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Abstract  
Issue reports are useful resources for developing open-source software and continuously 
maintaining software products. However, it is not easy to systematically classify the issue 
reports accumulated hundreds of cases a day. To this end, researchers have studied how to 
classify issue reports automatically. However, these approaches are limited to applying a text-
oriented classification method. In this paper, we apply a multi-modal model-based classification 
method, which has shown great performance improvement in many fields. We use images 
attached to an issue report to improve the performance of issue report classification. To evaluate 
our approach, we conduct an experiment, where we compare the performance of a text-based 
single-modal model and that of a text and image-based multi-modal model. The experimental 
results show that the multi-modal method yields 2.1% higher classification f1-score than that 
of the single-modal method. Based on the experimental results, we will continue our further 
exploration of the multi-modal model, by considering the characteristics of the issue report and 
various heterogeneous outputs. 
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1. Introduction 

Today, when developing and continuously 
maintaining open-source software, open-source 
contributors use issue management systems as a 
way to quickly reflect users' inconveniences and 
improvements of the software systems. 
Stakeholders report bugs, functional 
improvements, and other requests they find while 
using the software as issues.  Developers refer to 
the issue report to discuss and improve the 
software. In the case of active open-source 
projects, these issue reports are generated and 
accumulated by hundreds of cases per day. In such 
a situation, it is not easy to systematically classify 
and manage issues. 

Researchers have proposed automatically 
classifying issue reports to manage them more 
systematically [1,2,3,4,6,7]. Recently, researchers 
began to adopt deep learning techniques to 
classify issue reports. For instance, Cho et al. [8] 
used CNN and RNN deep learning techniques to 
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classify issue reports. However, existing 
approaches obtain text data such as titles and body 
contents of issue reports as inputs for training their 
models. Those approaches do not use various 
kinds of information that issue reports include. 

Meanwhile, in the area of deep learning 
techniques, multi-modal deep learning models 
using two or more modalities have shown 
significant performance improvement in many 
fields [9,10,11,12,13]. This shows that we could 
achieve better performance by overcoming the 
limitations of using only single-modal data.  

We observed that issue reports often contain 
relevant images. We, therefore, decided to apply 
a multi-modal model-based classification method 
to classify issue reports. Our proposed method 
classifies issue reports by combining the 
representation of text data and image data of issue 
reports based on the method of Antol, Stanislaw, 
et al. [9]. We also conducted an experiment to see 
whether our approach could achieve higher 
performance. To evaluate our multi-modal model-
based approach, we compare the performance of 



our approach with that of the CNN-based model 
method of a single-modal model, Cho et al. [8]. 
For this, we collected the issue reports of Vscode, 
a major project of GitHub.  We finally collected 
17,500 issue reports with one or more images. To 
resolve data imbalance issues, we downsampled 
issue reports and used 8,500 issue reports. As a 
result of the experiment, our approach showed an 
improved f1-score of about 2.1%, compared to the 
classification model of the existing method [8]. 

The paper is organized as follows. Section 2 
introduces related works. Section 3 explains the 
experimental setup. Section 4 presents the 
experimental results. Section 5 discusses the 
experimental results and Section 6 concludes. 

2. Related work 

The related studies to ours are the studies that 
classified the issue reports of open-source projects 
and the studies that applied multi-modal deep 
learning. 

First, there are attempts to conduct the binary 
classification of issue reports into bugs/non-bugs. 
For example, Pandey et al. [1] extracted a 
summary from an issue report and classified the 
issue report as a bug/non-bug using Naive Bayes 
and SVM. In addition, Zhu et al. [2] used kNN to 
determine whether the existing label is correct, 
and classified an issue report as bug/non-bug 
using Attention-based Bi-directional LSTM. As 
the next multi-class classification, Kallis et al. [5] 
used FastText to classify an issue report into Bug, 
Enhancement, or Question. Kochhar et al. [6] 
classified issue reports into 13 categories 
including BUG, using SVM. Also, Fazayeli et al. 
[7] tried to classify issue reports into five 
categories: unclear, question, up for grabs, bug, 
and others, and used the SMO machine learning 
algorithm. Recently, Cho et al. [8] proposed a 
method of classifying issue reports into features 
of the software using a user manual with CNN and 
RNN (i.e. LSTM) deep learning techniques. In 
this paper, we conduct a comparative experiment 
with the CNN model of Cho et al. [8] as the 
baseline. 

