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Abstract
Today, machine learning (ML) is widely used in industry to provide the core functionality of production systems. However, it
is practically always used in production systems as part of a larger end-to-end software system that is made up of several other
components in addition to the ML model. Due to production demand and time constraints, automated software engineering
practices are highly applicable. The increased use of automated ML software engineering practices in industries such as
manufacturing and utilities requires an automated Quality Assurance (QA) approach as an integral part of ML software. Here,
QA helps reduce risk by offering an objective perspective on the software task. Although conventional software engineering
has automated tools for QA data analysis for data-driven ML, the use of QA practices for ML in operation (MLOps) is lacking.
This paper examines the QA challenges that arise in industrial MLOps and conceptualizes modular strategies to deal with
data integrity and Data Quality (DQ). The paper is accompanied by real industrial use-cases from industrial partners. The
paper also presents several challenges that may serve as a basis for future studies.
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1. Introduction
Traditionally, the software development life cycle in-
cludes quality assurance (QA) practices and automated
tools to assess the quality of the software system. Due
to the increasing functionalities of recent developments
in cyber-physical systems in Industry 4.0 and human-
centered development in Industry 5.0, ML programs that
have core functionality are becoming increasingly ML
software systems. ML software development in opera-
tion is an ongoing development in automated software
engineering that sets up automated pipelines for contin-
uous training and deployment of ML software. Recent
advances toward a continuous development cycle of ML
software are known as MLOps [1] or AIOps [2]. An
MLOps pipeline, for example, in Amazon Web Services
(AWS) [3] and Microsoft Azure [4], generally consists of
ML software development and automated deployment
and monitoring (or Ops). Then, trained ML software is
deployed for real-time prediction and classification tasks
and an action. Inspired by such architectures, we con-
ceptualize an infographic diagram of the overview of the
MLOps architecture in Figure 1, which shows the contin-
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uous and automated development of ML software. Such
ML software, which does not follow the conventional
way of authoring software code, is a black box [5] and is
data-driven [6]. Thus, shifting the requirements for QA,
which previously relied on exposure to software code
for Software Quality Assurance (SQA) and Data Quality
(DQ) professionals and tools for data QA [7].

Data and SQA ensure compliance with the level of ac-
curacy, data security, and performance scripted in an or-
ganization’s QA policies and enforced by the SQA plan in
classical software development in operation (DevOps) [8].
Such a QA plan in MLOps requires robust software test-
ing approaches and data QA in a software development
pipeline. Recent developments in SQA of ML are enabled
by methods such as domain-specific software testing [9]
and mutation testing [10] that attempt to detect faults in
ML software by systematically modifying the test data.
When it comes to data QA, data integrity, trustworthiness,
and DQ, they are measured by individual data dimensions
such as timeliness, uniqueness, relevancy, and location
intelligence [11]. However, the dimensions for a given
software pipeline are pre-determined for a given appli-
cation, and we discovered a lack of implementation for
industrial MLOps in our search.

This paper attempts to address the following research
questions (RQs):

• RQ 1: What are the industrial QA challenges
when conventional software testing and QA
are not viable for MLOps?
We collaborated with partners in the manufactur-
ing and utilities sector to discover and outline the
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Figure 1: A high-level infographic overview of QA in MLOps architecture, inspired from AWS [3] and Azure [4] architectures.
(The straight lines in the figure represent data flow and the dashed lines represent feedback.)

QA challenges in industrial MLOps for real Use
Case (UC)s.

• RQ 2: What approach can we take when deal-
ing with QA in industrial MLOps?
We propose concept for a modular approach to
data QA, where each component of data QA is
an ML software in the industrial MLOps archi-
tecture mentioned in Figure 1, with automated
training, selection and deployment of data dimen-
sions. Furthermore, we conceptualize a practical
and applicable MLOps architecture to enable QA
and the continuous delivery of ML software.

2. MLOps software architecture
and QA challenges

2.1. Architecture
Network architecture has undergone significant advances
in recent years [12, 13], making it possible for modern
industries and factories of the future to offer a back-
bone for MLOps setup, minimize latency, and enable
time-sensitive hard and soft deadline tasks. As a result,
we have identified three network architectures, each of
which depends on how far Internet of Things (IoT) data
travel for ML software tasks. The architecture categories
are as follows:

• End-to-end on-device processing: The first
is an end-to-end software pipeline where data
acquisition, QA, ML software processing and all
actions occur on the same device. These are rel-
atively lightweight, usually a single action tiny
ML task. Even if the ML software, in this case,
is initially delivered externally, adaptation and
retraining of the model occur on the fly. Due to
the lack of processing power and devices running
on a battery, QA is challenging in this situation.

