
Java2Pseudo: Java to Pseudo Code Translator a Pilot
Study
Heetae Cho1, Seonah Lee2

1 Department of AI Convergence Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do, Republic
of Korea
2 Department of Aerospace and Software Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do,
Republic of Korea

Abstract
Novice programmers may not quickly understand a new or unfamiliar programming language. In order to help
them understand the source code, existing studies have proposed approaches that translate a programming language
into a pseudo-code. However, to the best of our knowledge, no studies have proposed translating Java, one of the
well-known object-oriented programming languages, to pseudo-code. Many novice programmers learn the Java
language because it is relatively less complicated than C++ and versatile in terms of practical use. Furthermore, the
educational curriculum includes a Java course frequently. In this paper, we propose an approach to translate Java into
pseudo-code at the code fragment level. We expect the proposed approach could help novice programmers to learn
the Java language with the translated pseudo-code.

Keywords
Java, Program Comprehension, Pseudo-code

1. Introduction
A pseudo-code presents the logic of an algorithm
in a natural language imitating a programming
language. The pseudo-code forms of natural lan-
guage are more readable and understandable than
interpreting the programming language directly.
Therefore, novice programmers could easily un-
derstand the meaning of the actual source code
through pseudo-code.

For this reason, several studies have proposed
approaches to translating source code to pseudo-
code [1, 2, 3, 4, 5, 6, 7, 8]. However, no studies
were translating Java source code to pseudo-code.
Furthermore, most studies used machine learning
techniques [1, 2, 3, 4, 6, 8], which require much
effort to gather pseudo-code data corresponding to
source code.

Although machine learning techniques are
strong forward, we hypothesize the programming
language is formal language enough to generate
pseudo-code using rules like a compiler process.

1st International Workshop on Intelligent Software Engineering,
December 06, 2022, Busan, Republic of Korea
$ cht3205@gnu.ac.kr (H. Cho); saleese@gnu.ac.kr (S. Lee)

© 2022 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

CEUR Workshop Proceedings (CEUR-
WS.org)

In this paper, we propose a translation approach
to line-by-line translating Java source code to
pseudo-code using context for matching code pat-
terns and a template for translating matched pat-
terns to pseudo-code. This approach does not need
the effort to gather data like machine learning tech-
niques.

This paper is organized as follows. Section 2
describes related works for our study. Section 3
introduces our approach. Section 4 demonstrates
the demo results. Section 5 describes the discussion.
Finally, section 6 concludes this paper.

2. Related Works
While existing studies translate source code to
pseudo-code, most studies [1, 2, 3, 4, 6, 8] tar-
geted Python source code. These studies also used
machine-learning techniques.

Oda et al.[1] used statistical machine translation
techniques that parse-based machine translation
and tree-to-string machine translation to generate
pseudo-code from python source code. Xu et al.[2]
and Alhefdhi et al.[6] used sequence-to-sequence
and attention approaches. They encode python
source code with LSTM encoder and decode it to
pseudo-code with LSTM decoder. Yang et al.[3]

mailto:cht3205@gnu.ac.kr
mailto:saleese@gnu.ac.kr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
http://ceur-ws.org

Figure 1: Pre-defined Symbols Figure 2: Pre-defined Patters Figure 3: Pre-defined Templates

used CNN and transformer architecture[9]. They
first extract code features using the CNN model.
Then the extracted features are fed to the trans-
former architecture to generate pseudo-code. Gad
et al.[4], and Alokla et al.[8] also used transformer
architecture. They first tokenize source code with
their own rules, and vectorize them and apply posi-
tion embedding. Then the embedded source codes
are fed to the transformer architecture to generate
pseudo-code.

These studies treated source code as natural lan-
guage. However, their approaches have a potential
shortcoming in that such an approach regards dis-
tinct contexts despite the same ones with different
identifiers. For instance, from a pseudo-code per-
spective, the contexts "int a" and "int b" are equally
treated as variable declarations. Treated as natu-
ral language, however, different vectors are created
because of the different words ’a’ and ’b’.

