
Branching and Pruning for Timeline-based Planning
Riccardo De Benedictis, Gloria Beraldo, Amedeo Cesta and Gabriella Cortellessa

Institute of Cognitive Sciences and Technologies (ISTC) - Via S. Martino della Battaglia 44, 00185 Roma (Italy) - National
Research Council of Italy (CNR)

Abstract
One of the features that allowed classical planners to efficiently solve large problems is the ability their
heuristics to prune large portions of the search space. These heuristics, however, by addressing classical
approaches, do little to support the resolution of problems in which the temporal components are relevant
and, even more so, they are not directly suitable for timeline-based approaches to automated planning.
This paper takes advantage of some pruning techniques to increase the efficiency of timeline-based
planning problems resolution. The elimination of some choices estimated as not very advantageous, in
particular, allows the use of inference techniques to reduce the number of decisions to be made, reducing
the risk of running into dead ends and, consequently, increasing the resolution efficiency of the solvers.

Keywords
Automated Planning, Timeline-based Planning, Heuristic search, Scheduling

1. Introduction

The introduction of domain independent heuristics within the Automated Planning [1] commu-
nity immediately allowed solvers to efficiently solve large instances of complex problems. The
different approaches that make up a solver’s paraphernalia, range from the seminal ℎ𝑎𝑑𝑑 and
ℎ𝑚𝑎𝑥 [2] to the more recent developments relying on delete-relaxation, like the ℎ𝐹𝐹 heuristic [3]
and the causal graph heuristics [4], on landmarks, like in [5, 6], on the critical path, like the ℎ𝑚
heuristic [7, 8] or, lastly, on abstraction, like in [9] or in [10, 11]. The salient aspects of such
heuristics can be divided into the ability to direct the search process towards promising areas
of the search space (branching) as well as the ability to avoid dead-ends that would require
potentially expensive backtracking operations (pruning)[12].

While the above heuristics are significantly heterogeneous among them (although, often,
they share some commonalities), they have in common the fact that they have been developed
specifically for the resolution of a particular type of problem, characterized by a specificmodeling
language called PDDL [13], representing a natural evolution of the most long-lived STRIPS [14]
formalism. Despite the PDDL, over the years, has been extended through different directions by
introducing durative-actions and numeric fluents [15], derived predicates and timed initial literals
[16], continuous changes [17], state-trajectory constraints and preferences [18] and object-fluents1,

IPS-2022: 10th Italian Workshop on Planning and Scheduling, November 29, 2022, Udine, Italy
Envelope-Open riccardo.debenedictis@istc.cnr.it (R. De Benedictis); gloria.beraldo@istc.cnr.it (G. Beraldo);
amedeo.cesta@istc.cnr.it (A. Cesta); gabriella.cortellessa@istc.cnr.it (G. Cortellessa)
Orcid 0000-0003-2344-4088 (R. De Benedictis); 0000-0001-8937-9739 (G. Beraldo); 0000-0002-0703-9122 (A. Cesta);
0000-0002-9835-1575 (G. Cortellessa)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)
1http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/kovacs-pddl-3.1-2011.pdf

mailto:riccardo.debenedictis@istc.cnr.it
mailto:gloria.beraldo@istc.cnr.it
mailto:amedeo.cesta@istc.cnr.it
mailto:gabriella.cortellessa@istc.cnr.it
https://orcid.org/0000-0003-2344-4088
https://orcid.org/0000-0001-8937-9739
https://orcid.org/0000-0002-0703-9122
https://orcid.org/0000-0002-9835-1575
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
http://www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/Resources/kovacs-pddl-3.1-2011.pdf


the development of heuristics for reasoning with these more expressive formal systems has
remained relatively limited to a few cases (e.g., [19, 20]).

Timeline-based planning [21, 22] is an approach to automated planning which, by relying
on partial-order planning [23], allows to generate plans which, during their execution, are,
compared to the total order plans produced by classical planners, more easily adaptable. Analo-
gously to the solvers reasoning upon the previous mentioned PDDL extensions, timeline-based
planners have to cope with the high expressiveness of the formalisms which, despite making
them particularly suited at addressing real-world applications, unavoidably leads to perfor-
mance issues. In a recent work about timeline-based planning it has been shown that, thanks
to the introduction of some domain-independent heuristics, the computation time could be
effectively reduced [24]. The presented heuristics aim at directing the search process towards
the most promising areas of the search space. As it will be shown in more detail in the following
sections, however, the same data structures can also be used to partially avoid dead-ends and,
consequently, potentially expensive backtracking operations.

