Guiding System Modelersin Multi View Environments:
A Domain Engineering Approach

Arnon Sturm

Department of Information Systems Engineering

Ben-Gurion University of the Negev, Beer Sheva & 16rael
sturm@bgu.ac.il

Abstract. Nowadays, due to system complexity, it is well ust@od that
system analysis and design should be done at waléwels of abstraction via
various perspectives. This situation of multiplews over a system causes
inconsistencies within the system model, which ceduhe model maturity for
the next stages (e.g., implementation and testinghis paper, we address this
gap by integrating two approaches from the aredoohain analysis: feature
modeling and the Application-based DOmain Modelfgproach (ADOM).
Using the integrated approach we provide the systiswelopers with
guidelines of how to construct a multi-view systemodel in a way that the
various views will be synchronized and adhered Wit desired specification.
In this paper we adopt UML as the modeling languagd demonstrate the
usage of the proposed method on multi view UML Hasedel.

1. Introduction

As the complexity of system is increased, it isirdéde to decompose the system into
hierarchical parts reducing the complexity of eadle of these. The analogy of that
situation to modeling is the division of modelsoitackages of different parts and of
different perspectives. However, when referringthat kind of models, the model
multiplicity problem is raised as appears in [IThe authors in that paper advocate
that the specification quality is reduced due tat tmodel multiplicity problem in
some of the cases. In [15] the authors had clainied same and propose a
methodology to reduce that problem. However, theeeks somewhat neglect the
need for capturing the system at different levelsabstraction and at various
viewpoints. The Unified Modeling Language (UML) hasldressed this need,
however, it falls short in synchronizing the vasouwiagrams. Thus causes
inconsistency among the diagrams. Inconsistenoplems include syntactic and
semantic errors. While syntactic rules deal withigdams being well-formed and can
be checked by CASE tools, semantic consistency twHe&als with the meaning of
different views and the compatibility between thesdifficult to check. In addition,
having multiple views may become an obstacle wheniding which views a
designer should choose when specify a specificiegifuin. For example, in [4] the

Proceedings of EMMSAD 2008 131

authors survey the usage of UML and found that d@nly partially used with respect
to the multiple aspects specification.

In this paper we address both the designer guidarad@em as well as the support
for consistency in multiple-view environments pl In particular, we utilize two
approaches originated from the domain analysis mamely, feature modeling [9],
and the Application-based Domain Modeling (ADOM2[16] for the task at hand.

Feature modeling enables defining the prominent distinctive user visible
characteristics of a system [8]. When referring omain, feature modeling captures
the commonality and variability among the applicasi of that domain.

ADOM treats a domain as an application in its oightrthat needs to be modeled
before systems in that domain are specified anijued, yet the entire domain is
modeled as a regular application that serves asfeaence to applications in that
domain. The same paradigm, along with its semantibe set of concepts, and its
syntax—the set of symbols, is used for specifyimgndins and the applications
within them. The modeled domain structure and bielnaerve to define and enforce
static and dynamic constraints on application medekthat domain. ADOM consists
of three layers: (1) the language layer, which @moerned with the underlying
modeling language, pertinent ontologies, and tbeirstraints; (2) the domain layer,
which uses the language defined within the languager to model the various
domains, including the building blocks of each domend the relationships among
them; and (3) the application layer, which considtdomain-specific system models.
The ADOM approach explicitly enforces constraintsoag the different layers: the
domain layer enforces constraints on the applinatyer, while the language layer
enforces constraints on both the application andado layers.

We advocate that the integration of both approaciiesture modeling and
ADOM leads to an increase within a systems spetifio quality due to the
guidelines provided to developers and due to thestcaints provided (and checked)
within the domain model.

The rest of the paper is organized as follows.i8e@ reviews studies related to
the problem of consistency in multi-view approached to the problem of missing
guidelines for developing system specificationgti®a 3 introduces the principles on
which the integrated approach works and demonstrage use. In Section 4 we
conclude and set our plans for the continuous rekea

2. LiteratureReview

Modeling complex system includes structural andalv@ral aspects. For example, in
UML different diagrams, or views, deal with diffeteaspects of the system. Using
different views assists in focusing on the speadifaveloped aspect and in keeping
each diagram size reasonable. However, havingrdiffeviews of the same system
raises consistency problems between the differientss In addition, the problem of
which views are required for a specific applicaiemains unsolved.

