
On Modelled Flexibility and Service Selection
Optimisation

Roland Ukor and Andy Carpenter

School of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, United Kingdom

{roland.ukor,andy}@cs.man.ac.uk

Abstract. Service selection optimisation is concerned with the optimal
selection of services for the activities in a business process in such a way
that maximises the overall quality of the process. Flexibility built into
process models during the design phase enables a single process model
to accommodate multiple execution paths any of which may be taken
by a process instance during the execution phase. However, a challenge
exists as to how services can be selected in a way that is simultaneously
optimal for all execution paths.
This paper surveys relevant literature in service selection optimisation
and reviews a number of approaches to managing the effects of modelled
flexibility on service selection optimisation. It concludes that it is difficult
to simultaneously guarantee an exact optimal solution for all paths and
presents a characterisation of the solution space in which the existing
approaches may provide the closest approximation.

1 Introduction

Business processes can be expressed as web service compositions in notations
such as BPEL [1]. To execute service oriented business process, each service
activity must be bound to an appropriate service implementation prior to exe-
cution. For simple processes, services may be implemented locally and bound to
the activities during the definition of the business process. However, the emer-
gence and rapid growth in the adoption of distributed application paradigms
such as SOA and web services have facilitated integration of inter-organisational
business processes; such that complex processes can easily be provisioned by
bringing together functionality provided by web services distributed across dif-
ferent organisations and locations.

Selection of service implementations for activities in a business process of-
ten involves the evaluation of one or more candidate services for each activity
where these candidates may be looked up in service directories. Typically, ser-
vice implementations are selected based on functional criteria for each activity in
the process. However, in the last decade, there has been various research efforts
aimed at extending the selection criteria to include end-to-end quality charac-
teristics and constraints in addition to functional requirements. This is generally
referred to as service selection optimisation [2–4].



30 Proceedings of BPMDS’08

Modelled flexibility refers to the structural properties of a process that allows
it to flexibly respond to different scenarios anticipated by the designers of the
process. It is termed modelled flexibility (or flexibility by configuration) because
it is built into the process model and supports only variations and exceptions
that can be anticipated during the design phase of the process lifecycle. The
most common result of modelled flexibility is a distinct set of execution paths
that may be taken by any instance of the process during execution.

This paper surveys the literature on service selection optimisation and re-
views the effects of modelled flexibility on the ability to simultaneously deter-
mine exact solutions to the service selection optimisation problem for all the
execution paths in the process. The rest of the paper is structured as follows:
section 2 provides a brief introduction to service selection optimisation which
is followed by an introduction to modelled flexibility and execution paths. In
section 4, a review of the effects of modelled flexibility on approaches to service
selection optimisation is presented.

2 Service selection optimisation

Service selection optimisation (SSO) is an approach used to determine the opti-
mal selection of service implementations for activities in a business process based
on measurable QoS metrics. It assumes that services are listed in service direc-
tories according to the principles of the service oriented architecture and that
these services are annotated with QoS metrics such as cost, duration, availability
and reliability1.

Most approaches to finding the optimal selection of services begin by first
expressing the problem in terms of a structured problem model on which one
or more algorithms are applied to find the optimal solution [2–6]. Given a set
of activities A = {a1, a2, · · · , an} and a set of candidate services Si for each ai,
a solution to the SSO problem can be represented as a set of pairs {(ai, si)}
where each pair associates an activity ai in the process with a candidate service
si ∈ Si selected for that activity. An optimal solution is a solution that provides
the desired extreme value for the objective function of the problem model. The
objective function is a statement of the value or utility of any given solution.