 Researchers widely used multi-modal deep 
learning models in the fields of Action 
Recognition, Image Generation, Image 
Captioning, and Visual Question Answering 
(VQA). Antol, Stanislaw, et al. [9] showed good 
performance of a multi-modal model in VQA 
work using a model with two channels, image and 
text(question). Antol, Stanislaw, et al. [9] used 

VGGNet for image channels and LSTM for text 
channels to embed each data. Their proposed 
approach combines features through element-
wise multiplication to transform the data into a 
common space to make a classification. Although 
there are more effective methods such as MUTAN 
[13], MCB [11], and MLB [12] as data combining 
methods, this work uses element-wise 
multiplexing from Antol, Stanislaw, et al. [9] to 
reduce model operations and simplify 
implementation. That is, we experiment with 
whether a multi-modal deep learning model 
extracting text and image data from issue reports 
can improve the performance of issue 
classification, and we report the results. 

3. Experimental set-up 
3.1. Dataset 

Table 1 
Number of issues for labels 

DataSet 
Label 

Total 
Bug Feature 

Total 13,507 
(77.2%) 

3,988 
(22.8%) 17,495 

DownSampling 4,500 
(53%) 

3,988 
(47%) 8,488 

 

We used the open-source project Vscode, a 
major project of GitHub, in our experiment. 
Among the issue reports of Vscode, we collected 
issue reports with more than one image. We 
collected the issue reports that were labeled ‘bug’ 
or ‘feature’. The total number of collected data 
was 17,500, and we used the first image that is 
most closely related to the issue among the images 
of each data. Figure 1 shows the ratio of the 
collected issue data for label. Finally, we used 
about 8,500 issue reports through the 
DownSampling method to resolve the imbalance 
of data with the different numbers of data for each 
label and to speed up the experiment by reducing 
the model size. We used all of the 'Feature' label 
data, which are relatively little data, and for the 

Figure 1: Ratio of issues for labels 



'Bug' label data used an appropriate amount of 
data from the latest data. So, we used all 'feature' 
label data and 4,500 'bug' label data from the latest 
data. 

3.2. Method 

Figure 2 shows the structure of the proposed 
model classifying the issue report using the multi-
modal model. As shown in Figure 2, the model 
gets the text (title) data and image data of issue 
reports as inputs. The model classifies the issue 
report into “bug” or “feature.”. The model passes 
the image and text data through a CNN-based 
channel, respectively, to extract expression 
vectors. These features are combined through 
point-wise multiplication operation to express 
them in a common space. After that, the model 
performs a softmax operation and finally makes a 
classification of the issue report as an output. 

3.3. Measurements 

The metrics used for measuring classification 
performance were precision, recall, and f1-score. 
The calculation for each metric was conducted 
using the equations below. 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 
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𝐹𝐹1 − 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 
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𝑓𝑓1− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 2 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖∗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖

  (6) 

 
In the above equations, 𝑡𝑡𝑡𝑡  represents the 

number of issue reports that the model predicted to 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖  that belonged to 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 . The symbol 𝑓𝑓𝑓𝑓 
represents the number of issue reports that the 
model predicted to 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖  but did not belong to 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 . The symbol 𝑡𝑡𝑡𝑡  denotes the number of 
issue reports that the model predicted to not 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 
and did not belong to 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖, and 𝑓𝑓𝑓𝑓 denotes the 
number of issue reports that the model predicted to 
not belong to 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 but belonged to 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖. 

