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Abstract  
In this paper ,In this paper, for the problem of temporal action localisation, we propose a way 
to obtain the start and end times and types of actions based on actionness by aggregating action 
instance segmentation on a sequence of temporal features. In addition we believe that the 
context of actions is not only reflected in the results of convolution, but also the characteristics 
of inter class similarity and intra class consistency are essential. For this reason, we designed 
temporal self -attention mechanism (TSA) and temporal pyramid pooling module (TPP). Our 
results show that the single-stage model can achieve considerable accuracy after proper feature 
fusion. 
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1. Introduction 

Action recognition is a key technology in the field of computer vision. In recent years, great progress 
has been made in motion recognition technology, and relevant technologies have also been applied in 
video understanding, intelligent security and other directions. With the continuous progress of deep 
learning technology and image algorithm, some large-scale motion recognition network models and 
complex scene data sets are also produced, which promotes the progress of this field. With the 
continuous deepening of research, action recognition technology has also changed from simple 
primitive video classification to action instance identification of complex scenes, and then to action 
positioning. As network models improve, more information is learned and the model's output becomes 
more complex. 

At present, motion recognition algorithms are mainly divided into video classification, sequential 
motion recognition and spatio-temporal motion recognition. The video classification technology mainly 
uses the trimmed video with fixed length as input, and determines the video category after extracting 
features through the backbone network. On the basis of action recognition, the uncut video is used to 
predict the action category and starting time in the video through the feature information. 
Spatiotemporal action recognition not only locates the time of action, but also locates the spatial position 
of action. Compared with the simple classification of video and the complex location of spatio-temporal 
motion, temporal motion recognition is the most widely used method in the field of abnormal behavior 
recognition. 

The main method of Temporal action detection is similar to that of target detection. After data 
processing, different proposal methods are combined with features to complete decoding and obtain 
output. Many detectors are developed based on target detection network, SSAD[1] developed from SSD 
method and DaoTAD[2] developed from the RetinaNet, etc. According to the proposed method, timing 
action recognition technology can be divided into base anchor, anchor free and actionness. The Base 
anchor method mainly presents starting frames of different sizes and scales, calculates the intersection 
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ratio between the current output position of the model and anchor, and determines the allocation of 
current positive and negative samples through the intersection ratio. R-C3D[3] uses 3D full convolution 
to extract features from videos. TAL-Net[4] enhances the feature effectiveness of R-C3D by obtaining 
global attention to the timing sequence of its sensitive field. STPN[5] conducted constraints by enhancing 
feature sparsity, MAAN[6] enhanced generalization by reducing model dominant factors, and Zhong[7] 
et al. introduced fine-processing operations to achieve proposal accuracy of the model. In this paper, 
we design a method based on feature extension mechanism and receptive field fusion mechanism, and 
achieve excellent performance. 

2. Method 

The self-attentive temporal action recognition model uses a backbone feature network to extract 
three-dimensional features, a fully connected layer to obtain one-dimensional features. 

Suppose we give an unclipped video {𝑉௡}௡ୀଵே  and their action instance clips, including category  {𝑦௡}௡ୀଵே , where 𝑦௡ is a one pot encoding vector and C is the action category. Our goal is to output the 
action category, start time and end time. 

We use the mixed mode of optical flow and RGB as the input, and use  I3D network pre trained on 
Kinect as the backbone to extract the network. For the input of a video 𝑋௡ ∈ 𝑅஼×்×ு×ௐ, the output is 𝑋෠௡ ∈ 𝑅஼ᇲ×்×ுᇲ×ௐᇲ, where 𝐻ᇱand 𝑊ᇱ disappear after dimensional compression to obtain new 1D data 𝑦 ∈ 𝑅்×ௗᇲ , where T represents the timing length, 𝑑ᇱ represents the data dimension, and the new 1D data 
contains the spatial information of each frame of the video image and the overall timing information. 
Then the feature map is sent to the TAS module to obtain the global attention, and weighted and fused 
into the original sequence to obtain a new sequence order𝑦ො ∈ 𝑅்×ௗ. Through different convolutions, 
action suggestion sequences are obtained through shared channels, including action instance 
distribution, classifier and time boundary regression. Then, when the obtained action instance 
distribution is merged with 𝑦ො, it is sent to TPP, and the refined action instance sequence is output 
through the shared convolution channel. 

 
Figure 1 Network overall structure 

2.1. Feature Extractor 

For the feature extraction part, we used the high performance ResNet I3D as the backbone extraction 
network. To scale, we used resneti3d with the last layer of the averaging pool removed to extract the 
video feature information, and used a global averaging pool approach to compress the features. Given 
the input video clip, 1D features of shape (512,100) were obtained. 

