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Abstract
More and more applications rely on Machine Learning (ML) techniques, e.g., to automate software engineering. Like other
applications, they need to be tested and validated. Testing ML-based software differs from testing software which do not rely
on AI and ML: non-determinism, lack of oracle, high dependence on training and evaluation data are hard points. The problem
is even more complicated when humans are involved in the process. In this paper, we analyze the problem of evaluating OCE,
a human-centered intelligent system based on reinforcement learning that automatically builds user-tailored software. We
present a test environment composed of two tools which are based on the notions of “scenario” and “ideal assembly”: OCE
Scenario Maker to edit scenarios and OCE Scenario Runner to automate and repeat their execution.
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1. Introduction
More and more applications rely on Machine Learning
(ML) techniques, namely to automate software engineer-
ing. As part of our project on Opportunistic Software
Composition, we are designing an intelligent solution
based on reinforcement learning (RL) to automatically
build applications in ambient contexts, and we are de-
veloping several working prototypes of an Opportunistic
Composition Engine (OCE). With OCE, the user is put in
the loop and provides feedback on the built applications.

For ML-based solutions, as with any software, develop-
ment teams need to address validation issues. Testing is a
potential solution. However, testing human-centered ML-
based systems is quite different from testing traditional
software, i.e., those which do not rely on ML techniques.

For our part, we need to assess the prototype versions
of OCE in different use cases. Beyond the common prob-
lems posed by the evaluation of ML-based systems, our
issues lie in the dynamics of the learning environment,
including the human user. To answer, we have developed
a tooling that supports the definition of test scenarios
with simulated users, their execution and the evaluation
of the results, which use is illustrated in a video1.

The purpose of this paper is to present our work on
testing and evaluating OCE, more specifically its learning
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mechanism. It describes the principles of our solution
and the tooling we have developed.

Sec. 2 summarizes the principles of Opportunistic Soft-
ware Composition and our needs for testing. Sec. 3
analyzes the main issues of testing ML-based systems
in particular with humans “in the loop”, then focuses
on OCE. Sec. 4 briefly presents several tools that allow
testers to carry out experiments on ML-based solutions,
then describes the principles of our solution, the proto-
type tools we have developed and integrated with OCE,
and a demonstration. Sec. 5 concludes and discusses
some open issues.

2. Background

2.1. Opportunistic Software Composition
Today’s users live in ambient environments invaded by
connected objects. These environments are open, com-
plex and dynamic: at any time, objects may appear
and others may disappear. Besides, the user needs may
change depending on the situation. One of the issues
is how to manage the variability of such unpredictable
environments, and propose relevant services to the user
[1].

To tackle this issue, Opportunistic Software Composi-
tion is a human-centered approach based on reinforce-
ment learning (RL) [2] that aims at automatically build
applications that are tailored to the user and the ambi-
ent context. It plans on-the-fly assemblies of software
components that are available in the ambient environ-
ment. Like objects, software components [3] expose the
services they provide through an interface; in addition,
they expose at the same level the services they require
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from other components. This makes software compo-
nents easier to assemble, replace and reuse. Technically,
they can be assembled by connecting their services, the
assembly implementing an application.

The goal of opportunistic software composition is to
provide the user with the right application at the right
time, but without them having expressed needs and pref-
erences due to the dynamics and unpredictability of the
environment, which make their specification difficult.
User-adapted applications are designed in bottom-up way
and emerge from the environment, relying on automati-
cally on-the-fly learnt knowledge about the user’s needs
and preferences.

To realize opportunistic software composition, an Op-
portunistic Composition Engine (OCE) has been designed:
every service is locally managed by an “agent” that learns
by reinforcement the connection preferences according
to the context and decides on its own connections. Build-
ing an application consists in three steps, called an OCE
cycle, and involves the user:

1. OCE probes the ambient environment to detect
the available components.

2. According to their learnt knowledge on the user’s
preferences, the agents decide on their connec-
tions to others to collaboratively build up an
assembly plan that defines an application and
present it to the user.

3. Using the Interactive Control Environment (ICE),
the user accepts, modifies or rejects the applica-
tion.

User’s actions in the last step are used as feedback
for OCE. From this feedback, a reinforcement signal is
computed from which OCE’s agents learn by reinforce-
ment the user’s needs and preferences. As the cycles are
repeated, OCE gains knowledge that it can then use to
create more relevant applications.

Readers who wish to know more about OCE and ICE
can refer to [4] and [5], and to [6] for a demo.