4. Experimental results 

Table 2 shows the performance differences 
between the proposed classification model and the 
issue report classification of the existing 
classification model. The performance metrics are 
precision, recall, and f1-score, and the metric of 
each class is calculated and a weighted average is 
used according to the class frequency. The results 
of the proposed model, the multi-modal model, 
showed 73.432% precision, 73.460% recall, and 
73.423% f1-score. The CNN model, which is a 
single-modal model, showed 71.356% precision, 
71.386% recall, and 71.315% f1-score. As a result, 
the proposed classification model performed 
better than the existing classification model.  

However, it is difficult to regard that it as a 
meaningful improvement because the 
performance improvement is insignificant. To 
determine whether the image data used in the 
experiment is suitable for the classification task, 
we constructed a single-modal model using only 
the image data to measure the classification 

Figure 2: The structure of the proposed model 



accuracy. As a result, the single-modal model 
showed 53.373% precision, 54.250% recall, and 
53.467% f1-score, which does not seem to help 
the image data with the classification task. 

 
Table 2 
Result comparison between singlemodal and our 
multimodal model 

MODEL Precision Recall F1-score 

CNN 
(Text Only) 71.356 71.386 71.315 

CNN 
(Image Only) 53.373 54.250 53.467 

Multimodal 
(Text+Image) 73.432 73.460 73.423 

 
Figure 3: Result comparison between single-
modal and our multimodal model 

5. Discussion 

Existing issue report classification studies 
have limitations in applying text-oriented single-
modal classification methods such as title and 
body content. In addition to text modality, there 
are other modality data in issue reports. In 
particular, we conducted this study based on the 
fact that images exist in many issue reports. 
However, the results of our proposed model did 
not improve the performance as expected. 
Therefore, we conducted an additional 
experiment and checked the accuracy of a deep 
learning model that only uses images of issue 
reports. The classification accuracy of the deep 
learning model using only images is around 53.5 
% f1-score. This means that the image data used 
in this study are not primary factors on 
classification performance. Even so, the 
information that images have is helpful for 
classification work. In fact, it is easy for 

developers to understand the issue report when 
they see the text and image data of the issue report 
together. Most of the images in the body of the 
issue report are parts of code captured in the 
development environment. Compared to using the 
source code directly, it seems complicated to 
understand the meaning of data in image form. 
Therefore, it is quite difficult to distinguish the 
differences between the issue reports labeled “bug” 
and the issue reports labeled “feature”. Now, we 
question if we recognize the source code from 
images, the source information will be able to help 
our classification. 

Nonetheless, based on these experimental 
results, we were able to confirm the effect of the 
multi-modal application of the issue report. 
Therefore, we will continue our further 
exploration of the multi-modal model, which 
takes into account the characteristics of the issue 
report and various heterogeneous outputs. First, 
most of the images attached to issue reports 
contain code and text. Therefore, if we extract the 
code and text from the image and use them for 
classifying, it is expected to show better 
performance than the existing method using the 
image. Next, since users can attach codes to the 
issue report, we can use the code as another 
modality. Since the code is a source that is directly 
related to the software issue, it is highly valuable. 
Therefore, it is possible to try to improve the 
performance by using it as a multi-modal together 
with the existing text data. 

6. Conclusion 

We have proposed a method for classifying 
issue reports based on a multi-modal deep 
learning model using text data (title) and image 
data (body) of the issue report. Experimental 
results show that the classification model of the 
proposed method has an f1-score improvement of 
about 2.1% over the existing classification model, 
and that the multi-modal deep learning model is 
positive for improving the performance of the 
classification task. 

We infer that these results come from the fact 
that the model utilizes various information from 
the issue report. When users write an issue report, 
they often write a description of the issue by 
attaching images, videos, and codes, etc., in 
addition to the title and body content in text 
format. This is actually very helpful data for 
humans to understand. Therefore, we infer that the 
model could better represent the issue report when 



also using images that are directly related to the 
content rather than just the text of the title or body, 
resulting in better classification performance. In 
the future, we will explore and advance the 
utilization strategy of image data in issue reports. 
And we will create a multi-modal model that uses 
more heterogeneous components of issue reports 
for more accurate issue classification. 
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