2.2. Temporal Self Attention Module 

In order to obtain the global attention of action instances throughout the time series and to reduce 
the impact of the limitations of local feature extraction, we designed the TSA module. We consider that 
different action instances have some similarity in the sample distribution. In time series information, 
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due to the continuous nature of actions, we believe that it is valuable to calculate the feature similarity 
between successive categories and successive action instances. We find that different actions and 
actions should have different weight coefficients to the background before similar actions, and by doing 
so, we can avoid learning too much irrelevant information. Similarly, if two sets of patches represent 
the same action instance, the information they learn is redundant, so we should avoid this situation. To 
solve this problem, we avoid this situation by calculating the 𝑇௜௢௨. in such a way that the time span 
between the two sets of patches is guaranteed to exceed a certain threshold. the working model of TSA 
is shown in Figure 2. 

Formally, two different action instances 𝑝௜ and  𝑝௝, and the context B between them, form a local 
time series (𝑝௜, B, 𝑝௝). 𝐴ଵcarries the temporal information (𝑐ଵ,𝑤ଵ,𝐶ଵ) and 𝐴ଶ carries the information 
(𝑐ଶ,𝑤ଶ,𝐶ଶ). By decoding, we obtain the category information 𝑓ଵ ∈ 𝑅்×஼and the location information 𝑓ଶ ∈ 𝑅்×ଶ in the input information. we then build the condition matrix A, where 𝐴(𝑖, 𝑗) represents 
whether 𝑝௜ and  𝑝௝, belong to the same type of action. 

𝐴(𝑖, 𝑗) = ⎩⎪⎨
⎪⎧ 0.5 𝑐𝑙𝑎𝑠𝑠௜ = 𝑐𝑙𝑎𝑠𝑠௝                                                           0.4 𝑐𝑙𝑎𝑠𝑠௜ ≠ 𝑐𝑙𝑎𝑠𝑠௝ 𝑎𝑛𝑑 𝑐𝑙𝑎𝑠𝑠௜,௝ ∈ 𝑎𝑐𝑡𝑖𝑜𝑛0.1 𝑜𝑛𝑒 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠௜,௝ ∈ 𝑎𝑐𝑡𝑖𝑜𝑛                         0 𝑏𝑜𝑡ℎ 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠௜,௝  ∈ 𝑏𝑔                           ⎭⎪⎬

⎪⎫ (1) 

by i, and the maximum value obtained after calculating 𝑓ଵ for softmax is used as the current predic-
tion category, bg represents the background sample, and action represents that the current category 
belongs to the action category. 

Similarly, in order to ensure that the correlation weight of two groups of different instances is cal-
culated, we construct the distance similarity matrix B, where 𝐵(𝑖, 𝑗) represents the position similarity 
between 𝑝௜ and 𝑝௝, and we measure this feature through 𝑇௜௢௨. 

𝑇௜௢௨ = 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙௜ ∩ 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙௝𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙௜ ∪ 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙௝ (2) 

where interval represents the span between the start and end time of the patch prediction action 
instance. 

The core mapping of each patch, so we use the self attention mechanism in Transformer to map the 
time series y to different feature spaces through space mapping. 𝑄 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑൫𝑓ଵ(𝑦)൯𝐾 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑൫𝑓ଶ(𝑦)൯𝑉 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑൫𝑓ଷ(𝑦)൯ (3) 

𝑆(𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ𝑄𝐾்√𝑑 ቇ 𝑉 (4) 

The feature maps of time series in different spaces are obtained. Finally, the final weight coefficient 
matrix M is obtained by fusion, where 𝑀(𝑖, 𝑗) represents the weight map of feature 𝑝௜ on feature 𝑝௝. 

The final mapping coefficient matrix 𝐺(𝑖, 𝑗)is formed through matrices A, B and M, representing 
the correlation system between actions and background, and a new time series vector is obtained 
through weighted fusion coefficient. 

The matrix G is obtained by fusion to effectively ensure that the currently acquired weight matrix 
does not incorporate redundant information. Through the matrix V, a filtering operation is performed 
on the feature vector after we have acquired the global attention, and finally a new vector is obtained 
for the output, which at this point effectively acquires the similarity between action classes and expands 
the action information. 
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Figure2 TSA(Temporal Self Attention) overall process. 

2.3. Temporal Pyramid Pooling Module 

In order to better judge the enhanced time series features, we obtain the class and interval information 
through the convolution channel, and or the distribution of the most important action instances, and pre-
judge the current features by calculating 𝐿𝑜𝑠𝑠௖௟௔௦௦and 𝐿𝑜𝑠𝑠௟௢௖. 𝐿𝑜𝑠𝑠௖௟௔௦௦ = 𝐹𝑜𝑐𝑎𝑙൫𝑦௧௥௨௘, 𝑦௣௥௘ௗ൯ (5) 𝐿𝑜𝑠𝑠௔௖௧ = 𝐷𝑖𝑜𝑢𝑙𝑜𝑠𝑠൫𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙௣௥௘ௗ, 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙௧௥௨௘൯ (6) 

Next, in order to fully extract the deep features of the time series information and limit the start and 
end times to the precision boundaries, we use the TPP module to refine on the temporal features to 
obtain the saliency boundary features, as shown in Figure 3. The features after fusing the action instance 
distribution feature 𝑦௔௖௧ ∈ 𝑅்×ଵ and the global attentional temporal feature 𝑦ො ∈ 𝑅்×ௗ are used as input, 
while to aggregate deeper temporal features, we perform feature downsampling by using a feature pyr-
amid, e.g. for feature f belonging to 𝑦௙௨௦௘ ∈ 𝑅்×௛, using a convolution operation to process. 

