CEUR-WS.org/Vol-3362/ISE2022_short07_Koyyada_Towards.pdf

Towards automated open source assessment - An empirical

study

Sai Pranav Koyyada!, Denim Deshmukh’, Deepika Badampudi™*, Vida Ahmadi® and

Muhammad Usman’

!Blekinge Institute of Technology, Sweden
2City Network International AB, Sweden

Abstract

The open source software (OSS) assessment has become important given the increased adoption of OSS in commercial product
development. Researchers proposed many OSS assessment models. However, little is known about the industrial relevance of
the models. In this study, we proposed an automated tool based on the OSS assessment attributes identified together with
a European cloud provider company. We analyzed 51 repositories to observe patterns in maintenance activities over their
lifetime (from inception to the latest release). Based on the analysis, we propose a novel approach for evaluating the maturity
of the OSS project. Finally, we assessed the usefulness of our automated solution in a pilot study.

Keywords

OSS assessment automation, commit classification, software maturity

1. Introduction

Software companies increasingly adopt Open Source
Software (OSS), which has become part of the main-
stream practice in software engineering [1]. However,
the selection of OSS is still challenging [2]. The
practitioners in our case company: a European cloud
provider, reported similar challenges. They mentioned
gathering information from multiple sources and tools
as a complex and time-consuming activity. The case
company identified the need to automate the OSS
assessment to reduce the selection effort.

The automation of the OSS assessment requires the
identification of the attributes practitioners consider
for OSS selection. In the last two decades, many OSS
quality models have been proposed to assist the OSS
selection. Lenarduzzi et al. [2] identified discrepancies
in the information provided in the evaluation models
and the practitioners’ information needs. In addition,
little is known about how relevant these models are in
practice as they have not been validated extensively[2].
The OSS quality assessment models suggest many
evaluation attributes. Maintenance is one of the most
considered quality attributes in the OSS assessment
models proposed in the previous studies [3]. Li et al.
[4] conducted a survey to understand the attributes

ISE22: 1st International Workshop on Intelligent Software Engineering
(ISE)

*Corresponding author.

Q& saky19@student.bth.se (S.P. Koyyada); dede19@student.bth.se
(D. Deshmukh); deepika.badampudi@bth.se (D. Badampudi);
vida.ahmadi.mehri@bth.se (V. Ahmadi); muhammad.usman@bth.se
(M. Usman)

(Ztiﬂ‘fjn(‘:E);r(l]g[:ttef:;l}::‘sni?l()ércbéf;lj :)I“h()l’s. Use permitted under Creative Commons License
===1 CEUR Workshop Proceedings (CEUR-WS.org)

practitioners consider important in OSS selection.
Practitioners mention maintenance as an important
attribute; however, they did not mention metrics for
assessing maintenance [4]. Metrics are important to
automate quality assessment. However, practitioners did
mention metrics for assessing software maturity, such as
the number of forks, number of releases, and number of
commits [4]. However, Li et al. [4] suggested that while
some practitioners consider the number of commits
as a metric to evaluate software maturity, evaluating
the prevalence of commits over time and the types of
commits may be more useful.

Levin and Yehudai [5] proposed a model to classify
the comments based on the maintenance activities.
However, their motivation to classify was to improve
planning and resource allocation for maintenance. As
indicated by Li et al. [4], the prevalence of commits over
time and types of commits could be a good measure
of maturity. However, they did not find any portals
that effectively provide community-related factors to
automate OSS project assessment [4]. Therefore, it is
interesting to investigate how commit classification
based on maintenance activities can help automate OSS
assessment.