In [14] the author provides a comprehensive sumadgted to consistency and
integration problems occur in UML models. Thesgiordted due to the multiple view
definition. Furthermore, the proposed solutions yorpartially addressed the

132 Proceedings of EMMSAD 2008

aforementioned problems. In addition, that papesppses TLOOF, which is a
framework that addresses that problem. Howevehoatth providing tools for

keeping consistency and avoiding integration pnoisle TLOOF does not provide
guidelines for the system developers of which viéves, diagrams) are required for a
specific application.

In [1] the author aims at providing guidelines éoeating an analysis model that is
both complete and correct. However, these guideliaéer mainly to the development
process perspective neglecting the process asgjfaet, the models. Thus, there is no
reference for handling the consistency problem.

Other approaches originated for the domain engingerrea [6]. For example, the
feature modeling technique has been used for t@toge. In [2] the authors propose
a template based approach for mapping feature madebther models to represent
variability. A similar approach appears in [10]. [[r] the proposed approach also
associates features with models. The latter appesacnarrow the system
specification to be configurative and restrict #tafglition of new features to the system
specification.

In [13] the authors experiment the correctness emahpleteness of a system
UML-based specification when providing a domain elodrhe results of that
experiment showed that when providing a domain rhtltke completeness of the
application model is increased. However, the expeni checked the various views
(i.e., diagram) separately, and the subjects wskedito provide specific views.
Thus, the consistency among views and integratioblpms were out of the scope of
that work.

3. TheProposed Approach

Following the gaps aforementioned, in this paperaime at providing an approach to
enable the provisioning of guidelines for specifyiapplications in multi-view
environments. By guidelines, we refer to what & tiews that should be provided
when specifying a specific application and what thie elements within these views
that should be instantiated. We support two tydessiantiation: specialization and
configuration. In addition, we would like the appch to be able to enforce various
constraints that will maintain the integrity amahg various views.

In order to facilitate the proposed approach wgizettwo complementary
techniques: feature modeling and the ADOM approadid, refer to a model at two
levels: the domain level and the application level.

3.1. TheDomain Levd

The domain level models provide specification gliites, serve as a validation
template, and enforce multi-view consistency. Haat tpurpose, the domain level
consists of the following:

A feature model: The feature model aims at capturing the featurpticgble to a
specific domain. In particular, we adopt the caatitg-based version as appear in [3].

Proceedings of EMMSAD 2008 133

However, we used the feature models at differem¢ll®f abstraction. That is, an
instantiation of the feature model might be a cgunfation, a specialization as appear
in [8] but may also include sub typing of the vaisdeatures and new features can be
added as well. The feature model serves as annektpoint of view of the system
and should help the designer to capture the syste@rnal structure (and
functionality). Figure 1 presents a feature modklaoResources Allocation and
Tracking (RAT) domain and its instantiation relattedan elevator control system.
The RAT domain consists of applications that precesstomer requests, allocate
resources to realize those requests and monitcstéttes of requests at all times [5].
The elevator control system is responsible forrdgistration of passenger requests,
allocating an elevator for that request, and hagdihe request.

Resource Allocation and Tracking <<Resource Allocation and Tracking>>
Elevator Control System
— <<1.n>> Insert Request <<Insert Request>>

| Request for an Elevator

— <<1..n>> Handle Request |— <<Insert Request>>
Request for a Floor

— <<1..n>> Assign Request | <<Handle Request>=>
Handle Elevator Request

. << Assign Request>>
— =<0..n>> Prioritize Request Select an Elevator

— Global Prioritization == Solve Reqguest=>
Send an Elevator
<<Close Request==>

'— Local Prioritization Arrival of Elevator

— ==<1.n] Solve Request | <<Handle Request>>
Handle Floor Request
<< Assign Request>>
Select a Request

I— <<1..n>> Close Request

L <=<0..n>> Notify << Solve Request>>
Send Elevator to Floor
<<Close Request=>

| =<0..n>> Handle Exceptions Arrival of Elevator

L_ <=<0..n>> Produce Report

(a) (b)

Fig. 1. A domain feature model and its instantiation wittiie RAT domain

<<feature list name=ALL=>
<=1.n=»
Insert Reguest

==feature list names=ALL=> 3 ==feature list names=Handle Exceptions==
=21.n== ==0.n=>