As this paper focuses on examining the effects of modelled flexibility on
service selection optimisation, it does not place emphasis on the efficiency or
otherwise of the algorithms or heuristics used to find solutions to the problem.
Rather, the discussion that follows employs the simple and well known exhaus-
tive search algorithm for simplicity. The exhaustive search algorithm naively
enumerates all possible sets of service selections and computes the statement of

1 The source of these metrics although important in business terms is not as signifi-
cant for designing optimisation solutions to the SSO problem in general. The values
may either be advertised by the service providers or mined from local records of
past service invocations. In addition, trusted third parties may collect and maintain
accessible record of metrics values over a period of time



Proceedings of BPMDS’08 31

Fig. 1. Flexibility using XOR structural pattern

value for each solution. The solution which has the maximum value is consid-
ered the optimal solution. Exhaustive search is usually considered as an exact
algorithm that is always expected to find the optimal solution to the problem
given unlimited space and time.

While the literature accounts for numerous efforts in service selection optimi-
sation, this paper only examines the aspects that address global optimisation (as
opposed to local optimisation), enforce global constraints, support optimisation
based on multiple QoS metrics, and supports arbitrary but well structured [7, 8]
process models (as opposed to sequential models only).

3 Modelled flexibility and structural patterns

A business process is modelled as a set of activities connected by structural con-
trol flow patterns. There is a well established body of knowledge on structural
patterns for business processes and workflows [9]. Modelled flexibility in busi-
ness processes is reflected by the presence of specific structural patterns which
provide decision points for conditionally varying the path of business process
execution [10, 11]. These patterns make it possible for multiple execution paths
to be represented by a single business process model; and their structure implies
the ability to make runtime choices as to which set of activities should be exe-
cuted next based on predefined conditions. These patterns are generally referred
to as choice patterns and they include the OR and XOR structural patterns. The
process fragment in figure 1 depicts the use of an XOR choice pattern to connect
z different series of activities. During execution of this fragment, execution con-
trol can be passed from the XOR node to one of the activities a11, a21, · · · , az1

depending on the evaluation of the transition conditions in the XOR node. In
other words, there are z paths that could be taken by an instance of this process
from the XOR node.

A business process may contain a number of such fragments with choice
patterns, the combination of which leads to a number of distinct execution paths
any of which may be taken by a process instance based on the evaluation of
the decision nodes. Each execution path includes a distinct subset of process



32 Proceedings of BPMDS’08

activities that will be executed. It is common to find business processes where
execution paths have one or more activities in common. This is because the
decision points giving flexibility are located after a number of activities have been
executed (e.g. an activity to retrieve the profile of client in order to determine
whether to execute the path of the process applicable to premium customers or
basic customers).

The utility computed by the objective function is used to determine the
relative suitability or otherwise of all possible solutions to an SSO problem.
Consequently, it is absolutely critical that this statement of value is as precise as
possible. In the absence of choice structural patterns in a process, the exhaustive
algorithm is exact in that it will always find an optimal solution to the problem.
This is because every activity in the process will be executed by all instances.
Consequently, it is easy to provide precise statements about the end-to-end QoS
of the process by aggregating QoS metrics for each activity in the process. How-
ever, this becomes contentious when choice structural patterns are introduced
in the process.

In general, let P be a business process represented as a graph (A ∪ Y,E)
where A is the set of activities, Y is the set of structural patterns and E the
set of transitions in the process graph. Also, let P(P ) be the set of z execution
paths {P1, P2, · · · , Pz} contained in P where Pi = {a: a ∈ A and a is executed
in path Pi} such that the set of all activities in P,A =

⋃z
i=1 Pi. The following

definitions are in order:

Definition 1. For any two activities ai, aj ∈ A, ai is a predecessor of aj written
as (ai → aj) if there exists a path Pk ∈ P(P ) in which ai will be executed before
aj.

Definition 2. For any subgraph L of P , we say that Li ∈ P(L) = {L1, L2, · · · , Lm},
is an enclosed path in P . Note that P is a subgraph of itself so any definitions
in terms of L will also apply to P as a whole.

Definition 3. The common activities C(L) of L is the set of process activities
common to all execution paths in L.