The study aims to identify commonly considered
attributes in OSS selection in the case company and
investigate to what extent commit classification based on
maintenance activities can help in the OSS assessment.
Many models for commit classification exist [6, 7, 5, 8].
Our objective is not to propose the most accurate clas-
sification model but to demonstrate the use of commit
classification in the OSS assessment. We used Levin’s
commit classification model [5] to monitor different

mailto:saky19@student.bth.se
mailto:dede19@student.bth.se
mailto:deepika.badampudi@bth.se
mailto:vida.ahmadi.mehri@bth.se
mailto:muhammad.usman@bth.se
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Iterations - Problem

............ entification, . L. Desen 1 Velaten

lteration 1 - Fogus group: List of attributes : Interngl validation of the list:| Case
: Attributes identification to automate : of attributes completeness :| company

Iteration 2 : Identifying dependencies_ Internal validation of Case
. and modules for developing : Automated tool 1.0 | company
: the tool for automation Automated tool 1.0
. Case

) . . Internal + external

lteration 2. Improvement suggestion Automated tool 2.0 validation of company *
. from the case company : Automated tool 1.0 external
. . stakeholders

Figure 1: Research design followed in the study

maintenance activities carried out in OSS projects. We
analyzed 51 OSS projects, including frameworks, APIs,
libraries, databases, and applications, to collect attributes
that can help facilitate the OSS assessment. Finally,
we conducted a pilot qualitative study to understand
practitioners’ opinions on the usefulness of the commit
classification based on maintenance activities and
commonly considered selection attributes in the OSS
assessment.

2. Research methodology

Our goal is to answer the following research questions -

RQ1: What OSS attributes are considered important to
automate in the case company?
How can commit classification be used to facili-

tate OSS assessment?

RQ2:
RQ3: How do practitioners perceive the usefulness of
our automated solution?

We used design science method[9] to answer the above
research questions. Figure 1 depicts the iterations in the
solution development and validation. The steps carried
out in each iteration are described as follows.

Iteration 1: In this iteration our goal is to identify the
attributes that the case company considers important
for automating OSS assessments. We used focus groups
where key stakeholders from the case company and the
authors discussed the different attributes. The input to
the focus group was the case company’s checklist for
OSS assessment and the attributes frequently reported in
the literature. The goal of the focus group was to identify
attributes that can be automated to improve the efficiency
and effectiveness of the OSS assessment. The outcome
of the focus group was the list of attributes to automate.
The first two authors were employed at the case company,
providing them easy access to the developers involved
in the OSS assessment. For internal validation, the first

two authors discussed with three developers on the com-
pleteness of the attributes. Overall the developers agreed
with the list of attributes.

Iteration 2: We identified the different sources to re-
trieve the required attributes. We used various API End-
points such as GitHub REST API, Stack Exchange REST
API, python libraries such as pydriller, OWASP Depen-
dency Checker, and other OSS solutions to gather the
relevant information. We built an automated solution
that could be triggered with a single command and return
all results from the assessment in the JSON format which
we refer to as Automated tool 1.0 in Figure 1. We discuss
the tool in a focus group with the security expert and
three developers. Our solution used the JSON files gener-
ated output to present the assessment results. The focus
group participants from the case company requested a
feature that pooled all the results on one page.
Iteration 3: The problem identification for this iteration
was the input from the validation in Iteration 2. There-
fore, we created a module that could show the results
from various JSON files generated from our automated
solution on one page which we refer to as Automated
tool 2.0 in Figure 1. The source code, modules used in
the automated solution, and the documentation of the
tool usage are provided online'. We verified the function-
ing of our automated tool by assessing 51 different OSS
projects. Our automated solution generated the expected
results. We presented the automated solution through a
technical demo at the case company. During the techni-
cal demo, we assessed two OSS: one framework and one
application. The results took under a minute to generate.
We finally interviewed 10 developers from three differ-
ent companies (including the case company) to validate
the completeness of the assessment attributes and the
usefulness of the automated tool.

!https://github.com/SaipranavK/oss-recon

Table 1

OSS assessment attributes considered at the case company

Attributes

Metrics and information

Repository information

Repository activeness

Security

Name, description, topics, APl URL, programming languages,
and Github community health percentage.

Age, last updated date, average time to release, number
of open issues, active/recent releases, The commit activity,
commit classification.

Vulnerabilities.

Community interest
Support
Legal requirements

Stars, forks and watchers.
Stack overflow QAs.
License type, permissions, conditions and limitations.

3. Results

This section presents our results from the focus group
study, analysis of commit classification, and preliminary
validation based on practitioners’ perceptions of our au-
tomated solution.