Service Manager
Report Status

<<faature list names=AL L=> =feature list name= ALL=>~_ =<Extend=> _e=feature list names=Handle Exceptions=:
<= == «<lne> 0 PRTTTTT ==0.n==
Service Provider Handle Request Handle Exception

Fig. 2. A use case diagram of the RAT domain

SEnca et = feature list names=Produce Report==

=<D.n==

134 Proceedings of EMMSAD 2008

<cfeature list names=2LL s>
<%l N
w<feature lid names=ALL > Service Request
<) M= <l N tequestidentity . anyType
Service Client Info <ol N== tequestParameter . anyType
-clientl dertity . anyType 0. FrequestStatus . {cclssnew, wns=assigned, resolved}
<<fl.Nx ClientParameter . anyT e - soreatel«el. n==RP . anyType, <. n= 5P . ServiceP roviderlnfo)
<<l M= et RelevantR equests) <l Nww +assioni<<0. n==5P . SerdceP rovidednfo) . anyType
<) 15> +getDetailz) . ServiceCliertinfo +dlozsianyP arameter . anyType) . anyT ype
<l M= notifyd . anyType
+oetDetailz) « ServiceReguest
0> {ordered} | 0.
o>
«<feature lid names=Handle Reguest>= 0.x
el Nws <<feature list names=Prioritize Request ==
Service Provider Info 0. <<l N
-provider dentity . any Type : Classification Category
<d). M= providerParameter . anyType 0.~ -caten oryl dertity . anyType
<«l..Nz=x vyetRelevantR equests) <<l N> -categor arameter . anyType
<M== Hepain) : anyType <<l..n=> et RelevantR eguests)
<. 1w +igetDetailz . ServiceP rovidednfo

Fig. 3. A class diagram of the RAT domain

<<featurs lid names=ALLs>
<l N

«<feature it names=Priortize Reguest=»
el M
: Classification Category

edeature

RE W EES
list names=ALL »»

Service Provider + Service P rovidet Infa
M T

1. getR elevantRequestsa |

: Sepvice Reguest
T

loop

|
I i: getRelevantRequestso

3 getDetails)

<l Nzx

5. assignn

Fig. 4. A Handle a Service Request by a Service Provideb&bngs to the RAT domain

<<feature list names=2ALL =~
<l Nss
: Service Client Info
T

Service Client

<<feature list names=2LL ==
<l Mws
: Service Reguest

1. getRelevantRequests) |

loop

1. getDetails)

g

Fig. 5. A Check Service Request Status by a SD belondgetRAT domain

Proceedings of EMMSAD 2008 135

A functional (multi-views) model: The functional model may include structural
diagrams, behavioral diagrams, dynamic behaviaedrdms, etc. In this paper, we
adopt UML as the modeling language, thus the foneti model may include class
diagrams, use case models, sequence diagrams,Thk¢c.functional model is
represented by following the guidelines of the ADQ@ldproach. In particular, each
element within the model is associated with a rplidtity indicator which determines
the number of instantiations that can be part gflieption models in the specific
context. This is denoted by the <<min, max>> aniimra Figures 2-5 present four
views of the RAT domain: a use case diagram, asdli@gram, and two sequence
diagrams. For example, ti&ervice Client actor within the use case diagram should
appear at least once in any application withinRAd domain. Similarly, th&ervice
Client Info class within the class diagram is optional, yey mppear several times in
applications within that domain. In addition to imeiltiplicity indicator suggested by
the ADOM approach, the model elements should bigraess to features as well. This
determines whether a model element requires attemti case a specific feature is
instantiated. For example, thgervice Request class is relevant for all features,
whereas theClassification Category class is relevant only when having a feature of
typePrioritize Request.

A mapping model: The mapping model maps the views to features.rEigspecifies
the mapping in the case of the RAT domain. For etantheMain Use Case Model
should appear for all features whereas @heck Service Request Status by a Client
sequence diagram is required only in a case ofwtiie Produce Report feature is
selected.

<=fgature list names=ALL>>
Main Use Cass Model

== feature list names=2AL L>>
Main Class Diagram

==feature list names=Produce Report=:= ==feature list names=Handle Reqguest==
Check Service Request Status by a Client: Handle & Service Reqguest by a Service Provider:
Sequence Diagram Sequence Diagram

Fig. 6. Mapping of domain views and features

3.2. The Application Level

The application level consists of models whichiastantiations of the one within the
domain level. For example, the feature model ofdlewator control system appears
in Figure 1 (b) instantiates the RAT feature modppears in Figure 1 (a). The
instantiations of the elevator control system fioral model appear in Figures 7-10.