C(L) =
m⋂

i=1

Li

Definition 4. The activities unique to L written as U(L) is a set of activities
that are only executed in one or more of the execution paths in L

U(L) =

(
m⋃

i=1

Li

)
\C(L)

Definition 5. The common pre-path-execution activities Cpre(L) of L is the set
of process activities common to all execution paths in L that are executed before
the activities unique to L.

Cpre(L) = {a: a ∈ C(L) and a→ x ∀x ∈ U(L)}



Proceedings of BPMDS’08 33

Fig. 2. Flexibility using XOR structural pattern

Definition 6. The common post-path-execution activities Cpost(L) of L is the
set of process activities common to all execution paths in L that are executed
after the activities unique to L.

Cpost(L) = {a: a ∈ C(L) and x→ a ∀x ∈ U(L)}

The diagram in figure 2 shows the location of the elements defined above in
a process with modelled flexibility.

4 Modelled flexibility and approaches to SSO

In an SSO problem model, the objective function is usually a derived from the
aggregated end-to-end QoS of the entire process given the QoS values of selected
services for each activity in the process. Several authors have listed identical
sets of functions for aggregating end-to-end QoS for business processes [2–5].
For each set of selected services associated with a structural pattern, a set of
functions are defined to aggregate QoS values for each type of QoS metric (cost,
throughput, duration, availability, reliability and reputation). This discussion is
primarily concerned with aggregation functions defined for the choice patterns
which include OR split/join, XOR split/join and the OR split with m-out-of-k
join structural patterns [2]. For this group of patterns, the aggregation of the
cost, throughput, duration, availability and reliability metrics were given as the
maximum of the aggregate values of all paths associated with the pattern. For
any process fragment L conforming to a choice structural pattern with z paths
as in figure 1 above, the aggregate value for any of the metric groups will be:

Agg(L) = max[agg(L1), agg(L2), ..., agg(Lz)]

Where L1, L2 and Lz refer to the enclosed paths {a11, · · · , a1l1}, {a21, · · · , a2l2},
and {az1, · · · , azlz} respectively.

If there exist two paths Li, Lj ∈ L such that max(agg(Li)) for all com-
binations of service candidates is greater than max(agg(Lj)), then we say Li



34 Proceedings of BPMDS’08

Fig. 3. Example process

dominates Lj in L. The implication of this dominance is that the aggregation
function defined above for choice patterns will compute the same aggregate val-
ues for L irrespective of the services selected for Lj . As a result, there is a
possiblity for the optimisation algorithm to make suboptimal service selections
for execution paths which enclose Lj . As an example, consider a simple process
shown in figure 3. The process has three activities each with three candidate
services as shown by the service directory in table 4.

A naive enumeration of all the 27 possible service allocations showed that
because the path containing a3 dominated the path containing a2, the aggregate
values of the entire process were only determined by the selection of service can-
didates for activities a1 and a3. For instance, when candidate 1 is selected for
a1 and candidate 1 is selected for a3, the aggregate value for the entire process
is [cost = 22, duration = 36] irrespective of whether any of candidates 1 to 3 is
selected for a2. The accumulation of such loss of detail especially in large pro-
cesses eventually leads to situations where even an exhaustive search algorithm
will not be able to take all execution paths into consideration in determining the
optimal service selections for activities in the process.

Table 1. Service directory table

Activity Candidate Cost Duration

a1 1 2 6 secs
2 3 4 secs
3 3 8 secs

a2 1 3 2 secs
2 5 1 secs
3 6 3 secs

a3 1 20 30 secs
2 10 50 secs
3 15 40 secs



Proceedings of BPMDS’08 35

The significance of this drawback lies in the fact that although a process
model can be designed to accommodate multiple execution paths, such provision
is usually for the purpose of flexibility; and as such, each instance of the process
will only follow one execution path during execution and the most frequent or
most significant of which may not be the dominant path.

A second approach that attempts to address the above issue was proposed
in [3]. In this approach each execution path P1, · · · , Pz are optimised separately.
Note that execution paths do not contain choice patterns. As a result, the objec-
tive function derived from the aggregation functions defined in [2] are a precise
statement of the utility of a given solution which can be used by the exhaustive
search algorithm to determine the exact solution to the sub-problem. The result
is a set of solutions, one for each execution path in the process.