Two study used contexts and templates similar
to our study [5, 7]. However, they target JavaScript
and Python which has different contexts of a code
line to Java.

3. Approach
Our approach, inspired by a compiler, to translating
Java source code to pseudo-code is as follows:

• step-1) Remove all comments and blank lines
and tokenizes the source code

• step-2) Changes code tokens to pre-defined
symbols and keeps the original code tokens
of each symbol

• step-3) Changes the symbols to specific sym-
bols by checking the original tokens

• step-4) Finds patterns line-by-line from pre-
defined patterns through the longest symbol

sequence-first match
• step-5) Generates pseudo-code of the

matched patterns through pre-defined
pseudo-code template

Where the samples of pre-defined symbols, pat-
terns, and templates are shown in Figures 1 - 3 re-
spectively. First, the pre-defined symbols, as shown
in Figure 1, represent the roles of the code tokens
and assign an ID for each token. Second, the pat-
terns shown in Figure 2 express a unique sequence
of symbols and IDs. Finally, the templates, as shown
in Figure 3, describe each pattern.

4. Demonstration

4.1. Approach Demonstration
To demonstrate our approach, we first depict fol-
lowing the steps. For step 1, as shown in Figure
4, we remove comments and blank lines from the
entered source code and tokenize them. For step 2,
shown in Figure 5, we replace all the code tokens
with pre-defined symbols. For step 3, we replace
the symbols with unique IDs, as shown in Figure
6. For step 4, as shown in Figure 7, we use the pre-
defined patterns to find the longest pattern from
left to right in the symbol ID sequence, and if found,
iteratively search from the following ID. If the pat-
tern is not found, leave the symbol ID and search
again from the following ID. Finally, as shown in
Figure 8, we generate the pseudo-code with the
pre-defined templates.

4.2. Prototype
We implemented a prototype of our translation ap-
proach as a web. Figures 9-11 show the demonstra-
tion of our approach. Figure 9 shows the textarea

Figure 4: Step-1) Tokenizes the source code

Figure 5: Step-2) Changes code tokens to pre-defined symbols

Figure 6: Step-3) Changes the symbols to unique IDs

Figure 7: Step-4) Finds patterns with the pre-defined patterns

Figure 8: Step-5) Generates the pseudo-code with the pre-defined templates

Figure 9: Step-1) Tokenizes the source code

Figure 10: Step-2) Changes code tokens to pre-defined symbols

Figure 11: Step-3) Changes the symbols to unique IDs

for inputting the Java source code. When click-
ing the translate button, the inputted source code
changes to symbolic code through the approach’s
steps 1 to 4. For example, source code line “Scan-
ner scan = new Scanner (System.in);” is changed
to “##Identifier## ##Identifier## = ##Keyword##
##Identifier## (##Identifier## . ##Identifier ##)
;”, as shown in Figure 10. Then, the symbols are
transformed into specific symbols. After that, By
using the longest symbol sequence-first match, our
approach replaces the symbolic code with symbol

sequence patterns based on pre-defined symbol
patterns. For example, the symbolic code above
changes to [’(id id =)’, ’(keyword id)’, ’((id . id)’ ’(
))’] which as pre-defined symbol sequence. Finally,
pseudo-code generates by extracting pseudo-code
for each pattern from a pre-defined pseudo-code
template, as shown in figure 11. For example, the
(id id =) changed to “create Scanner type object
variable input and assign with”, the (keyword id)
changed to “Scanner object”, and (id . id) changed
to “with parameters (System . in)”.

Figure 12: Ratio of the source code lines

5. Discussion
To check the feasibility of our approach, we ana-
lyzed the Java source code to create the symbol
sequence patterns and the pseudo-code template.
We gathered 10 Apache projects (i.e., Flink, Beam,
Hbase, Cassandra, Tomcat, Storm, Rocketmq, Jme-
ter, Zookeeper, Zeppelin) from Github. The projects
contained total of 37,679 Java code files, written
7,485,340 lines, including comments, blanks, etc.