2. Timeline-based planning

Timeline-based planning constitutes a form of deliberative reasoningwhich, in an integratedway,
allows to carry out different forms of semantic and causal reasoning. Although this approach
to planning has mostly been relegated to forms of causal reasoning in the space domain, many
solvers have been proposed over the time like, for example, IXTET [25], Europa [26], Aspen
[27], the Trf [28, 29] on which the APSI framework [30] relies and, more recently, PLATINUm
[31]. Some theoretical works on timeline-based planning like [32, 26] were mostly dedicated
to identifying connections with classical planning a-la PDDL [15]. The work on IXTET and Trf
has tried to clarify some keys underlying principles but mostly succeeded in underscoring the
role of time and resource reasoning [33, 34]. The planner CHIMP [35] follows a Meta-CSP
approach having meta-Constraints which heavily resembles timelines. The Flexible Acting and
Planning Environment (FAPE) [36, 37] tightly integrates structures similar to timelines with
acting. The Action Notation Modeling Language (ANML) [38] is an interesting development
which combines the Hierarchical Task Network (HTN) [39, 40, 41] decomposition methods
with the expressiveness of the timeline representation. Finally, it is worth mentioning that the
timeline-based approaches have been often associated to resource managing capabilities. By
leveraging on constraint-based approaches, most of the above approaches like IXTET [42, 34],
[43], [44] or [45] integrate planning and scheduling capabilities. Finally, [46] proposes a recent
formalization of timeline-based planning.

Given the mentioned link with the heuristics we will refer, in this paper, to the timeline-based
planning formalization as defined in [24]. According to this formalization, specifically, the basic
building block of timeline-based planning is the token which, intuitively, is used to represent
the single unit of information. Through their introduction and their constraining during the
planning process, in particular, tokens allow to represent the different components of the
high-level plans. In its most general form, a token is formally described by an expression like
𝑛 (𝑥0, … , 𝑥𝑖)𝜒. In particular, 𝑛 is a predicate symbol, 𝑥0, … , 𝑥𝑖 are its parameters (i.e., constants,
numeric variables or object variables) and 𝜒 ∈ {𝑓 , 𝑔} is a constant representing the class of the



(a) An inconsistent state-variable timeline. The
first 𝐴𝑡 token and the 𝐺𝑜𝑖𝑛𝑔𝑇 𝑜 token are tem-
porally overlapping. The inconsistency can be
removed, for example, by introducing a 𝑒1 ≤ 𝑠2
constraint.

(b) A consistent reusable-resource timeline. The
overlap of tokens is allowed as long as the
simultaneous use of the resource is less than
its capacity.

Figure 1: Different timelines extracted by their associated tokens.

token (i.e., either a fact or a goal).
The token’s parameters are constituted, in general, by the variables of a constraint network 𝒩

(refer to [47] for further details) and can be used, among other things, to represent temporal
information such as the start or the end of some tasks. The semantics of the 𝜒 constant, on
the contrary, is borrowed from Constraint Logic Programming (CLP) [48]. Specifically, while
the facts are considered inherently true, the goals must be achieved as defined by a set of
rules. Rules, in particular, are expressions of the form 𝑛 (𝑥0, … , 𝑥𝑘) ← r where 𝑛 (𝑥0, … , 𝑥𝑘) is the
head of the rule and r is the body of the rule. In particular, r represents the requirement for
achieving any goal having the “form” of the head of the rule. Such requirements can be either
a token, a constraint among tokens (possibly including the 𝑥0, … , 𝑥𝑘 variables), a conjunction
of requirements or a disjunction of requirements. It is worth noting the recursive definition of
requirement, which allows the definition of the body of a rule as any logical combination of
tokens and constraints.

Similarly to CLP, through the application of the rules it is hence possible to establish and
generate relationships among tokens. Compared to CLP, however, timelines introduce an added
value: some tokens may be equipped with a special object variable 𝜏 that identifies the timeline
affected by the token. Different tokens with the same value for the 𝜏 parameter, in particular,
affect the same timeline and, depending on the nature of the timeline, might interact with each
other. There can, indeed, be different types of timelines. In case of state-variable timelines (see
Figure 1a), for example, different tokens on the same state-variable cannot temporally overlap.
In case of reusable-resource timelines (see Figure 1b), on the contrary, tokens represent resource
usages and can, hence, overlap as long as the concurrent uses remain below the resource’s
capacity.

Given the ingredientsmentioned abovewe can now formally introduce the addressed planning
problem. A timeline-based planning problem, specifically, is a triple 𝒫 = (O,ℛ, r), where O is
a set of typed objects, needed for instantiating the initial domains of the constraint network
variables and, consequently, the tokens’ parameters, ℛ is a set of rules and r is a requirement.
Intuitively, a solution to such a problem should be described by a set of tokens whose parameters
assume values so as to guarantee the satisfaction of all the constraints imposed by the problem’s



requirement, by the application of the rules, as well as by the cumulative constraints imposed by
the timelines. Unfortunately, the previous definition, although intuitive, is not easily translatable
into a reasoning process which guarantees its achievement starting from the definition of the
planning problem. For this reason, just like common partial-order planners, timeline-based
planners often rely on the concepts of flaw and resolver. The planner, in particular, internally
maintains a data structure, called token network, which represents a partial plan 𝜋 = (𝒯 ,𝒩),
where 𝒯 is a set of tokens whose parameters are constrained by the constraint network 𝒩.
During the resolution process, the reasoner incrementally refines the current token network
𝜋 by identifying its flaws and by solving them through the application of resolvers, while
maintaining consistent the constraints of 𝒩.