Let Sol(Pi) = {(aj , sj)} represent the set of solutions for path Pi in a pro-
cess where service sj ∈ Sj is selected for activity aj ∈ A. We observe that
Sol(Pi) will contain a selection pair (a, s) for each activity a ∈ Cpre(P ). In
the use of this approach, a challenge arises when for a least one activity a in
Cpre(P ), there exists at least two paths Pj and Pk such that (a, sj) ∈ Sol(Pj)
and (a, sk) ∈ Sol(Pk) and sj 6= sk. Let ConflictSol(a) be the set of all pairs
(a, s) in ∪z

i=1Sol(Pi)∀a ∈ Cpre(P ). A decision has to be made as to which pair
(a, s) ∈ ConflictSol(a) should be used to select a service for each activity a in
Cpre(P ). In [3], the authors propose the use of a hot path Phot ∈ P(P ) which
is determined based on the path execution frequency in the previous execution
history of the process. In the absence of a history, a user may decide the hot
path. In this case, the sevice selected for activity a in Sol(Phot) is adopted for
the process. The problems associated with this approach has been highlighted in
[4]. The main issue is that the use of the hot path as the single decision variable
for determining the selection of service implementations for activities in Cpre(P )
ignores the case for the end-to-end optimality of the other execution paths the
result of which could potentially reverse the benefits that had been gained from
optimising the other execution paths separately.

In [4], the authors proposed two optimisation approaches. The first approach
treats each execution path as an autonomous unit for the purpose of optimisa-
tion, yet simultaneously considers all execution paths in the objective function
based on the probability of each path. The use of probability here derives from
earlier work in [12]. Each execution path is assigned a probability which is com-
puted from the multiplication of the probabilities of all conditional transitions
from which the path was derived. Thus the objective function proposed is as
follows:

max

z∑
i=1

Prob(Pi).Fi

where Prob(Pi) is the probability of path Pi and Fi is the aggregation of
the solution vectors for all the activities in the path. This approach therefore
considers all the execution paths together in determining the optimal set of
selections based on the probability of each execution path being executed which



36 Proceedings of BPMDS’08

can either be derived from simulation, previous execution history or explicitly
asserted by the user.

The second approach presented in [4], utilises an objective function which
gives priority to the execution path with the highest probability:

maxFmax

where Fmax is given by the aggregation of the path with the highest probability.
This effectively reduces to the hot path solution described above except that the
approach goes further to find feasible solutions for other paths in the process
which may result in reducing the quality of the selections for the path with the
highest probability when necessary to support the feasibility of the other paths.

5 Discussion and Conclusion

From the previous sections, it is evident that none of the approaches reviewed
guaranteed an exact solution for service selection optimisation such that the
selections for each of the execution paths in the process is optimal. However,
they each provide approximations to address the presence of modelled flexibility
in business processes. A question then arises as to the existence of an exact
optimal solution for flexible processes. A process without modelled flexibility
implies that all the activities in the process will be executed by all instances
of the process. This certainty makes it possible for the aggregation methods to
provide precise statements about the utility of any given solution and as such
an algorithm can be able to effectively compare the utility of different solutions
to the problem.

However, with the introduction of modelled flexibility by choice structural
patterns, different instances of the process may execute different sets of activities.
Although the different paths can be enumerated at design time, the activities
that are common between these paths are a source of difficulty in guaranteeing
that an algorithm could arrive at a solution that simultaneously optimise all the
execution paths at the same time.