• Data processing on edge and fog nodes: In
contrast to the previous design, this architecture
is built on local networks to handle computational
operations on edge or fog nodes. Although this
architecture has increased latency compared to
on-device processing, this has the advantage of
performing data analytics and action using infor-
mation from multiple sources in the network.

• IoT-edge/fog-cloud architecture: The third ar-
chitecture utilizes cloud services such as Amazon
Web Services, Google Cloud, andMicrosoft Azure,
in addition to processing on-device, edge, and fog.
This architecture has the highest latency among
others, but it has the ability to execute collective
analytics from all connected devices and histor-
ical data and is not resource constrained. Addi-
tionally, this enables centralized, decentralized,
and federated ML applications.

Although the architecture categories differ for each
application, they combine to form a hybrid network ar-
chitecture for a suite of automated ML applications. Fur-
thermore, because the hardware resources and time con-
straints available on the IoT device, the edge or fog net-
work, and the cloud are vastly different, this creates a
challenge for QA for industrial MLOps.

2.2. QA Challenges
Working in collaboration with industrial partners, we
have identified the following challenges in relation to QA
that are applicable to any architecture:

• Modelling challenges: External factors such
as anomaly and noise deviate from the sensor
data or signals from its ideal measurements. Fur-
thermore, QA for ML must automatically accom-
modate class imbalance and drifts [14], where
the current instance of the containerized ML ap-
plication has observed changes in the test data



compared to the data on which it was trained.
There is a lack of robust AutoML strategies and
algorithms for such external factors in automated
QA.

• Resource, time, and scalability: While some in-
dustrial processes are sparse, others are frequent
enough to produce big data. For big data, it is
challenging to perform the necessary data QA
stages in a timely manner. In addition, indus-
tries scale up frequently, and system integration
of new hardware may differ from existing ma-
chinery. The rapid adoption of new hardware in
existing QA processes poses a scalability issue.

• Architectural constraints: Industrial MLOps
architectures have network components, each
with its capabilities and limitations. Network
components, such as routers and switches, have
capabilities such as the number of data packets
they can handle at a given time, network schedul-
ing, and routing. Additionally, these components
are subject to network attacks, such as distributed
denial of service, for example [15]. This con-
tributes to the total latency that a data packet
needs to traverse from IoT sensors to QA mi-
croservices running on edge/fog and is a chal-
lenge for a robust and scalable architecture.

• Lack of production data in manufacturing
processes: Some manufacturing operations are
time-intensive or infrequent/sparse, typically oc-
curring on average once or twice a day. One such
example is electroslag remelting in the steel in-
dustries [16]. This indicates that such operations
will have a few hundred manufacturing events
over the course of a year, and the lack of data is
a challenge for the ML software. Although data
augmentation or a principled approach to gener-
ating synthetic data has been used to fill the gaps,
it poses a QA challenge to strategically split the
limited ground truth data for robust training and
testing [17].

• Compliance with regulatory, export control,
and ISO standards: Data is often subject to reg-
ulatory requirements from government entities.
For example, with medical equipment that re-
quires additional regulatory requirements for in-
creased safety, user data is subject to the General
Data Protection Regulation (GDPR1) in Europe
and defense data are subject to export control.
These regulations are local to a region and are
not universally applicable. In automated and con-
tinuous ML software development, adhering to
such regional regulations is challenging for auto-
mated QA.

1https://gdpr-info.eu/

3. Modular QA for industrial
MLOps

To accommodate both lightweight and cloud-based ML
software pipelines for industrial applications, we de-
signed a modular QA solution. The modular architecture
is predicated on the notion that every data QA step needs
its unique collection of dimensions. And the set of data
QA dimensions for each data QA step is determined by
the answer to the following question in an organization’s
SQA plan: What are the automated steps taken as a result
of data QA?