There can be, in general, different types of flaws, each resolvable by applying the corre-
sponding resolvers. The achievement of a goal, for example, can take place either through the
application of a rule or through a unification with either a fact or another already achieved goal
with the same predicate (i.e., the parameters of the current goal and the token with which is
unifying are constrained to be pairwise equal). In case of disjunctions, introduced either in the
initial problem or by the application of a rule, a disjunct must be chosen. The domain of all
the variables that make up the token parameters must be reduced to a single allowed value.
Finally, timelines must be consistent, possibly requiring the introduction of constraints which
prevent not allowed overlaps. Thanks to the introduction of the flaw and resolver concepts, it is
therefore possible to provide an implementable definition of solution. Specifically, a solution to
a timeline-based planning problem is a flawless token network whose constraint network is
consistent.

2.1. A Lifted Heuristic for Timeline-based Planning

Finding a solution to a timeline-based planning problem is far from simple. Choosing the
right flaw and the right resolver, in particular, constitutes a crucial aspect for coping with
the computational complexity and hence efficiently generating solutions. Taking a cue from
classical planning heuristics, [24] describes how, by building a causal graph and by analyzing its
topology, it is possible to estimate the costs for the resolution of the flaws and for the application
of the resolvers. Flaws and resolvers, in particular, are seen as if they are, respectively, classical
planning propositions and actions. Similarly to a proposition added by the positive effect of an
action, in particular, the effect of applying a resolver is the resolution of a flaw. Additionally,
just like the preconditions in a classical action, further flaws can be introduced in the case of
the application of a rule or the choice of a disjunct in a disjunction. Starting from the initial
facts, with a zero estimated resolution cost, the cost of applying a resolver can be estimated as
an intrinsic cost of the resolver plus the maximum cost (ℎ𝑚𝑎𝑥 heuristic). The cost of resolving
a flaw, on the other hand, is given by the minimum cost of its resolvers. Starting from the
top-level goals present in the planning problem, initially estimated with infinite cost, a graph is
constructed by proceeding backwards, considering all the possible resolvers for all the possible
flaws. The estimated costs are updated every time a unification is found or in those cases in
which the resolver does not introduce further flaws. Finally, the graph building procedure
proceeds until a finite estimate cost for the top-level goals is reached.

Compared to other state-of-the-art timeline-based solvers, the above heuristics allow solving



problems up to one order of magnitude faster [24]. The most interesting aspect for the current
topic, however, concerns the management of the causal constraints in the causal graph. Similar
to planning models based on satisfability [49], indeed, a set of propositional variables is assigned
to flaws and to resolvers. For the sake of brevity we will use subscripts to indicate flaws (e.g.,
𝜑0, 𝜑1, etc.), resolvers (e.g., 𝜌0, 𝜌1, etc.) as well as their associated propositional variables.
Additionally, given a flaw 𝜑, we refer to the set of its possible resolvers by means of 𝑟𝑒𝑠 (𝜑) and,
by means of 𝑐𝑎𝑢𝑠𝑒 (𝜑), to the set of resolvers (possibly empty, in case of the flaws of the problem’s
requirement) which are responsible for introducing it. Moreover, given a resolver 𝜌, we refer to
the set of its preconditions (e.g., the set of tokens introduced by the application of a rule) by
means of 𝑝𝑟𝑒𝑐𝑠 (𝜌) and to the flaw solved through its application by means of 𝑒𝑓 𝑓 (𝜌). Using the
above notation we can estimate the cost of a generic flaw 𝜑 as 𝐺 (𝜑) = 𝑚𝑖𝑛𝜌∈𝑟𝑒𝑠(𝜑)𝐺 (𝜌) (1) and
the cost of a generic resolver 𝜌 as 𝐺 (𝜌) = 𝑐 (𝜌) + 𝑚𝑎𝑥𝜑∈𝑝𝑟𝑒𝑐𝑠(𝜌)𝐺 (𝜑) (2), in which 𝑐 (𝜌) represents
the intrinsic cost of the resolver 𝜌.