2.2. Need for testing OCE
A working prototype of OCE has been developed. How-
ever, it must be tested and evaluated, with a focus on the
learning mechanism, in order to check that OCE builds
assembly plans that fit the user needs and preferences.
There are also alternative versions of OCE whose behav-
ior must be compared.

Moreover, OCE is parameterizable, and the parameter
values have to be adjusted. Among the parameters, some
are ML-specific (for instance the amount of exploration
vs. exploitation), others are user-specific and must be
tailored to the individual: for instance, the coefficient
that defines the user’s preference for components or ap-
plications not yet encountered.

3. Testing human-centered
ML-based systems

In a general way, the testing activity consists in defining
test cases, running them, and asserting the correctness
of the outputs against a specification. Usually, tests are
used to check the behavior of a system by finding bugs
or highlighting anomalies but they can not prove their
absence [7].

3.1. Issues in testing ML-based systems
The growing interest in AI and ML is driving develop-
ment teams to focus on testing and evaluation issues.
However, testing ML-based systems is quite different
from testing traditional software, i.e., those that do not
rely on AI and ML.

A first point is that learning is assessed indirectly.
When testers evaluate a ML-based solution, they seek to
evaluate the correctness of the learning mechanism. But
learning can hardly be isolated from the rest of the appli-
cation, which is tested as a whole including the decision
process. Therefore, the observed outputs are those of the
whole application, not those of the only learning process.

Secondly, testers struggle to deal with randomness and
non-determinism [8, 9], whether it comes from learning
or decision. When an anomaly is detected, does it come
from the non-deterministic nature of ML-based systems
or is there a design or implementation error [10]? There-
fore, to get significant results, experiments must be re-
peated a certain number of times to reduce the effects of
non-determinism.

Moreover, in many cases, testers can not predict the
produced outputs for specified inputs: there are not al-
ways oracles [11] or it is difficult to design ones [12]. To
assess the accuracy of decisions, a way is to ask humans
to perform the same tasks as the system with the same
input data and observe the differences in the outputs [10].

Finally, the results are highly dependent on the train-
ing data [9]. Indeed, the choice of relevant data and test
cases is critical for the verification of the properties of
ML-based systems. However, training data spaces are
often infinite and it is difficult but necessary to select the
most relevant portions to train and evaluate a system
[10].

The problem is even more complicated when using
reinforcement learning because of the interactions be-
tween the learning agent and the environment [13] and
the incremental building of knowledge. In this case, the
system learns over time and makes decisions depending
on both its current knowledge and the state of the envi-
ronment. Thus, the dependence on the environment and
its variability over time can lead to outdated or obsolete
learnt knowledge.



3.2. Issues in testing interactive ML-based
systems

Human-centered ML-based systems are interactive sys-
tems. In the field of interactive systems, it is common
to carry out test campaigns involving real or potential
users to evaluate interaction criteria, such as usability
[14]. Such campaigns may require a large number of
participants to produce significant results and be costly
in time and money.

To alleviate these costs, designers often model syn-
thetic users, e.g., personas, and simulate their actions.
This raises some challenges:

• The potential introduction of biases [15]: how to
insure the quality of this modelization?

• The need for specific design methods and tools.

In this paper, we focus on this second point and pro-
pose tools to take advantage of synthetic users and ap-
ply human-centered methodologies to ML-based systems
[16].

In the case of interactive ML-based systems [17], hu-
mans are the source of learning data. The main issue is
the complexity and the diversity of user profiles. Knowl-
edge built from the interactions between the user and
the learning system is personalized and may suit one
user but not another. Moreover, the human users may be
imprecise or change their opinions over time. It is thus
difficult to assert the behavior of the learning system.

3.3. Issues in testing OCE learning process
OCE runs a distributed human-centered RL process
where the human user is an integral part of the learning
environment: as they accept, modify, or reject an assem-
bly proposed by OCE, they provide feedback that OCE
transforms into a reinforcement signal. This way, learnt
knowledge is personalized and differs from one user to an-
other. It also depends on the dynamics, whether it comes
from the ambient environment or from the changing
user’s needs and preferences depending on the current
situation and time. OCE decisions are then dependent on
the knowledge gained.

Thus, the evaluation of the OCE learning process faces
the issues of both ML-based and interactive systems: in
particular, non-determinism and the challenge of assess-
ing the quality of OCE’s decisions on the one hand, de-
pendence on the user, their profile and the variability of
their needs and preferences on the other hand. In ad-
dition, the multiple forms of the ambient environment
must be taken into account with the variety and number
of components, as well as the dynamics.