3.1. ML software architecture
Knowledge of automated steps or actions serves as the
foundation for QA strategy. To make this behavior pos-
sible, we divided the overall architecture of QA for ML
into three phases: (i) definition and formulation, (ii) di-
mension selection, and (iii) QA model training, each an-
swering the following questions:

• Definition and formulation: How does an orga-
nization define and formulate QA dimensions such
as trustworthiness, relevancy, and privacy?

• Dimension selection: What minimum QA di-
mensions are necessary to achieve the QA actions?

• QA model training: How the selected QA dimen-
sions can be trained and weighed automatically in
industrial MLOps?

3.1.1. Definition and formulation

In the first stage, given the objectives and QA policies of
an organization, formal definitions and mathematical for-
mulations need to be developed for each QA dimension.
While the rest of the QA for the ML strategy is automated,
all QA dimensions require a definition. The definition
changes as the organization’s policy shifts. Although
some QA dimensions are universal, others depend on the
objectives of a company. Sensor noise, for example, is
an ubiquitous component that affects all streaming data
from industrial IoT sensors. Other QA indicators, such
as contextual DQ and data integrity depend on the QA
strategy of the organization. Furthermore, for MLOps,
it is also important to define QA actions. For example,
a QA action is to identify whether the streaming data
is relatively clean of noise and anomalies with intrinsic
DQ metrics and applicable to current ML software in
production with contextual DQ metrics.

3.1.2. Dimension selection

Following the definition of all dimensions of QA, the next
step is to determine which dimensions are relevant to a
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Figure 2: Robustness testing of each parent class in the model
training phase.

given set of QA actions. The QA dimensions are then
arranged in a connected graph structure with parent-
child relationships. For example, in the literature, these
parent-child relationships are structured as follows: data
integrity (parent) with DQ, data integration, data enrich-
ment, and location intelligence (children). Data complete-
ness, timeliness, and relevancy (children) are aspects of
DQ (parent), further classified into intrinsic and contex-
tual subcategories. In QA for ML, the selection of dimen-
sions is achieved by first calculating all dimensions of DQ
from the test data and then minimizing the number of
child nodes required. We have combined dimension se-
lection and model training, which can be done iteratively
as one process.

3.1.3. QA model training

The final step before deployment is QA for the ML model
training. An approach to this problem is to iteratively
perform dimension selection and model training, where
the QA for ML model is trained with dimensions fixed,
and dimension selection is performed to promote spar-
sity in the QA for ML graph while keeping the model
fixed. Both steps are performed iteratively until the QA
for ML model converges. For each parent in the model
training process, robustness testing, a software testing
methodology that examines the boundary conditions of
a software [18], is carried out with the test data for a
binary pass/fail score, as shown in Figure 2.

The outcomes of each parent’s robustness testing are
then considered for the desired automated actions, al-
lowing action-based QA for ML. For example, a score of
”pass” for ”intrinsic DQ” and ”fail” for ”contextual DQ”
means that the streaming data are relatively clean and
usable without the need of data cleaning (i.e., less noise,
anomaly-free, and without NaN/missing values) but is
not relevant for the current ML software in production.
Still, it might be relevant for other ML software. In this

case, with QA actions, the streaming data are set up to
be sent to the QA for ML strategy in a different software
pipeline or offline storage for future study.

3.2. Real-time QA classification and
action

After training and testing, the next stage is to deploy
QA for ML model using automated software deployment
methods. Docker2 and kubernetes3 are common tools
for the deployment of ML software in a containerized
manner. One such roadmap is to use Python scripts for
model training and then generate a Docker container.
The Docker container is then pushed to the Docker Hub,
where it is then pulled to the Kubernetes edge nodes for
real-time processing of the streaming data and action.

To support industrial UCs and QA in MLOps, we de-
signed an applicable and practical IoT-edge-cloud archi-
tecture for the continuous delivery of ML software. UCs
in industrial MLOps require support for two types of data
transmission across the network: application and mon-
itoring data. The incoming streams of IoT sensor data
necessary for routine industrial applications are known
as application data. The network data reflect the mon-
itoring information, such as CPU and memory use in
real time. To accommodate both types of data in the ar-
chitecture, we designed the architecture in figure 3 that
handles both real-time and offline data by combining
microservices on the edge node with cloud services for
ML training and offline applications. The architecture
supports the following:

• Automated ML model retraining: ML soft-
ware, including AutoML software, once trained
in ‘cloud services’ is automatically deployed to
the edge as an EdgeAI software on the ‘edge node’.
Once deployed for the first time, data flows from
the network to the delivery and collection mi-
croservices to the cloud API layer. Once model
degradation has occurred, the ML software is re-
trained or adapted in the cloud. A new version
of the ML software is automatically deployed on
the edge node.