The introduction of such variables allows to constrain them so as to guarantee the satisfaction
of the causal relations. Specifically, for each flaw 𝜑𝑖, we guarantee that the preconditions of
all the applied resolvers are satisfied (𝜑𝑖 = ⋀𝜌𝑘∈𝑐𝑎𝑢𝑠𝑒(𝜑𝑖) 𝜌𝑘 (3)) and that at least one resolver
is active whenever the flaw becomes active (𝜑𝑖 ⇒ ⋁𝜌𝑙∈𝑟𝑒𝑠(𝜑𝑖) 𝜌𝑙 (4)). Additionally, we need a
gimmick to link the presence of the tokens with the causality constraint. A further variable
𝜎 ∈ {𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒, 𝑎𝑐𝑡𝑖𝑣𝑒, 𝑢𝑛𝑖𝑓 𝑖𝑒𝑑}, in this regard, is associated to each token. A partial solution will
hence consist solely of those tokens of the token network which are active. Moreover, in case
such tokens are goals, the bodies of the associated rules must also be present within the solution.
Later on, we refer to tokens by means of the 𝜎 variables (we will use subscripts to describe
specific tokens, e.g., 𝜎0, 𝜎1, etc.) and to the flaws introduced by tokens by means of the 𝜑 (𝜎)
function.

The last aspect to consider concerns the update of such variables as a consequence of the
activation of a rule application resolver and of a unification resolver. Specifically, each rule
application resolver 𝜌𝑎 binds the 𝜎𝑎 variable of the goal token, whose rule has been applied, to
assume the 𝑎𝑐𝑡𝑖𝑣𝑒 value (formally, 𝜌𝑎 = [𝜑 (𝜎𝑎) = 𝑎𝑐𝑡𝑖𝑣𝑒]). Finally, for each unification resolver
𝜌𝑢 representing the unification of a token 𝜎𝑢 with a target token 𝜎𝑡, the constraints 𝜌𝑢 =
[𝜎𝑢 = 𝑢𝑛𝑖𝑓 𝑖𝑒𝑑] and 𝜌𝑢 ⇒ [𝜎𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑒] guarantee the update of the 𝜎 variables while adding 𝜑 (𝜎𝑡)
to the preconditions of 𝜌𝑢 guarantees the operation of the heuristic.

2.2. An explanatory example

In order to better understand how the heuristics and the causality constraints work, we intro-
duce in this section a running example of an explanatory planning problem, whose objective
is to plan a physical rehabilitation session for an hypothetical user. Figure 2 shows the causal
graph which is generated for the problem, whose problem requirement is constituted by the sole
goal 𝜎0. Estimated costs for flaws (boxes) and resolvers (circles) are on their upper right. The
propositional variables that participate in the causal constraints are on their upper left. Solid
(True) and dashed (Unassigned) contour lines are used to distinguish flaws’ and resolvers’ as-
sociated propositional variables’ values. In the figure, in particular, the 𝜑0 variable, representing
a flaw which is present in the problem requirement and therefore must necessarily be solved,
assumes the True value.



It is worth noting that, in the example, the 𝜑0 flaw, for achieving the 𝜎0 goal, can only be
solved through the 𝜌0 resolver, which is hence directly applied (notice the solid line) as a
consequence of the propagation of the causal constraints. Since 𝑟𝑒𝑠 (𝜑0) = {𝜌0}, indeed, the
expression (4) translates into 𝜑0 ⇒ 𝜌0. This, in turn, forces the 𝜎0 goal to assume the 𝑎𝑐𝑡𝑖𝑣𝑒
value as a consequence of 𝜌0 = [𝜑 (𝜎0) = 𝑎𝑐𝑡𝑖𝑣𝑒]. The 𝜌0 resolver, furthermore, represents the
application of a rule having a 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 () in the head and, in the body, a conjunction of
the two 𝜎1 and 𝜎2 goals. The application of this resolver, in particular, introduces the 𝜑1 = 𝜑 (𝜎1)
and the 𝜑2 = 𝜑 (𝜎2) flaws, each of which must necessarily be resolved as a consequence of the
𝜑1 = 𝜌0 and 𝜑2 = 𝜌0 causal constraints, from the expression (3). These flaws, in turn, can be
solved through the application of the 𝜌1 and of the 𝜌2 resolvers which introduce, respectively,
the disjunctions represented by the 𝜑3 and 𝜑4 flaws.

Figure 2: An example of causal graph for the planning of a
physical rehabilitation session. Tokens’ parame-
ters are omitted to avoid burdening the notation.

Proceeding backwards, the prop-
agation of the causal constraints
no longer allows to infer what is
present in the current partial plan
(notice the dashed lines). The resolu-
tion of the 𝜑3 and 𝜑4 flaws, in partic-
ular, constitute two choices that the
planner must make during the res-
olution process. The 𝜑3 flaw, for ex-
ample, can be solved either by apply-
ing the 𝐷𝑖𝑠𝑗0 disjunct, represented
by the 𝜌3 resolver, or by applying
the 𝐷𝑖𝑠𝑗1 disjunct, represented by
the 𝜌4 resolver. The graph construc-
tion process, however, which pro-
ceeds following a breadth-first approach, has identified, in the example, a possible solution for
the 𝜑3 flaw by applying first the 𝜌3 resolver and then the 𝜌7 resolver (the latter corresponding, in
this simple example, to a rule with an empty body). The heuristics’ estimated costs propagation
procedure, hence, makes the 𝜌3 resolver, with an estimated cost of 2, much more attractive
than the 𝜌4 resolver, with an estimated cost of ∞. For a similar reason, the 𝜌5 resolver will be
preferred over the 𝜌6 resolver, leading to a (possible) solution of the planning problem.