3.1. OSS assessment attributes

Identifying the attributes required in the OSS assessment
to automate the process is important. We discussed the
attributes, the required metrics, and the information to
automate the OSS assessment in the focus group. The
input to the focus group was the collection of attributes
and metrics frequently considered in the literature and
the case company. We selected the attributes and metrics
based on their importance and the ease of understanding
perceived by the case company. The case company pre-
ferred using descriptive representation than numerical
metrics-based representations. Therefore, the case com-
pany did not want information on traditional metrics like
code complexity, coupling, cohesion, and other similar
metrics. This section presents the attributes for assessing
the OSS projects. Table 1 contains the attributes consid-
ered important for assessing OSS projects by the case
company. We also present the metrics and information
gathered to access the attributes (see the second column
in Table 1).

Repository information: The company starts as-

sessing the OSS project by reviewing general repository
information (see details on repository information in Ta-
ble 1).
Repository activeness: In addition to the generic infor-
mation, the company reviews the repository’s activeness
by reviewing the average time it takes to release a new
version, the number of open issues, and the list of active
or recent releases of the OSS project. In addition to the
company’s attributes, we added age, last updated date,
commit activities: the number of deletions and additions,
and commit classification: the number of corrections,
adaptions and perfective activities metrics.

Security: The security expert at the case company
identified security as an important criterion for adopting
OSS projects.

Community interest: In addition, the company re-
views the support availability by considering the number
of questions and answers posted with tags associated
with the OSS project on StackOverflow.

3.2. Commit classification based on
maintenance activities to evaluate
OSS projects

We propose using commit classification, among other
metrics, to evaluate OSS projects. Each new release of
an OSS has additions or deletions compared to the previ-
ous version. These additions and deletions are changes
that introduce new features, fix bugs, or extend the sup-
port of OSS. The changes implemented in a release are
called maintenance activities. The Software Engineering
Body of Knowledge(SWEBOK) and IEEE14764 categorize
software maintenance activities as corrective, adaptive,
perfective, and preventative. Preventative and corrective
activities are corrections, given their purpose to fix latent
and operational faults. Perfective and adaptive activities
are modifications to improve the software.

We visualized the commit activeness based on the
maintenance activities from the inception to the latest re-
lease of the OSS Project. We used the approach proposed
by Levin et al.[5] to classify the maintenance activities.
Figure 2 shows the commit classification of an example
OSS across its different releases. Each release has a distri-
bution of three activities: corrective in red, perfective in
yellow, and adaptive in blue. Preventative activities are
proactive activities, and there are comparatively difficult
to capture for classification. Therefore, our study did not
include classification based on preventative activities.

Figure 2: Commit classification of OSS flask.

Commit Maturi

Corrective and Perfective graph cross over times ==
Corrective and Adaptive graph cross over times == 1

7
0

Perfective and Adaptive graph cross over times == 4

0123
0124
200r1

Figure 3: Commit maturity of Flask repository.

3.2.1. Commit maturity: A novel perspective on
commits classification

We analyzed 51 OSS repositories, including frameworks,
APIs, libraries, databases, and applications. The visu-
alizations on commit classification on 51 open source
repositories used for analysis are provided online’. We
observed the maintenance activities of the repositories

Zhttps://doi.org/10.5281/zenodo.7053198

k3

3 20002
200
201
203
211
212
213
220
222

from their inception to the latest release. The analyzed 51
0SS included very popular repositories with more than
10000 stars, popular repositories with over 5000 stars,
and some growing OSS with over 500 stars on GitHub.
We observed adaptive activity is the least performed
activity in each release for all the OSS repositories. Cor-
rective and perfective activities have the most variance,
i.e., the number of corrective activities may be higher
than perfective in some commits and lower in others.

webanno / webanno

Recent Gommit Activiy

‘Securty - Max CVE Count

Commit Classification

‘ " “-.|.|.| il e |||..| "ln. ol I.I aill.. ||||I|” ‘ |

Figure 4: Sample report from our automated solution for OSS webanno.

When a certain maintenance activity’s frequency goes
down, and another maintenance activity’s frequency goes
up, we call it a crossover.

We counted the number of crossovers for each combi-
nation of the maintenance activities and mapped them
with the type of the OSS. We noticed that all OSS except
the ones of type frameworks had a similar number of
crossovers for each combination of maintenance activi-
ties.

