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Abstract 
In their daily lives, people frequently need to obtain images with a high dynamic range and 
resolution. Due to technological equipment limitations, high dynamic range images are 
produced by multi-exposure fusion (MEF) of low dynamic range images, while high resolution 
images are frequently obtained by super-resolution (SR) of low resolution images. MEF and 
SR are often analyzed separately. This research examines existing approaches and proposes a 
coupled feedback network attention network and its method to address the issue that current 
models cannot achieve high dynamic range and high resolution simultaneously.  
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1 Introduction 

High dynamic range (HDR) images contain a broader dynamic range and richer texture features 
compared to typical low dynamic range (LDR) images and low resolution (LR) images, and high 
resolution (HR) images can enhance object detection accuracy. Technical methods to obtain HDR 
images and HR images, respectively, include single image super resolution (SISR) and multi-exposure 
image fusion (MEF). 

By fusing two LDR images, the extreme exposure image fusion method creates an HDR image. Ma 
et al.[8] provided a quick approach for fusing multiple exposure images that improved the initial weights 
using a guided filter. Later, Xu et al[7] proposed a unified unsupervised fusion method that overcomes 
the fusion barrier of most images by constraining the similarity between the fused image and the original 
image. 

With the continuous development of deep neural networks, many CNN-based methods have been 
proposed in the field of SISR. RCAN[4] introduces an attention mechanism to further improve the 
reconstruction quality. SRFBN[2] introduces a feedback structure to optimize shallow features through 
iteration to produce deeper features. 

The above MEF and SISR methods are used to solve the LDR and LR problems, respectively, but 
in real life, people often need to see HDR and HR images on cell phones or TVs, so the joint MEF and 
SR methods are necessary. This paper proposes a coupled feedback attention network-based image 
exposure fusion and super-resolution method, which can effectively suppress the superposition of 
redundant information in cyclic iterations, improve the quality of parameter sharing as well as exposure 
feature propagation. 

2 Coupled Feedback Attention Network 

In order to solve the propagation of redundant features and enhance the propagation of useful 
features in the coupled feedback network, this paper combines the coupled attention mechanism and 
feedback mechanism, and proposes an image exposure fusion and image super-resolution method based 
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on the coupled feedback attention network.  

2.1 Basic network structure 

The structure of the coupled feedback network is shown in Fig. 1. The shallow features 𝐹௜௡௢  and 𝐹௜௡௨  go through T rounds of iteration by the coupled feedback attention module in the upper and lower 
network, respectively. The feedback features in each iteration combine the feedback features in the other 
network and the shallow features in this network, together as the input of the next iteration, to achieve 
the refinement fused features. The coupled-feedback attention layer contains multiple coupled-feedback 
blocks and an attention module. 

The extraction process of shallow features 𝐹௜௡௢  and 𝐹௜௡௨  of LR images can be expressed as 𝐹௜௡௢ = 𝑓ிா஻(𝐼௟௥௢ ) 𝐹௜௡௨ = 𝑓ிா஻(𝐼௟௥௨ ) 

where 𝑓ிா஻  contains two convolutional layers Conv(3,4×m) and Conv(1,m), which are used to 
extract LR features and compress LR features, respectively. The extracted shallow features are first 
passed through SRB to obtain the deep features 𝐺௢ and 𝐺௢, which can be expressed as 𝐺௢ = 𝑓ௌோ஻(𝐹௜௡௢ ) 𝐺௢ = 𝑓ௌோ஻(𝐹௜௡௨ ) 

where 𝑓ௌோ஻is the super-resolution module (SRB) operation. 
Next, the deep exposure features of the two sub-networks are deeply fused after several iterations. 

