤1 + ቀ𝑥 − 𝑥଴𝛾 ቁଶ൨ (16) 

In the formula: 𝑥଴ is the location of the maximum value of the function, 𝛾 is the half the width of 
the scale parameter at half with 𝑥଴. When 𝛾 and 𝑥଴ are 1 and 0, 𝑥 satisfy the condition of a probability 
density function, and equation (17) is its cumulative distribution function. 𝐹(𝑥) = 1𝜋 arctan(𝑥) + 12 (17) 
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The inverse function can be derived by inverting equation (17), and then the random numbers 
generated by the uniform distribution can be generated to obey the random numbers of the Cauchy 
distribution, as shown in equation (18). 𝐶𝑀 = tan ൤𝜋 ൬𝑟𝑎𝑛𝑑 − 12൰൨ (18) 

Where CM is the Cauchy variational operator and rand is any real number uniformly distributed in 
the range of (0,1). 

The dynamic adjustment of the Cauchy variation step can make the particles generate perturbation 
at a larger step in the early stage of the algorithm operation to make the particles jump out of the current 
position; and accelerate the convergence at a smaller step in the later stage. The update rule for each 
particle in each iteration is as follows： 𝑋పሖ = 𝑋௜ + 𝑋௜ ∙ 𝐶𝑀 ∙ expሾ(1 − 𝑘) ∙ 𝛽ሿ (19) 

Where 𝑋௜ is the position of particle i, 𝑋పሖ  is the position of particle i after passing the Corsi variation, 𝛽 is a constant coefficient to control how fast or slow the variation step changes, and k is the current 
number of iterations. 

3.3. Algorithm specific steps 

The pseudo code of the IPSO algorithm is shown below: 
Algorithm 1: Pseudocode of the proposed IPSO algorithm 
1 Get search map; 
2 The velocity of the particle is randomly initialized, and the 

position of the particle is initialized with the Logistic map; 
3 for 𝑘 ←1 to T do 
4      Calculate the particle fitness value; 
5      foreach 𝑖 ←1 to N do 
6            Find 𝑃௕௘௦௧,௜; 
7            Find 𝐺௕௘௦௧; 
8            Update CM to get  𝑋௜ାଵ; 
9            Update the inertia weight and the learning factor; 
10          Update the position and velocity of the local best 

particle; 
11    end 
12    Update the position and velocity of the global best 

particle; 
13 end 

4.Result and Discussion 

This experiment simulates UAV path planning in MATLAB R2020b. The environment model for 
the experiment is a 3D terrain environment built from real digital elevation model maps, and obstacle 
threats are set up in these scenes. 

4.1. Parameter setting 

In order to evaluate the performance of IPSO algorithm, three typical PSO variants are selected for 
comparison with IPSO algorithm in this experiment, which is the traditional particle swarm algorithm 
PSO, particle swarm algorithm with a linear variation of inertia weights (LDWPSO), and CPSO 
algorithm with the introduction of linear inertia weights and logistic chaos mapping. The specific 
parameter settings are shown in Table 1. For the purpose of ensuring the fairness of using different 
algorithms for experimental comparison, the dimensionality D of the test function is set to 20, the initial 

35



population number N is set to 500, the maximum number of iterations T is set to 200, and each algorithm 
is run 50 times independently. 

 
Table 1 Parameter setting of various algorithms 

Algorithm w 𝑐ଵ 𝑐ଶ 
PSO 1 1.5 1.2 
LDWPSO [0.4,0.9] 1.5 1.2 
CPSO [0.4,0.9] 1.5 1.2 
IPSO [0.4,0.9] [1.2,1.5] [1.2,1.5] 

4.2. Experimental results 

Table 2 shows the data results of IPSO and the other three algorithms, from which it can be seen that 
IPSO has the shortest algorithm running time of 7.32 seconds, 76% shorter compared to the PSO 
algorithm, and at the same time, the optimal value, variance and average value of the adaptation of 
IPSO algorithm is also the smallest, showing better the path optimality and stability of IPSO algorithm. 

Figure 2 shows the number of iterations-adaptation function curves of the optimal UAV path for 
IPSO and the other three algorithms, which shows that the IPSO algorithm has the lowest adaptation 
value and better convergence accuracy than the other three algorithms. 

The top view of the paths of the four algorithms is shown in Figure 3. Combining the results in Table 
2 and Figure 2 shows that all four algorithms can generate feasible paths that satisfy the requirements 
of path length, threat, and smoothness. However, the PSO algorithm tends to fall into the phenomenon 
of "premature maturity", and there is no way to find a high-quality solution. The CPSO algorithm 
introduces chaos theory, which makes the algorithm more stable. IPSO algorithm uses Cauchy mutation 
to increase the diversity of particle population, and can accurately obtain the approximate optimal 
solution. 

 
Table 2 Algorithm data comparison 

Algorithm Average 
running time /s 

Variance of 
fitness 

Optimal 
fitness 

Average 
fitness 

PSO 30.93 3028.45 6111.40 6367.56 
LDWPSO 23.48 1807.60 5859.17 5908.98 
CPSO 13.34 926.80 5275.81 5309.27 
IPSO 7.32 210.65 5088.47 5103.22 

 

 
Figure 2 Best fitness values over iterations  
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Figure 3 Top view of the paths of  the four algorithms 
 

 
Figure 4 3D path side view of the IPSO algorithm 
 

 
Figure 5 3D  path map of the IPSO algorithm 
 

Figure 4 and Figure 5 show the 3D side and map view of the UAV flight path planning using the 
IPSO algorithm. It can be seen that the path is smooth and collision-free, and the flight height is also 
appropriate according to the terrain. Compared with the other three PSO variants, the IPSO algorithm 
can find the optimal flight path and has a suitable altitude during the flight. The IPSO algorithm helps 
to solve the problems of slow convergence, unstable algorithm, and easy to fall into the "premature" 
phenomenon. 

5. Conclusion 

This paper proposes an IPSO algorithm to improve the traditional particle swarm optimization 
algorithm in path planning, which has the problems of long initialization time, slow convergence speed 
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and easy to fall into local optimal solution. The cost function with various constraints is designed in the 
configuration space; chaotic initialization is introduced to increase the stability of the algorithm; 
dynamic inertia weights and learning factors are set to improve the convergence efficiency, and the 
Cauchy variational operator is used to increase the population diversity. Through experimental 
simulation, it can be seen that the improved algorithm has the effect of a stable algorithm, fast 
convergence, and a better path while avoiding obstacles safely. This paper addresses the single UAV 
path planning problem in the presence of static obstacles, but in the actual environment there may be 
dynamic obstacles, and the problem of multi-UAV interaction also needs to be considered, so future 
research will further consider the multi-UAV collaborative planning problem under the influence of 
dynamic obstacles and other effects, and propose corresponding solutions. 
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