Lehman’s law [10] suggests that a system should con-
tinuously change to remain useful. A change can be mea-
sured by the number of counts of corrective, adaptive,
and perfective requests over a certain period [11]. Any
software project should have good features with mini-
mum bugs and extensive support. Whenever a crossover
happens, it indicates that the focus of the community
shifts from one maintenance activity to another to make
sustainable progress. If the community only focuses on
adding new features, then there may be many bugs mak-
ing the OSS unusable. The same applies when the com-
munity is only resolving bugs in the OSS. It means that
the OSS has many bugs to be addressed and does not
introduce new features to improve its value. The balance
between the maintenance activities should be maintained.
Frameworks are unique in this regard because of the scale
of features and platforms they support. As we saw from
our analysis, it may not be possible to maintain the bal-
ance between the maintenance activities for frameworks.
We hypothesize that the total number of crossovers of
each combination of maintenance activities should ide-
ally be similar to the total number of releases. Crossover

between Adaptive and Corrective activities =

(Ai—1>Ci—1)-(Ai < Cq) (1)

Where (Ai) is a list of Adaptive Activities and (Ci) is a list
of Corrective Activities for each version of the software.
Similarly, we can calculate three types of intersections.
The number of intersections between each pair of activ-
ities, i.e., Adaptive, Corrective, and Perfective, defines
commit maturity.

Commit maturity is the number of times each mainte-
nance activity crosses other maintenance activities over
the project life cycle. It will allow practitioners to see if
the OSS project maintains the balance between the main-
tenance activities. Figure 3 shows the commit maturity
and the number of crossovers for each crossover pair.
Each dot represents an occurrence of a crossover in a
release. In this example, in release 1.0, the corrective ac-
tivities decreased, and the perfective activities increased,
resulting in a crossover. The flask project has a total
crossover count of 21 out of 23 releases. Based on our
hypothesis, it is a good maturity indication, and the pop-
ularity of the flask project is a testimony to it.

The case company requested all the information
needed to evaluate the OSS repository on one page. Fig-
ure 4 provides a screenshot of our solution. The left panel
includes information on the repository, while the mid-
dle panel provides information on the metrics to assess
security, support, and legal requirements. The middle
panel also includes metrics to evaluate repository active-
ness: age, last updated date, the average time to release,
and the number of issues. The commit activity, commit

classification, and commit maturity are represented in
graphical format. Finally, the community’s interest: stars,
forks, and watchers are presented in the top right corner.

3.3. Practitioners perception of the
automated OSS assessment and
commit activeness

Completeness of the evaluation attributes: we aimed
to evaluate if the practitioners found our automated so-
lution useful for automatically assessing OSS. All the
participants agreed that the tool could help in the OSS
assessments. Some of the participants wanted to see
more attributes. For example, one of the interviewees
mentioned "I want to gather more information like its com-
patibility with different operating systems and the tutorials
sources.". Since we designed our solution primarily for use
in the case company;, it is not surprising that interviewees
wished for additional attributes. One solution could be
to create a configurable solution where the stakeholders
can select the important attributes in the assessment.
Ease of understanding the information on OSS as-
sessment attributes: We explained the attributes to the
interviewees, particularly the attributes such as commit
maturity. We asked the interviewees if the attributes
we used were easy to understand. All the participants
unanimously agreed that our attributes were easy to un-
derstand. The interviewees added that "The attributes
were easy to understand. It was simply like a GitHub page
but with more information.". In addition, the interviewees
were positive about the new attributes such as commit
maturity: "The commit evolution and maturity was some-
thing new but were still very easy to understand along with
other attributes.".

Commit classification and maturity: We asked the in-
terviewees if commit classification and commit maturity
are good visualizations to support the OSS adoption de-
cision. All the interviewees agreed that the visualization
was useful once we explained the attributes to them. One
of the interviewees mentioned "Managers would love such
a visualization because it not only is simple to understand
but also will help a non-technical person easily comment
on the OSS community.".