At each iteration, the feedback features of the previous iteration are coupled and the shallow features 𝐹௜௡௢  and 𝐹௜௡௨  of the respective networks are together as the input of this iteration, and the feedback 
features 𝐶௧௢ and 𝐶௧௨ of the t-th iteration can be expressed as 𝐶௧௢ = 𝑓஼ி஺஻(𝐹௜௡௢ , 𝐺௧ିଵ௢ , 𝐺௧ିଵ௨ ) 𝐶௧௨ = 𝑓஼ி஺஻(𝐹௜௡௢ , 𝐺௧ିଵ௨ , 𝐺௧ିଵ௢ ) 

where 𝑓஼ி஺஻ is the operation of the coupled feedback attention module. At the first iteration, 𝐺௧ିଵ௢  
and 𝐺௧ିଵ௨  are the outputs 𝐺௢ and 𝐺௨ of the SRB, respectively. 

Finally, the output of the coupled feedback attention module of each iteration and super-resolution 
features after channel attention module is reconstructed by the reconstruction module REC to obtain the 
SR residual image, then summed with the up-sampling of the corresponding LR image to produce the 
SR image: 𝐼௧௢ = 𝑓ோா஼(𝐶௧௢) + 𝑓௎௣(𝐼௟௥௢ ) 𝐼௧௨ = 𝑓ோா஼(𝐶௧௨) + 𝑓௎௣(𝐼௟௥௨ ) 
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Figure 1 Coupled feedback attention network 
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2.2 Coupled Feedback Attention Module 

This section specifically describe the specific iterative process of the coupled feedback block and 
channel attention module. 

As shown in Fig. 2, the coupled feedback attention structure mainly contains iterative convolutional 
and deconvolutional layers constituting the CFB, and channel attention gates.  

According to 3.1, in the upper sub-network, the inputs of the coupled feedback attention module are 𝐺௧௢, 𝐺௧௨, 𝐹௜௡௢ . firstly, the channel compression is performed through the convolutional layer Conv(1,m) 
to obtain the input 𝐿௧௢(0) of the coupled feedback attention module. 𝐿௧௢(0) = 𝑓௜௡([𝐺௧௢, 𝐺௧௨, 𝐹௜௡௢ ]) 

Next, multiple working groups consisting of convolutional and deconvolutional layers, the HR 
feature 𝐻௧௢(𝑛) of the n-th working group in the t-th iteration can be expressed as 𝐻௧௢(𝑛) = 𝑓஽௘௖([𝐿௧௢(0), 𝐿௧௢(1), … , 𝐿௧௢(𝑛 − 1)]) 

where 𝑓஽௘௖is the deconvolution layer Deconv(3,m). The HR features are generated by upsampling 
the LR features jointly from the first n-1 workgroups. Similarly, LR features 𝐿௧௢(𝑛) can be expressed 
as 𝐿௧௢(𝑛) = 𝑓஼௢௡௩([𝐻௧௢(1), 𝐻௧௢(2), … , 𝐿௧௢(𝑛 − 1)]) 

where 𝑓஼௢௡௩ is the convolutional layer Conv(3,m). 
The output of the final N-th working group is generated by the joint LR features of the previous N 

working groups passing through the convolution layer Conv(1,m) as follows. 𝐺௧௢ = 𝑓௢௨௧(𝐿௧௢(1), 𝐿௧௢(2), … , 𝐿௧௢(𝑁)]) 

The above describes the iterative process of the extreme high exposure branch, and the iterative 
process of the extreme low exposure branch is the same. 

The feedback features 𝐺௧௢ and 𝐺௧௨ are output from each iteration, go through the channel attention 
module CA for feature optimization. The CA in this paper consists of three steps, which are global 
information compression, scaling and excitation, and recalibration. 

1） Global information compression 
In order to obtain the global information of each channel, this paper represents the feature values of 

each channel by global averaging pooling: 

𝑔௧௢ = 1𝐻 × 𝑊 ෍ ෍ 𝐺௧௢(𝑖, 𝑗)ௐ
௝ୀଵ

ு
௜ୀଵ  

𝑔௧௨ = 1𝐻 × 𝑊 ෍ ෍ 𝐺௧௨(𝑖, 𝑗)ௐ
௝ୀଵ

ு
௜ୀଵ  

where 𝐺௧௢(𝑖, 𝑗) and 𝐺௧௨(𝑖, 𝑗) are the values at each position in the output extreme exposure feature, 
and compresses the multiple channels into a one-dimensional feature tensor. 