It is worth noting that, for the sake of simplicity, the tokens’ parameters are not represented
in the example figure. All tokens, however, are endowed with numerical variables that represent
the start and the end of the associated activities, appropriately constrained according to common
sense. Upper and lower body exercises, for example, represented respectively by the 𝜎1 and by
the 𝜎2 tokens, will take place as part of the more general physical exercise represented by the
𝜎0 token. The 𝜎3 and by the 𝜎5 tokens, additionally, are endowed with their 𝜏 variables which
will avoid their temporal overlapping if they will assume the same value.



3. Pruning the causal graph

The construction of the causal graph is, inevitably, a partial task that cannot be carried out in
an exhaustive manner. Consider, for example, the case of a not so smart robotic arm which,
in order to move an object from one point to another, considers an infinite number of tasks in
which it takes the object and puts it back where it initially was. The graph building procedure,
in particular, starts by queuing the high-level flaws, defined in the planning problem, in an
expansion queue. At each step, a flaw is extracted from the queue and expanded, possibly
queuing further sub-flaws, proceeding backwards in a breadth-first manner until the high-level
flaws do assume a finite estimated cost. It is worth noticing that, exception made for very simple
cases, when the graph building procedure halts, the queue might still contain some flaws. These
flaws, however, have an estimated infinite cost. Once given way to the resolution algorithm, in
particular, these flaws would be avoided as much as possible by the search algorithm. In other
words, for these flaws, the graph is not able to provide any indication for their resolution.

Can we, before the resolution process starts, remove them from the graph or, somehow, forbid
their choice? As we will see, the answer is yes, but we can do even more. Some of the flaws in
the graph expansion queue, indeed, might constitute the preconditions for the resolution of
already expanded flaws which, within the causal graph, do already have a finite estimated cost.
Such flaws, which we call deferrable, can easily be identified by traversing the causal graph
following the direction of the arrows, until a flaw with a finite estimated cost is found (hence
the flaw is classified as deferrable) or a sink node is reached (hence the flaw is classified as
non-deferrable). Once removed from the graph’s expansion queue, in particular, these flaws
can immediately be re-queued for subsequent further processing.

When the graph expansion procedure halts, in particular, there will be, in the graph’s expan-
sion queue, a set of flaws, either deferrable or not expanded yet. Instead of discouraging the
search algorithm from choosing such flaws, we can forcibly prevent it by imposing constraints
on the corresponding causal variables (the causal variables are forced to false). It is worth
noting that these flaws, having an infinite estimated cost, would not be chosen by the search
anyway. The introduction of the constraints, however, causally propagates within the causal
graph leading to some benefits in terms of performance.

Consider, for example, the graph presented in Figure 2. Before the expansion of the 𝜑5 flaw all
the estimated costs are infinite. The expansion of the 𝜑5 flaw, however, introduces a resolver, 𝜌7,
that has no preconditions. The cost of such a resolver, in line with the ℎ𝑚𝑎𝑥 heuristic, can easily
be estimated as the sole intrinsic cost of the resolver (Eq. 2). By applying the cost estimation
formula, the cost update is propagated forward by assigning an estimated cost of 1 to the 𝜑5
flaw (Eq. 1), an estimated cost of 2 to the 𝜌3 resolver, an estimated cost of 2 to the 𝜑3 flaw, an
estimated cost of 3 to the 𝜌1 resolver and an estimated cost of 3 to the 𝜑1 flaw. All the other
flaws and resolvers maintain, at this point, an infinite estimated cost.

The 𝜑6 flaw is then removed from the graph’s expansion queue and checked for deferrability.
Since the 𝜑3 flaw has a finite estimated cost, the flow is recognized as deferrable and is re-queued
into the graph expansion queue. It’s now the turn of the 𝜑7 flaw, having a term similar to that
of the 𝜑5 flaw. The cost update propagation, however, reaches, this time, the updating the cost
of the high-level 𝜑0 flaw, determining the halting of the graph building procedure with the 𝜑6
and the 𝜑8 flaws in the graph expansion queue.



Figure 3: Different timelines extracted by their associated tokens.

The resulting graph, depicted in Figure 2, shows that the only two choices that the resolution
algorithm should eventually make are the resolution of the 𝜑3 and of the 𝜑4 flaws. In solving
such flaws, specifically, the heuristic-driven algorithm would choose the resolvers with the
lowest estimated cost, respectively the 𝜌3 and of the 𝜌5 resolvers, strictly avoiding the choice of
the 𝜌4 and of the 𝜌6 resolvers, whose estimated cost is infinite. If, however, the causal variables
of the queued flaws (i.e., the 𝜑6 and the 𝜑8 flaws) are forced to false, the causal constraints (i.e.,
(4) and (3)) force the 𝜌4 and of the 𝜌6 resolvers at false false and, consequently, the 𝜌3 and of the
𝜌5 resolvers at true, together with the 𝜑5 and the 𝜑7 flaws and the 𝜌7 and of the 𝜌8 resolvers,
solving the problem without the slightest need, at least from a causal point of view (a search
may in fact still be required for scheduling the activities), to do any search.