136 Proceedings of EMMSAD 2008

<dnsernt Request == <<Handls Request ==
Request an Elevator Elevator R eguest Treatm ert
S ervice P roviders s
<dnsert Request o <<Handle Requests=
Request a Floor Floor Reques Treatment

Elevator
Fig. 7. A use case diagram of the elevator control system

waSenvice Client ==
User

wiServiceRequests»

Request For Floor
wxrequestidentitys » -requestTime . Time
wwrequestFarameters » -requestedFloor : int

careq tatuso > -status : {assignedToElevator, arrived ToF loor}
wworeaters +or q arFloontheR eq loor : int, : Elevatorinfor
cxclosers roloseResolvedR equesty
w+assign s » +assignElevatordhe Elevator . Elevatorintor «wSeniceProvidernfor -
<< getD etails > » +getRequestF orF loorD etaikg Elevator Info
Lits ceproviderdentitys » -elew atorlD . int
<<providerParamatars » -currentLocation . int
weServiceR equests » weproviderParameters » -currentDirection : {up, down}
Request For Elevator cegetRelevanth e quests - » +getR equestsSuitableF orElevator)
wwrequestidentity> > -requestN o int 1>

wrequestFarameters » -requestF loor: int
<<requestStatus - > -status : {newR equest, aszignedToElevator, elevatorfrrived}

e ate e or q q loor:int)
cia@msignss i alorToReques ; Elevatorlnfo
wecloserr reloseResohedR equestF orElevaton)

<< getD etails > » +getRequestF orEley stor Detaika

Fig. 8. A class diagram of the elevator control system

: Elevator Info Request For Elevator

Elevator |
|
|
|

1: getRequestsSuitableForE levator) |
A

|
I
|
I
|
I
I
I
L

loop
2. getRequestF orElevatorD etails()
loop 4 assignElevatarT oR equest()
I
5: clogeResolvedRequestFoiE levator()
£

Fig. 9. A Handle Request For Elevator SD

In this case each of the model elements is classdiccording to the domain model
element. For example, théser actor within the use case diagram appears in Eigur
is classified as &ervice Client, the Reguest an Elevator use case is classified as
Insert Request, Request For Floor and Request For Elevator classes within the class
diagram appears in Figure 8 are classifiedsasice Request. Note that additional

1

Proceedings of EMMSAD 2008 137

features and additional model constructs can bimetbfwithin the application model
even though these were not defined in the domaideindiowever, these additions
should not contradict constrains defined within th@main model. This capability
increases the support in systems variability withimdomain.

: Elevatar Info : Reque st For Floaor

Elevatar

T T
| |
| |
| |
| |
1. getRequestsS utableF arElevatar) | |
L !
!
loop / |
1: getRequestF orf oo et sils) M
< __________________ L]
Io_up 4. aEsigrE |evator)
{=
5. doseR esgvedR eque st
{=

Fig. 10. A Handle Request For Floor sequence diagram

3.3. The Modeling Paradigm

When using the proposed method we opt for the vioilg procedure. First, the
designer should determine the domain of which tretesn-to-be is related to. Then
the domain model is retrieved and serves as a linédas well as a validation
template. Note that we expect that the domain madetell-established. Next, the
designer should examine the external point of vidwthe system by selecting the
relevant features for the system and instantidqeset This model guides the designer
of which features are mandatory and which are optioUpon selecting and
instantiating the selected features (and maybe agfilication specific ones), the
designer should follows the mapping model for te¢ected features in order to
provide the right set of views as determined bydbmain model. In the case of the
elevator control system, since the selected festwerelnsert Request and Handle
Request, the required views are thé@ain Use Case Model, the Main Class Diagram,
and theHandle a Service by a Service Provider sequence diagram. Note that since
there are two instantiations of thiandle Request, there should be two instantiations
of theHandle a Service by a Service Provider sequence diagram as appear in Figures
9-10.

When developing each of the views, the designeuldhfmllow the mapping to
features as well. For example in the class diagofrthe elevator control system
(appear in Figure 8), @lassification Category class is redundant since tReoritize
Request feature was not selectedrhe instantiation of each model should be valid

Note that in the example only classes were classy features, however, this can be done for each
meta model element within the model (e.g., associst attributes, and operations).