2） Squeeze and excitation 
In order to more fully explore the dependencies between individual channels, the paper introduces a 

gate mechanism for learning the nonlinear mapping between each channel and uses a sigmoid activation 
function to avoid the formation of adversarial relationships between channels, which can be expressed 
as 𝑠௧௢ = 𝜎(𝑊ଶ𝛿(𝑊ଵ𝑔௧௢)) 𝑠௧௨ = 𝜎(𝑊ଶ𝛿(𝑊ଵ𝑔௧௨)) 

Where 𝑊ଵand 𝑊ଶ are the convolutional layer weights. 
3） Recalibration 
The original input features 𝐺௧௢  individual channels are scaled by the channel attention weight 

matrix just learned, thus enhancing useful features and suppressing useless features: 
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𝐶௧௢ = ൜𝐺௧௢ × (𝑠௧௢ + 1)                           𝑡 = 1𝐺௧௢ × 𝑠௧ିଵ௢ + 𝐺௧௢ × (𝑠௧௢ + 1)   𝑡 > 1 

𝐶௧௨ = ൜𝐺௧௨ × (𝑠௧௨ + 1)                           𝑡 = 1𝐺௧௨ × 𝑠௧ିଵ௨ + 𝐺௧௨ × (𝑠௧௨ + 1)   𝑡 > 1 

Where 𝑠௧௢ and 𝑠௧௨ are the channel attention weights of the previous iteration. 
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Figure 2 Coupled feedback attention structure 

2.3 Loss Function 

The method in this paper mainly achieves image super-resolution and image multi-exposure fusion, 
so the model in this paper uses a hierarchical loss function for optimization, and the loss function is 
expressed as 𝐿௧௢௧௔௟ = 𝜆௢𝐿ௌௌூெ൫𝐼௦௥௢ , 𝐼௚௧௢ ൯ + 𝜆௨𝐿ௌௌூெ൫𝐼௦௥௨ , 𝐼௚௧௨ ൯ + ෍ 𝜆௧(𝐿ௌௌூெ൫𝐼௧௢, 𝐼௚௧൯ + 𝐿ௌௌூெ൫𝐼௧௨, 𝐼௚௧൯)்

௧ୀଵ  

Where 𝐼௚௧௢  and 𝐼௚௧௨  are the HR standard images with extreme exposure, and 𝐼௚௧ is the HDR, HR 
standard image, which is the target to be achieved in the final fusion image. 𝜆௢, 𝜆௨, {𝜆௧}௧ୀଵ்  are the 
weight coefficients of each loss part. In this paper, we set 𝜆௢ = 𝜆௨ = {𝜆௧}௧ୀଵ் = 1. 

3 Experiment and Analysis 

3.1 Experiment Establishment 

1）Experimental setup 
In this paper, the training model was trained on GeForce GTX 1070Ti.The experiments in this paper 

mainly use SICE [5] dataset, which contains 589 high-quality reference images and their corresponding 
image sequences, and only extremely exposure are used in this paper. 

2）Comparison Method 
The network model proposed in this paper achieves both image super-resolution and image exposure 

fusion, we combine the current image super-resolution method and the image exposure fusion method 
as a comparison method. The image super-resolution methods are DBPN[3], RCAN[4], SRFBN[2], and 
SwinIR[9], and the main image exposure fusion methods are MGFF [10], FAST SPD-MEF [6], MEF-Net 

[8], and U2Fusion [7]. We combined SR methods and MEF methods, and changed the order of SR 
methods and MEF methods, i.e., SR+MEF or MEF+SR, to generate 32 comparison methods. The CF-
Net [1] was also selected for comparison. 

3.2 Objective evaluation 

In order to verify the effectiveness of the method in this paper under magnification factor of 2, we 
use the SICE dataset and compare it with other advanced methods. These comparison methods are 
combined by SR method and MEF method. Table 1 shows the results of our method with the comparison 
methods for magnification factor of 2 under three metrics. 
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In Table 1, highlighting the first value of the fusion quality index in bold and the second ranked 
value in underline. From Table 1, we can see that the method of this paper has the best fusion effect, 
ranking first among 34 methods in metrics. PSNR index is improved by 0.25 dB, SSIM by 0.0028, and 
MEF-SSIM by 0.0005 compared to the second place CF-Net method. 