4. Experimental results

In order to test the effectiveness of the proposed pruning techniques we have implemented
both the procedures for pruning and for recognizing the deferrable flaws within the oRatio2

planner, testing its performance on different instances of increasing complexity on the Goac
domain. Specifically, the Goal Oriented Autonomous Controller (Goac) was an ESA initiative
aimed at defining a new generation of software autonomous controllers to support increasing
levels of autonomy for robotic task achievement. In particular, the domain, initially defined in
[30] and more recently cited in [50], aims at controlling a rover to take a set of pictures, store
them on board and dump the pictures when a given communication channel was available. The
interesting aspect of this domain is that communication can only take place within specific
visibility windows that take into account the astronomical motions of the planets/satellites
which, in some cases, may stand between the transmitting and receiving stations. The presence
of these visibility windows, in particular, requires an explicit modeling of temporal aspects
in order to adequately plan the transmission of information and can hence easily be modeled
through, and solved by, timeline-based planners. The problem is made more interesting by the
presence of constraints which include the available resources (e.g., memory and battery) as well
as by having a distance matrix, among the possible locations, which might be not completely
connected.

Figure 3 shows the execution times of different configurations of the oRatio solver, allowing

2https://github.com/pstlab/oRatio



the comparison of the base solver, without pruning, pruning without recognizing the deferrable
flaws and pruning with the recognition of the deferrable flaws. From the figure it is possible to
see how, in general, the resolution times significantly benefit from the application of pruning on
the proposed benchmarking problem, reducing by an order of magnitude the computation times
in the case of the instance #9 of the problem with two visibility windows, or allowing resolution
within the two minute timeout in the case of the instance #7 of the 5 visibility windows. Note
how deferrable flaw recognition adds a little overhead in smaller instances, which still leads to
a benefit in larger instances.

5. Conclusions

The efficiency of the planners’ resolution processes is strongly influenced by the heuristics that,
in some cases, guide the solution process while, in other cases, can prune the search space so as
to favor the propagation of causal constraints and avoid possible dead-ends. The use of pruning
techniques is not new in the case of classical planning, however, it is less explored in the case of
partial-order planning and, even more so, in the case of high-expressive timeline-based planning.
For this reason we have presented a pruning technique based on the construction of a lifted
causal graph. The experimental results, although conducted on a single benchmarking problem,
show significant benefits and are, therefore, encouraging. A more detailed experimentation on
a greater number of benchmarking problems could highlight further benefits or weaknesses of
the proposed approach and, therefore, will certainly be carried out in future work.

References

[1] M. Ghallab, D. Nau, P. Traverso, Automated Planning: Theory and Practice, Morgan
Kaufmann Publishers Inc., 2004.

[2] B. Bonet, H. Geffner, Planning as Heuristic Search, Artificial Intelligence 129 (2001) 5–33.
[3] J. Hoffmann, B. Nebel, The FF Planning System: Fast Plan Generation Through Heuristic

Search, Journal of Artificial Intelligence Research 14 (2001) 253–302.
[4] M. Helmert, The Fast Downward Planning System, Journal of Artificial Intelligence

Research 26 (2006) 191–246.
[5] J. Hoffmann, J. Porteous, L. Sebastia, Ordered Landmarks in Planning, Journal of Artificial

Intelligence Research 22 (2004) 215–278.
[6] J. Porteous, L. Sebastia, J. Hoffmann, On the Extraction, Ordering, and Usage of Landmarks

in Planning, in: Sixth European Conference on Planning, 2014.
[7] P. Haslum, H. Geffner, Admissible Heuristics for Optimal Planning, in: Proceedings of the

Fifth International Conference on Artificial Intelligence Planning Systems, Breckenridge,
CO, USA, April 14-17, 2000, AAAI Press, 2000, pp. 140–149.

[8] P. Haslum, B. Bonet, H. Geffner, New Admissible Heuristics for Domain-Independent
Planning, in: AAAI, volume 5, 2005, pp. 9–13.

[9] S. Edelkamp, Planning with Pattern Databases, in: Sixth European Conference on Planning,
2014.



[10] M. Helmert, P. Haslum, J. Hoffmann, Flexible Abstraction Heuristics for Optimal Sequential
Planning, in: ICAPS, 2007, pp. 176–183.

[11] M. Helmert, P. Haslum, J. Hoffmann, R. Nissim, Merge-and-Shrink Abstraction: A Method
for Generating Lower Bounds in Factored State Spaces, Journal of the ACM (JACM) 61
(2014) 16.