4. Conclusion and future work

We reported initial findings from an empirical study to
support the practitioners in the OSS assessment process.
With the help of the practitioners in the case company,
we first identified the attributes that could be automated
in performing the OSS assessment. Our tool automati-
cally collects and presents the data about the identified
attributes in one place to facilitate the practitioners in per-
forming the OSS assessment. We also investigated how

commit classification based on different maintenance ac-
tivities can be used in OSS assessment. We introduce
the use of commit maturity to see if an OSS project is
balanced in feature enhancements and bug fixes or overly
focused on only one type of maintenance activity (e.g.,
only fixing bugs in case of corrective maintenance). We
used our tool to analyze 51 OSS projects. We also shared
the results with the company practitioners, who found
our tool helpful in performing the OSS assessments. In
the future, we plan to study commit maturity as a metric
to assess OSS maintainability through extensive valida-
tion and application and standardize it for wider adoption.
Additionally, we will continue to enhance our automated
0SS assessment tool by improving the range of supported
attributes and desired metric outputs. We also wish to
employ repository mining techniques to identify and cor-
relate community activities with the OSS engagement
and growth trends to comment on its popularity and sup-
port. Another interesting direction of research would be
correlating maintenance activities for an OSS with its tra-
ditional maintainability metrics that can help evaluate the
relationship between maintainability and maintenance
activities, if any, and thus result in more branching paths
of research in software metrics and the maintainability
domain.

Acknowledgment

The Knowledge Foundation supports this work through
the OSIR project (reference number 20190081) at Blekinge
Institute of Technology, Sweden.

References

[1] G. Robles, 1. Steinmacher, P. Adams, C. Treude,
Twenty years of open source software: From skepti-
cism to mainstream, IEEE Software 36 (2019) 12-15.
doi:10.1109/MS.2019.2933672.

V. Lenarduzzi, D. Taibi, D. Tosi, L. Lavazza,
S. Morasca, Open source software evaluation, selec-
tion, and adoption: a systematic literature review,
in: 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA),
IEEE, 2020, pp. 437-444.

N. Yilmaz, A. Kolukisa Tarhan, Quality evaluation
models or frameworks for open source software: A
systematic literature review, Journal of Software:
Evolution and Process (2022) e2458.

X. Li, S. Moreschini, Z. Zhang, D. Taibi, Exploring
factors and metrics to select open source software
components for integration: An empirical study,
Journal of Systems and Software 188 (2022) 111255.
S. Levin, A. Yehudai, Boosting automatic commit
classification into maintenance activities by utiliz-

http://dx.doi.org/10.1109/MS.2019.2933672

(6]

(7]

(8]

ing source code changes, in: Proceedings of the
13th International Conference on Predictive Models
and Data Analytics in Software Engineering, 2017,
pp. 97-106.

A. Hindle, D. M. German, M. W. Godfrey, R. C.
Holt, Automatic classication of large changes into
maintenance categories, in: 2009 IEEE 17th Inter-
national Conference on Program Comprehension,
IEEE, 2009, pp. 30-39.

S. Gharbi, M. W. Mkaouer, I. Jenhani, M. B. Mes-
saoud, On the classification of software change
messages using multi-label active learning, in: Pro-
ceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, 2019, pp. 1760-1767.

L. Ghadhab, I. Jenhani, M. W. Mkaouer, M. B. Mes-
saoud, Augmenting commit classification by using
fine-grained source code changes and a pre-trained
deep neural language model, Information and Soft-
ware Technology 135 (2021) 106566.

R. J. Wieringa, Design science methodology for
information systems and software engineering,
Springer, 2014.

M. M. Lehman, Programs, life cycles, and laws of
software evolution, Proceedings of the IEEE 68
(1980) 1060-1076.

E. J. Barry, C. F. Kemerer, S. A. Slaughter, How
software process automation affects software evo-
lution: a longitudinal empirical analysis, Journal
of Software Maintenance and Evolution: Research
and Practice 19 (2007) 1-31.

	1 Introduction
	2 Research methodology
	3 Results
	3.1 OSS assessment attributes
	3.2 Commit classification based on maintenance activities to evaluate OSS projects
	3.2.1 Commit maturity: A novel perspective on commits classification

	3.3 Practitioners perception of the automated OSS assessment and commit activeness

	4 Conclusion and future work