• Real-time and automated decision and ac-
tion: Data transfer from the network to the deliv-
ery and collection microservices to the microser-
vices for UCs. Microservices for UCs are then
sent to Action Services to execute the appropri-
ate action. The action signal is sent back to the
network.

• Automated QA assessment: Similar to real-
time and automated decision and action, data

2https://www.docker.com/
3https://kubernetes.io/
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Figure 3: An architectural view of the proposed MLOps utilizing IoT, edge, and cloud for continuous ML software and QA for
ML model training, testing, deployment, and real-time analytics and action.

flows from the network to microservice deliv-
ery and collection to microservices for UCs and
Action Services. The microservices for UCs here
are containers that evaluate the quality of the
incoming data. Furthermore, the quality of the
containerized ML software for model degrada-
tion. Further, the action signal from the action
microservice is sent to the Cloud API layer for
the execution of the appropriate cloud service(s).

• Message forwarding for cloud services: In
this scenario, for long-term storage, the message
or data are forwarded from the network to the
delivery and collection microservice to the cloud
API layer for persistent storage.

4. Future directions
The modular QA and the MLOps architecture collectively
enable real-time execution of real-time ML and action
supported by data and SQA processes. However, research
in this area is still in its infancy, and we have identified
the following vectors for future direction:

• Software testing: The principles of Chaos Engi-
neering state that systems react differently based
on surroundings and traffic patterns. This is true
for software, and automated software engineering
and software testing procedures, such as shadow
testing, allow the software to be analyzed in terms
of how it performs in different environments. The
log data of the software in various environments

is then analyzed. The use of SQA opens the pos-
sibility of potential research to automate shadow
testing and other automated software tests. An
industrial application where automated software
testing with QA is useful is in compressed air.
Compressing air is an energy-intensive process
that is used in industries to remove dust and cool-
ing [19]. In addition to wasting air/gas and in-
creasing operational expenses, leaks can also be a
point of entry for contaminants to enter the sys-
tem. Therefore, the process must be continuously
monitored for leaks to reduce overall energy and
operational cost. Streaming data in compressed
air are often subject to anomaly and noisy mea-
surements. Monitoring and predicting future air
pressure readings based on historical data is one
such UC.

• Automated regularization, weights, and pa-
rameter estimation of ML software: ML mod-
els in ML software often need to be fine-tuned
with regularization, weights, and other parame-
ters to obtain a more accurate convergence. Fur-
thermore, ML models can get caught in local min-
ima, and one of the best practices is to train mul-
tiple times to use the trained model with the op-
timum performance. In a machine learning soft-
ware configuration with continuous training and
automatic deployment, it is not always possible to
perform this repeated training and fine tuning. In
modern implementations, systematic parameter
search looks for the best match among a prede-



fined set of parameters by the user. Thus, there is
potential for automated and principled parameter
optimization.

• Automated ML software container fault de-
tection: Failures can occur in containerized ML
software running on edge and fog nodes. One of
these flaws is that containers can suddenly shut
down in the middle of a task. This can be caused
by a variety of reasons, including an external at-
tack. Currently, platforms such as Kubernetes
provide a minimal container monitoring configu-
ration based on the input of a network adminis-
trator [20]. With the QA for ML, it is possible to
implement automatic monitoring to discover and
classify faults.

• Drift detection and adaptation: Streaming
data is often subject to data and concept drift.
The standard practice in this case is to retrain an
ML software periodically or whenever a drift is
found. An adaptation technique that retrains and
redistributes weights on the fly without having
to produce a new software version is a future di-
rection in this research. An example of this is
in the utilities sector with electricity data from
smart meters. To manage electricity supply and
demand, data from smart meters from individual
and business users are used to estimate load fore-
casting and peak usage. When users install their
solar panels or buy an electric vehicle, their nor-
mal pattern of electricity demand changes and
drift occurs. As a result, with the help of QA for
ML, drift adaptation can be implemented.
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