[12] V. Vidal, H. Geffner, Branching and pruning: An optimal temporal pocl planner based on
constraint programming., volume 170, 2004, pp. 570–577. doi:10.1016/j.artint.2005.
08.004.

[13] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, D. Wilkins,
PDDL—The Planning Domain Definition Language, 1998.

[14] R. Fikes, N. J. Nilsson, STRIPS: A New Approach to the Application of Theorem Proving
to Problem Solving, in: IJCAI, 1971, pp. 608–620.

[15] M. Fox, D. Long, PDDL2.1: An Extension to PDDL for Expressing Temporal Planning
Domains, Journal of Artificial Intelligence Research 20 (2003) 61–124.

[16] S. Edelkamp, J. Hoffmann, PDDL2.2: The language for the Classical Part of the 4th Inter-
national Planning Competition, Technical Report 195, Institut für Informatik, 2004.

[17] M. Fox, D. Long, Modelling Mixed Discrete-continuous Domains for Planning, Journal Of
Artificial Intelligence Research 27 (2006) 235–297.

[18] A. E. Gerevini, P. Haslum, D. Long, A. Saetti, Y. Dimopoulos, Deterministic plan-
ning in the fifth international planning competition: {PDDL3} and experimental
evaluation of the planners, Artificial Intelligence 173 (2009) 619–668. URL: http://
www.sciencedirect.com/science/article/pii/S0004370208001847. doi:http://dx.doi.org/
10.1016/j.artint.2008.10.012, advances in Automated Plan Generation.

[19] W. Piotrowski, M. Fox, D. Long, D. Magazzeni, F. Mercorio, Heuristic Planning for PDDL+
Domains, in: Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI’16, AAAI Press, 2016, pp. 3213–3219.

[20] S. Franco, M. Vallati, A. Lindsay, T. L. McCluskey, Improving Planning Performance in
PDDL+ Domains via Automated Predicate Reformulation, in: Computational Science –
ICCS 2019, Springer International Publishing, 2019, pp. 491–498.

[21] N. Muscettola, S. Smith, A. Cesta, D. D’Aloisi, Coordinating Space Telescope Operations
in an Integrated Planning and Scheduling Architecture, IEEE Control Systems 12 (1992).

[22] N. Muscettola, HSTS: Integrating Planning and Scheduling, in: Zweben, M. and Fox, M.S.
(Ed.), Intelligent Scheduling, Morgan Kauffmann, 1994.

[23] D. S. Weld, An Introduction to Least Commitment Planning, AI Magazine 15 (1994) 27–61.
[24] R. De Benedictis, A. Cesta, Lifted Heuristics for Timeline-based Planning, in: ECAI-2020,

24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 2020,
pp. 498–2337.

[25] M. Ghallab, H. Laruelle, Representation and Control in IxTeT, a Temporal Planner, in:
AIPS-94. Proceedings of the 2nd Int. Conf. on AI Planning and Scheduling, 1994, pp. 61–67.

[26] A. Jonsson, P. Morris, N. Muscettola, K. Rajan, B. Smith, Planning in Interplanetary Space:
Theory and Practice, in: AIPS-00. Proceedings of the Fifth Int. Conf. on AI Planning and
Scheduling, 2000, pp. 177–186.

[27] S. Chien, D. Tran, G. Rabideau, S. Schaffer, D. Mandl, S. Frye, Timeline-Based Space
Operations Scheduling with External Constraints, in: ICAPS-10. Proc. of the 20𝑡ℎ Int. Conf.

http://dx.doi.org/10.1016/j.artint.2005.08.004
http://dx.doi.org/10.1016/j.artint.2005.08.004
http://www.sciencedirect.com/science/article/pii/S0004370208001847
http://www.sciencedirect.com/science/article/pii/S0004370208001847
http://dx.doi.org/http://dx.doi.org/10.1016/j.artint.2008.10.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.artint.2008.10.012


on Automated Planning and Scheduling, 2010, pp. 34–41.
[28] S. Fratini, F. Pecora, A. Cesta, Unifying Planning and Scheduling as Timelines in a

Component-Based Perspective, Archives of Control Sciences 18 (2008) 231–271.
[29] A. Cesta, G. Cortellessa, S. Fratini, A. Oddi, Developing an End-to-End PlanningApplication

from a Timeline Representation Framework, in: IAAI-09. Proceedings of the 21𝑠𝑡 Innovative
Applications of Artificial Intelligence Conference, Pasadena, CA, USA, 2009, pp. 66–71.

[30] S. Fratini, A. Cesta, R. De Benedictis, A. Orlandini, R. Rasconi, APSI-based Deliberation in
Goal Oriented Autonomous Controllers, ASTRA 11 (2011).

[31] A. Umbrico, A. Cesta, M. Cialdea Mayer, A. Orlandini, Platinum: A new framework for
planning and acting, in: AI*IA 2017 Proceedings, 2017, pp. 498–512.