𝐹௙௨௦௘ =  𝑅𝑒𝑙𝑢 ൬BN ቀConv൫𝑦௙௨௦௘൯ቁ൰ (7) 

When processing temporal features using the convolution operation, due to the short time span of 
some temporal features, too much feature information is lost in the process of downsampling, but at the 
same time, in order to maximize the perceptual field, we have to stack convolution blocks, so we intro-
duced the hole convolution method, through different proportions of hole convolution blocks, to obtain 
different scales of temporal feature information, for example, for feature f belongs to 𝑦௙௨௦௘ ∈ 𝑅்×௛, 
using the convolution operation to process: 

𝐹௙௨௦௘ =  𝑅𝑒𝑙𝑢 ൬BN ቀDilated_Conv௥௔௧௘൫𝑦௙௨௦௘൯ቁ൰ (8) 

Based on the actionness approach, we use a mask to obtain the current action instance distribution 
as well as the action interval distribution by aggregating the instance distributions. Specifically, we use 
linear interpolation to upsample features to the original feature sequence length T. By obtaining infor-
mation about the action instance temporal distribution, we restore the action distribution in the original 
output temporal sequence by means of feature mapping, and finally obtain the category information by 
performing softmax operations on the features of each aggregated dimension. 
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Figure 3 TPP(Temporal Pyramid Pooling) overall process. 

3. Experiment 
3.1. Datasets 

Thumos’14 includes 200 training sets and 212 test sets in the time sequence motion detection direc-
tion. Each sample contains 20 types of actions, which are basically daily actions. Frame level annotation 
includes the start time, end time and kind of each action. 

ActivityNet1.2 is a large action recognition data set. The entire data set contains 4819 training sets 
and 2383 data sets for testing. It also uses frame level annotation for training and testing. 

3.2. Training 

We sampled the RGB and optical streams at 10 frames per second on the dataset, with each segment 
limited to 128 frames in length and not having overlapping frames. For the training process, we used 
temporal random sampling for sampling. Specifically, the model input was limited to contain at least 
one action instance with a Tiou of 0.75 or higher, and the frame space size was limited to 112x112.To 
speed up training, we used I3D pre-trained on kinect as the backbone feature to extract network weights. 

3.3. Result 

It can be seen from Table 1 and Table2 that our model performs at a leading level among all I3D-
dominated feature extraction networks. On the Thumos14 dataset, our model handles the optimal level 
on Map@0.5 and Map@0.6, which benefits from our TAS and TPP modules, and on the ActivityNet 
dataset we are also at the leading level on Map@0.75. This shows that the modules we have designed 
are effective. 

 
Table 1 Different algorithms performance on Thumos 14 

Model Backbone Thumos14 
0.3 0.4 0.5 0.6 

TURN I3D 44.1 35.9 25.6 —— 
R-C3D C3D 44.8 35.6 28.9 —— 
TAL I3D 53.2 48.5 42.8 33.8 
GTAN P3D 57.8 47.2 38.8 —— 
SSN TS 51.0 41.0 29.8 —— 
BSN TS 53.5 45.0 36.9 28.4 
BMN TS 56.0 47.4 38.8 29.7 
BU-TAL I3D 53.9 50.7 45.4 38.0 
TSA-TAL I3D 54.7 51.2 49.8 40.4 
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Table 2 Different algorithms performance on ActivityNet 

Model Backbone ActivityNet1.2 
0.5 0.75 0.95 

TURN I3D —— —— —— 
R-C3D C3D 26.8 —— —— 
TAL I3D 38.2 18.3 1.3 
GTAN P3D 52.6 34.1 8.9 
SSN TS 43.2 28.7 5.6 
BSN TS 46.5 30.0 8.0 
BMN TS 50.1 34.8 8.3 
BU-TAL I3D 43.5 33.9 9.2 
TSA-TAL I3D 51.1 35.0 8.9 

4. Conclusions 

For the purpose of inaccurate localisation accuracy of temporal action recognition, we propose a 
TSA module for extracting the global attention of the model, while using suitable filters to remove 
redundant temporal space information, and we use a TPP module to fuse the temporal information of 
different levels of sensory fields to enhance the performance of the model on different scales of action 
instances, our model is implemented end-to-end and achieves in effect almost the same level of effec-
tiveness as the two-stage model, while greatly reducing inference time, and we used a single-stream 
columnar network structure, which is less computational than a large two-stream network like slowfast. 

However, our model also has certain limitations when it comes to inference. Firstly, our annotation 
requirements for real samples are at the frame level, raising the difficulty of acquiring the dataset, and 
secondly, attentional information can easily be incorrectly fused when faced with action behaviours that 
are relatively similar. Therefore, much improvement is needed to address this point in the coming time. 
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