4. OCE testing principles and tools

4.1. Related work
In the literature, there are several tools that allow testers
to carry out experiments on ML-based solutions. We can
cite the following:

• Arcade Learning Environment (ALE) [18] seeks to
test the genericity of a learning algorithm, which
must be able to play dozens of Atari 2600 games.
The goal of a learning agent is to maximize the
scores obtained on each game. ALE thus proposes
evaluation metrics to compare and understand
the performances of learning agents on the dif-
ferent games.

• OpenAI GYM [19] is a Python library that ad-
dresses the lack of normalization of reinforce-
ment learning environments by offering a set of
standard ones. It allows developers to test and
compare their learning agents in these environ-
ments to benchmarks.

• The DotRL platform [20] is a framework that en-
ables rapid development and test of reinforcement
learning solutions. To carry out an experiment,
testers select environments and learning agents
among those proposed by the platform, or de-
velop their own, and compare the performances.

• Cogment [21] facilitates the definition of complex
human-centered machine learning architectures,
with human users and/or automated agents inter-
acting with each other with the aim of training
humans and AI together and improve ML results.
For each experiment, Cogment generates logs to
allow the tester to analyze the results.

These tools offer a wide range of features to perform
experiments. The Cogment framework is fairly new but
seems to be the most attractive since it focuses on the
presence of humans in the learning process and fits well
the human-centered reinforcement learning paradigm.
However, generally speaking, the gap between what
these tools provide and the needs for testing OCE seems
quite important and expensive to fill. Indeed, in order
to test OCE using these tools, it would be necessary to
make the predefined environments and agents interoper-
able with those of OCE in particular to use the available
benchmarks. Among the problems, some seem difficult
or even impossible to address such as taking into account
the distribution nature of OCE learning. However, some
concepts could be useful for the evaluation of OCE, e.g.,
the ALE evaluation metrics.

4.2. A tooling for OCE testing
Currently, we are exploring the state of the art in more
depth. At the same time, we have undertaken to develop



our own tooling to automate the testing of OCE learning
process, which consists of a pair of tools:

• OCE Scenario Maker, which supports the defini-
tion of tests,

• OCE Scenario Runner, which allows to automate
and repeat their execution.

These are based on (i) a formalism to describe test sce-
narios with the ambient environment and the user’s pref-
erences and their possible variations over time, (ii) a way
to repeat tests any number of times, and (iii) scores that
measure the quality of OCE decisions.

A benefit of these tools is that they allow to carry out
test campaigns more easily and at a lower cost, without
having to develop concrete components and involve real
users.

4.3. Principles
We define a scenario as a series of OCE cycles but without
the results that could be provided by OCE: each cycle
is described both by a set of software components of
the ambient environment and the user’s reaction to the
proposal that OCE would make in this context.

To define the user’s reactions without knowing the
results provided by OCE, we introduce the concept of
ideal assembly: an ideal assembly is the one that the user
would prefer in a given context. Ideal assemblies model
the user preferences in the different situations.

A scenario includes training cycles followed by as-
sessment cycles. In a training cycle, the ideal assembly
allows OCE to learn the user’s need and preferences in
the stated context. In an assessment cycle, the ideal as-
sembly is used to verify that OCE has correctly learnt:
to do so, a distance between this ideal assembly and the
proposition of OCE is computed.

Defining a test consists thus in specifying a sequence
of cycles with a variety of components, a more or less
important number of them, and a more or less dynamic
ambient environment. By specifying the ideal assem-
bly for a cycle, the tester behaves as an oracle. Besides,
specifying ideal assemblies allows to simulate different
user profiles: users with more or less stable preferences,
more or less open to new applications. . . Note that the
selection of adequate training and assessment cycles (i.e.,
the design of test cases) is another challenge that we do
not address in this paper.

In the following sections, we first present OCE Sce-
nario Maker and OCE Scenario Runner. Then, we de-
scribe the architecture of the testing environment which
associates OCE Scenario Maker, OCE Scenario Runner,
and OCE (the engine) to run and test the latter.

4.4. OCE Scenario Maker
To describe a test scenario, the tester has to indicate, for
each training and assessment cycle, both which compo-
nents populate the environment and the ideal assembly.

For that, OCE Scenario Maker is a tool composed of:

• A library of dummy software components.
• A component creator that allows the tester to

define dummy components by indicating their
name and associated services, and add them to
the library.

• A cycle creator that allows the tester to specify a
cycle by choosing the participating components
and expressing the ideal assembly (i.e., giving a
list of connections between components).