We got around 3,251,000 SLOC for those lines by
removing comments and blank lines and merging
multi-lines into single lines. After that, we got
around 210,000 symbolic code lines by tokenizing
the source code lines and changing tokens to
symbols. Then, we checked the possibility of using
the regular expression to distinguish the role of the
symbolic code line. As a result, as shown in Figure
12, we identified around 60% of the roles of source
code lines (around 1.6 million lines) with only 14
regular expressions for symbolic code lines. The
top 5 kinds of code line roles are as follows:

- method call lines (17.1%) (e.g., method();)
- package/import lines (16.0%) (e.g., import
java.util.*;)
- variable definition lines (7.6%) (e.g., int a=1; except
object)
- method definition lines (6.6%) (e.g., int method ())
- if or else-if lines (5.5%)

This result shows that the specific symbol se-
quences can identify the roles of each line.

6. Conclusion
In this paper, we analyzed contexts of the java
source code line and implemented a translation ap-
proach from Java source code to pseudo-code with
symbolic code.

This prototype has several threats and limita-
tions. First, the source code tokenizer implemen-
tation could be incorrect because the language we
used for our implementation, Python, cannot dis-
tinguish escape sequence \” as separated characters
‘ \’ and ‘ ” ’ while reading files. Second, complicated
or missing statements cannot translate appropri-
ately since not all id sequence patterns have been
checked. Finally, many keywords appear as they
are because the scope of the pseudo-code is not
clearly defined.

To overcome the threats and limitations, we will
develop using another programming language and
adopt the automata theory for checking the pat-
terns.

References
[1] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti,

T. Toda, S. Nakamura, Learning to generate
pseudo-code from source code using statistical
machine translation, in: 2015 30th IEEE/ACM
International Conference on Automated Soft-
ware Engineering (ASE), IEEE, 2015, pp. 574–
584.

[2] S. Xu, Y. Xiong, Automatic generation of pseu-
docode with attention seq2seq model, in: 2018
25th Asia-Pacific Software Engineering Con-
ference (APSEC), IEEE, 2018, pp. 711–712.

[3] G. Yang, Y. Zhou, X. Chen, C. Yu, Fine-grained
pseudo-code generation method via code fea-
ture extraction and transformer, in: 2021 28th
Asia-Pacific Software Engineering Conference
(APSEC), IEEE, 2021, pp. 213–222.

[4] W. Gad, A. Alokla, W. Nazih, M. Aref, A. Salem,
Dlbt: deep learning-based transformer to gen-
erate pseudo-code from source code, Cmc-
Comput. Mater. Contin 70 (2022) 3117–3132.

[5] A. Barmpoutis, Learning programming lan-
guages as shortcuts to natural language token
replacements, in: Proceedings of the 18th Koli
Calling International Conference on Comput-
ing Education Research, 2018, pp. 1–10.

[6] A. Alhefdhi, H. K. Dam, H. Hata, A. Ghose,
Generating pseudo-code from source code us-
ing deep learning, in: 2018 25th Australasian
Software Engineering Conference (ASWEC),
IEEE, 2018, pp. 21–25.

[7] S. Rai, R. C. Belwal, A. Gupta, Is the corpus
ready for machine translation? a case study
with python to pseudo-code corpus, Arabian
Journal for Science and Engineering (2022) 1–
14.

[8] A. Alokla, W. Gad, W. Nazih, M. Aref, A.-
B. Salem, Retrieval-based transformer pseu-
docode generation, Mathematics 10 (2022) 604.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin,
Attention is all you need, Advances in neural
information processing systems 30 (2017).

	1 Introduction
	2 Related Works
	3 Approach
	4 Demonstration
	4.1 Approach Demonstration
	4.2 Prototype

	5 Discussion
	6 Conclusion