[32] J. Frank, A. K. Jónsson, Constraint-Based Attribute and Interval Planning, Constraints 8
(2003) 339–364.

[33] A. Cesta, A. Oddi, Gaining Efficiency and Flexibility in the Simple Temporal Problem,
in: L. Chittaro, S. Goodwin, H. Hamilton, A. Montanari (Eds.), Proceedings of the Third
International Workshop on Temporal Representation and Reasoning (TIME-96), IEEE
Computer Society Press: Los Alamitos, CA, 1996, pp. 45–50.

[34] P. Laborie, Algorithms for propagating resource constraints in AI planning and scheduling:
existing approaches and new results, Artificial Intelligence 143 (2003) 151–188.

[35] S. Stock, M. Mansouri, F. Pecora, J. Hertzberg, Hierarchical hybrid planning in a mobile
service robot, in: KI 2015 Proceedings, 2015, pp. 309–315.

[36] A. Bit-Monnot, M. Ghallab, F. Ingrand, D. E. Smith, FAPE: a Constraint-based Planner for
Generative and Hierarchical Temporal Planning, arXiv preprint arXiv:2010.13121 (2020).

[37] F. Dvorák, A. Bit-Monnot, F. Ingrand, M. Ghallab, Plan-Space Hierarchical Planning with
the Action Notation Modeling Language, in: IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), Limassol, Cyprus, 2014. URL: https://hal.archives-ouvertes.
fr/hal-01138105.

[38] D. E. Smith, J. Frank, W. Cushing, The ANML language, in: ICAPSWorkshop on Knowledge
Engineering for Planning and Scheduling (KEPS), 2008.

[39] D. E. Wilkins, Practical planning: extending the classical AI planning paradigm / David E.
Wilkins, Morgan Kaufmann Publishers San Mateo, Calif, 1988.

[40] D. S. Nau, T. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, F. Yaman, SHOP2: an HTN
planning system, J. Artif. Intell. Res. 20 (2003) 379–404.

[41] L. Castillo, J. Fdez-Olivares, O. García-Pérez, F. Palao, Efficiently handling temporal
knowledge in an htn planner, in: Proceedings of the Sixteenth International Conference
on International Conference on Automated Planning and Scheduling, ICAPS’06, AAAI
Press, 2006, pp. 63––72.

[42] P. Laborie, M. Ghallab, Planning with Sharable Resource Constraints, in: Proceedings
of the 14th international joint conference on Artificial intelligence - Volume 2, IJCAI’95,
Morgan Kaufmann Publishers Inc., 1995, pp. 1643–1649.

[43] A. Cesta, A. Oddi, S. F. Smith, A Constraint-Based Method for Project Scheduling with
Time Windows, Journal of Heuristics 8 (2002) 109–136. URL: https://doi.org/10.1023/A:
1013617802515. doi:10.1023/A:1013617802515.

[44] D. E. Smith, J. Frank, A. K. Jónsson, Bridging the Gap Between Planning and Scheduling,
Knowledge Engineering Review (2000).

https://hal.archives-ouvertes.fr/hal-01138105
https://hal.archives-ouvertes.fr/hal-01138105
https://doi.org/10.1023/A:1013617802515
https://doi.org/10.1023/A:1013617802515
http://dx.doi.org/10.1023/A:1013617802515


[45] G. Verfaillie, C. Pralet, M. Lemaître, How to model planning and scheduling problems
using constraint networks on timelines, The Knowledge Engineering Review 25 (2010)
319–336.

[46] M. CialdeaMayer, A. Orlandini, A. Umbrico, Planning and execution with flexible timelines:
a formal account, Acta Informatica 53 (2016) 649–680. URL: http://dx.doi.org/10.1007/
s00236-015-0252-z. doi:10.1007/s00236-015-0252-z.

[47] R. Dechter, Constraint Processing, Elsevier Morgan Kaufmann, 2003.
[48] K. R. Apt, M. G. Wallace, Constraint Logic Programming Using ECL𝑖PS𝑒, Cambridge

University Press, New York, NY, USA, 2007.
[49] H. Kautz, B. Selman, Planning as Satisfiability, in: ECAI, volume 92, 1992, pp. 359–363.
[50] A. Coles, A. Coles, M. Martinez Munoz, O. Savas, J. Delfa, T. de la Rosa, Y. E-Martín,

A. García Olaya, Efficiently Reasoning with Interval Constraints in Forward Search
Planning, in: Proceedings of the Thirty Third AAAI Conference on Artificial Intelligence,
AAAI Press, 2019.

http://dx.doi.org/10.1007/s00236-015-0252-z
http://dx.doi.org/10.1007/s00236-015-0252-z
http://dx.doi.org/10.1007/s00236-015-0252-z

	1 Introduction
	2 Timeline-based planning
	2.1 A Lifted Heuristic for Timeline-based Planning
	2.2 An explanatory example

	3 Pruning the causal graph
	4 Experimental results
	5 Conclusions