In practice, OCE Scenario Maker is a single-page Web
application. A GUI (see Sec. 4.7) assists the tester to
graphically manipulate the scenario elements (compo-
nents and connections). Once defined, the test scenario
description is saved in a JSON file.

4.5. OCE Scenario Runner
Once the test scenario is defined with OCE Scenario
Maker, it has to be executed to carry out automatic test-
ing. OCE Scenario Runner is a Java desktop application,
which handles these experiments and their repetition
as many times as required to reduce the impact of non-
determinism.

To start an experiment, several parameters must be
set such as the test scenario JSON file produced by OCE
Scenario Maker, OCE parameters, the version of OCE
and the number of repetitions of the experiment. For
each cycle, OCE Scenario Runner compares the assembly
proposed by OCE and the ideal assembly and calculates
a Jaccard Similarity index between the set of the connec-
tions proposed by OCE and the one of the ideal assembly;
then, it computes an average score over all the cycles.
This provides a measure of the distance between OCE’s
propositions and the ideal assemblies, and so indicates
whether the OCE decisions make relevant applications
emerge according to the learnt user’s preferences. This
measurement only makes sense for the assessment cycles
as the previous cycles are used to create knowledge. It
therefore makes the tester able to analyze and understand
how OCE behaves.

4.6. Software architecture
Figure 1 shows how OCE Scenario Maker and OCE Sce-
nario Runner fit in OCE runtime environment to create
the testing environment. In the production environment,
OCE interacts with the ambient environment by probing
available components. Then, according to its knowledge



Figure 1: Architecture overview in production and testing configurations

about the user’s preferences and needs, it plans an as-
sembly which is displayed on ICE. Last, through ICE,
the user gives a feedback to OCE that is converted into
reinforcement signals for OCE learning agents.

OCE’s modular architecture allows to seamlessly re-
place ICE and the ambient environment with OCE Sce-
nario Runner, thus allowing simulation and automation
of the interactions with the user and the environment.
When running a scenario, at each cycle, OCE retrieves
the set of the available components provided by OCE
Scenario Runner, then proposes an assembly. Finally,
OCE Scenario Runner returns the ideal assembly that is
used by OCE to create feedback for its agents. Therefore,
OCE Scenario Runner plays both the role of the ambient
environment and the role of the user, in accordance with
the scenario description produced using OCE Scenario
Maker.

4.7. Testing OCE’s behavior: a
demonstration

The following video2 shows the case of a tester who wants
to check OCE’s behavior in a simple use case where new
components appear dynamically and the user preferences
are stable. In this test scenario, the user is virtually sur-
rounded by devices like switches and lamps, a switch can
be connected to a single lamp, and OCE builds applica-
tions from them as they appear or disappear. Initially,
three lamps (but only two of them work) and a switch are
available in the user’s surrounding environment, and the
user prefers to use the first lamp. After a while, the third
lamp works again and the user prefers to use it. An other
component appears but do not affect the user’s needs.

2https://www.irit.fr/OppoCompo/automatic-testing/

The video shows how the tester defines the component-
based ambient environment and the ideal assemblies cy-
cle by cycle, then runs the resulting multi-cycle scenario
and gets similarity scores to check the relevance of OCE’s
decisions.

5. Conclusion
In this paper, we have addressed the problem of testing
an intelligent solution for automated software composi-
tion. We have presented both a reflection about testing
human-centered ML-based systems and a pair of tools
that we have developed to automate the testing of our
Opportunistic Composition Engine OCE. When defining
scenarios using OCE Scenario Maker, the tester behaves
as an oracle by designing different situations to simulate
the environment dynamics and the user behavior. Then,
experiments can be executed and repeated using OCE
Scenario Runner. Repetition smoothes out the results
altered by the presence of randomness in learning and
decision.

Of course, questions arise concerning the design of the
test sets. For now, we only propose tools that facilitate
specification, execution, repetition and analyze of tests,
but not a methodology: how to design test sets and how
to assert their relevance? As it is highly dependent on
the users, one way would be to involve them more in
the design, e.g., build scenarios based on observations
of their behavior or ask them about their preferences in
different situations. Another way would be to improve
usability of our tools in order to involve end-users in the
implementation and the execution of tests. These are
tracks to be explored further.

Although our work is still in progress, we hope that
our approach can inspire other practitioners in the field

https://www.irit.fr/OppoCompo/automatic-testing/


to develop tools for testing intelligent human-centered
automated solutions.
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