For any process P , any instance must execute the activities in Cpre(P ) before
the activities in Pi\Cpre(P ). Given that the exact optimal solution for each
execution path in P has been determined during the design phase, one might
suggest that these selections be applied for each execution path in the process.
However, it is possible for the optimal solutions for the execution paths to select
different services for an activity in Cpre(P ) which will cause assignment conflicts
during the design phase. Assuming that a dynamic binding strategy is used at
runtime, the selection of services for the activities in Cpost(P ) can be based on
the execution path chosen by a process instance but this is not possible for the
activities in Cpre(P ) because the complete execution path of an instance often
not known on until all the decision nodes are evaluated. As a result, it is not
possible to use this knowledge of optimal service selections for the individual
execution paths to assign service implementations for the activities before the
decision nodes are evaluated.



Proceedings of BPMDS’08 37

In conclusion, we note that ‘exact’ solutions for service selection optimisation
within the context of modelled flexibility may translate to approximate solutions
for some execution paths in a process model. The approximations currently re-
alised by the approaches discussed above assumes that the execution path with
the highest probability of execution at runtime (usually determined cummula-
tively from previous execution history) should be the only criteria for addressing
the potential conflicits associated with modelled flexibility. In many cases, this
assumption may be considered as unrealistic. For example in a process with two
paths P1 and P2 such that path P1 caters for premium customers while path
P2 caters for basic customers, it would not be appropriate for the process to be
optimised with regard to QoS metrics with the selection scaled preferentially for
path P2 at the expense of path P1 just because P2 occurs more frequently than
P1.

Future work will investigate an extension to the approach presented in [4].
The approach will allow for user-controlled biasing of the service selection op-
timisation based on a set of weighted meta-metrics rather than only execution
probability. Such meta-metrics may include probability/frequency of execution,
business importance of the execution path or any other process metrics. In addi-
tion, future work will also address service selection for activities enclosed within
exception handling blocks as well investigate the differences between design phase
optimisation and execution phase optimisation of service processes.

Acknowledgement The authors wish to thank the anonymous reviewers for
their useful feedback. The work of the first author is supported by the Petroleum
Technology Trust Fund, Nigeria under grant number PHD08019.

References

1. OASIS. Ws-bpel specification oasis standard. Technical report, OASIS, 2007.
2. Michael C Jaeger. Optimising Quality-of-Service for the Composition of Electronic

Services. PhD thesis, Technischen Universitat Berlin, January 2007.
3. Liangzhao Zeng, Boualem Benatallah, Anne H. H. Ngu, Marlon Dumas, Jayant

Kalagnanam, and Henry Chang. Qos-aware middleware for web services composi-
tion. IEEE Transactions on Software Engineering, 30(5):311–327, 2004.

4. Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web services selec-
tion with end-to-end qos constraints. ACM Trans. Web, 1(1):6, 2007.

5. Wentao Zhang, Yan Yang, Shengqun Tang, and Lina Fang. Qos-driven service
selection optimization model and algorithms for composite web services. In Com-
puter Software and Applications Conference, 2007. COMPSAC 2007 - Vol. 2. 31st
Annual International, pages 425–431, 2007.

6. Yan Gao, Jun Na, Bin Zhang, Lei Yang, and Qiang Gong. Optimal web services
selection using dynamic programming. iscc, 0:365–370, 2006.

7. B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow
Modelling in Workflows. PhD thesis, Queensland University of Technology, 2002.

8. Wil M. P. van der Aalst. The application of petri nets to workflow management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.



38 Proceedings of BPMDS’08

9. Wil M. P. van der Aalst, Alistair P. Barros, Arthur H. M. ter Hofstede, and Bartek
Kiepuszewski. Advanced workflow patterns. In CoopIS, pages 18–29, 2000.

10. Wasim Sadiq, Shazia Sadiq, and Maria E. Orlowska. Pockets of flexibility in work-
flow specification, 2001.

11. N.A. Mulyar, M.H. Schonenberg, R.S. Mans, N.C. Russell, and W.M.P. van der
Aalst. Towards a taxonomy of process flexibility (extended version). Technical
report, 2007.

12. Jorge Cardoso. Quality of Service and Semantic Composition of Workflows. PhD
thesis, University of Georgia, Athens, Georgia (USA), 2002.