 
Table 1. comparison of the fusion results under the magnification factor of 2 

Super Resolution + Image Fusion 
Methods MGFF[10] FAST SPD-MEF[6] MEF-Net[8] U2Fusion[7] 

Combinations PSNR SSIM MEF-
SSIM 

PSNR SSIM MEF-
SSIM 

PSNR SSIM MEF-
SSIM 

PSNR SSIM MEF-
SSIM 

DBPN[3] 17.47dB 0.7434 0.9121 17.30dB 0.7615 0.8976 17.26dB 0.7660 0.8888 17.83dB 0.7423 0.8807 
RCAN[4] 17.39dB 0.7406 0.9114 17.34dB 0.7618 0.8974 17.24dB 0.7653 0.8882 17.85dB 0.7409 0.8804 
SRFBN[2] 17.48dB 0.7425 0.9130 17.34dB 0.7601 0.8983 17.29dB 0.7641 0.8895 17.84dB 0.7402 0.8811 
SWinIR[9] 17.44dB 0.7436 0.9113 17.26dB 0.7618 0.8968 17.23dB 0.7667 0.8881 17.82dB 0.7436 0.8802 

Image Fusion + Super Resolution 
Methods DBPN[3] RCAN[4] SRFBN[2] SWinR[9] 

Combinations PSNR SSIM MEF-
SSIM 

PSNR SSIM MEF-
SSIM 

PSNR SSIM MEF-
SSIM 

PSNR SSIM MEF-
SSIM 

MGFF[10] 17.27dB 0.7161 0.9144 17.18dB 0.7122 0.9135 17.38dB 0.7218 0.9158 17.19dB 0.7135 0.9131 
Fast SPD-
MEF[6] 

17.26dB 0.7554 0.8954 17.24dB 0.7533 0.8949 17.31dB 0.7557 0.8962 17.21dB 0.7546 0.8944 

MEF-Net[8] 17.25dB 0.7636 0.8886 17.23dB 0.7624 0.8882 17.27dB 0.7630 0.8892 17.20dB 0.7629 0.8878 
U2Fusion[7] 17.81dB 0.7384 0.8843 17.82dB 0.7368 0.8837 17.85dB 0.7395 0.8850 17.76dB 0.7374 0.8835 

CF-Net[1] PSNR=21.24dB                                    SSIM=0.8140                                MEF-SSIM=0.9332 
Ours PSNR=21.49dB                                    SSIM=0.8168                                MEF-SSIM=0.9337 

3.3 Subjective evaluation 

Fig. 3 visually depicts the fused images produced by this paper and other advanced methods at 
magnification of factor 2. From the experimental results, it can be seen that compared with SR+MEF 
and MEF+SR methods, the method in this paper has a great improvement in details, and compared with 
the coupled feedback network, this paper alleviates the phenomenon that there is redundant information 
in the image due to the coupled feedback mechanism. 

(a)Over-exposed input (b)Under-exposed input (c)DBPN+Fast SPD-MEF

(d)Fast SPD-MEF+RCAN (e)MEF-Net+DBPN

(g)RCAN+U2Fusion

(f)MGFF+SRFBN

(h)SRFBN+MGFF (i)SwinIR+MEF-Net

(j)U2Fusion+RCAN (k)CF-Net (l)Ours  
Figure 3 Comparison of different methods of "landscape" under 2× 

4 Conclusion 

Based on the powerful image reconstruction property of feedback mechanism and the property that 
channel attention mechanism can distinguish the importance of features. In this paper, a coupled 
feedback attention network is proposed to solve the image super-resolution problem and image exposure 
fusion problem simultaneously. The experimental results show that the algorithm in this paper retains 
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the detailed information of edges, region boundaries and textures of the original image sequence.  
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