138 Proceedings of EMMSAD 2008

with respect to the multiplicity indicator defin@dthin the domain model (in case the
associated feature was selected). Furthermorellased by the ADOM approach
each view may be enriched with application spedcifadel constructs.

Having set the application model, or at any timerduits development a validation
procedure may be executed in order to verify thesbency and completeness of the
application model with respect to the domain modéie procedure includes the
following stages:

1. Omitting application specific elements (i.e., thkengents that are not
classified as domain elements)

2. Checking for each instantiation of a feature whete instantiation of the
related view instantiations are created (as defiméthin the mapping
model).

3. Checking that no redundancies exist in case o&fufe was not selected but
the related model elements were instantiated.

4. Checking the various instantiated views for thedtherence with their
corresponding domain views following the principtefined by the ADOM
approach.

When utilizing the proposed approach we advocaat wWe provide the system
designer specification guidelines and tools for agamg the adherence of the model
with the pre-defined constraints and for managing integration and consistency
among the various views.

4. Summary

In this paper we propose an approach for guidiregesy developers in specifying
applications in multi-view environments. The apmioas based on two domain
engineering techniques, namely, feature modelind,the Application-based Domain
Modeling (ADOM) approach. We advocate that the grétion of these techniques
provides guidelines to system developers and aatidin template for the entire
system model. We set the procedure of working wlith proposed approach and
demonstrate its use via a case study.

We plan to further formalize the proposed approawcti validation rules and to
implement this within a CASE tool environment. Ilddition, we intend to conduct
experiments to verify our conjecture regarding éxtent to which the guidelines
provided by the proposed approach help in achieviogrect and complete
specification of the desired applications.

Acknowledgement

This work was partially funded by Deutsche Telekbaboratories at Ben-Gurion
University.

Proceedings of EMMSAD 2008 139

References

10.

11.

12.

13.

14.

15.

16.

Berenbach, B., Closing the Software Development GapsWWIL; Proc., of the 16th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications. OOPSLA 2001. Tampa, Florida, 2001.

Czarnecki, K. and Antkiewicz, M., Mapping Featured/odels: A Template
Approach Based on Superimposed Variants. GPCE 2@25437, 2005.

Czarnecki, K., Helsen, S.,and Eisenecker, U., Fazmal cardinality-based feature
models and their specialization, Software Prodesgrovement and Practice, 10 (1), 7-
29, 2005.

Dobing, B. and Parsons, J., How UML is used, Compatian of the ACM 49 (5) 2,
109-113, 2006.

Duffy, D. J., Domain Architectures: Models and Aitelatures for UML Applications.
John Wiley & Sons, 2004.

Eisenecker, U. and Czarnecki, K. 2000. Generatregi@mming: Methods, Tools, and
Applications. Addison-Wesley, Reading, MA.

Gomaa, H., Designing Software Product Lines withlUIArom Use Cases to Pattern-
Based Software Architectures. Addison-Wesley, 2004.

Hwan, C. , Kim, P., and Czarnecki, K., Synchroniz@eydinality-Based Feature
Models and Their Specializations, Model Driven Atebture — Foundations and
Applications, LNCS 3748, 331-348, 2005.

Kang, K., Cohen, S., Hess, J., Novak, W., and Ratess. Feature-Oriented Domain
Analysis (FODA) Feasibility Study, CMU/SEI-90-TR-0ADA235785, 1990.

Lee, K., Kang, K. C., Koh, E., Chae, W., Kim, B., &idoi, B. W., Domain-oriented
engineering of elevator control software: a prodinet practice. IrProceedings of the
First Conference on Software Product Lines: Experience and Research Directions:
Experience and Research Directions (Denver, Colorado, United States). P. Donohoe,
Ed. Kluwer Academic Publishers, Norwell, MA, 3-2900.

Peleg, M. and Dori, D., The model multiplicity pfeim: experimenting with real-time
specification method$oftware Engineering, IEEE Transactions on 26(8), 742-759,
2000.

Reinhartz-Berger, |. and Sturm, A., Behavioral Don#airalysis — The Application-
based Domain Modeling Approach, the 7th Internai@onference on the Unified
Modeling Language (UML'2004), LNCS 3273, 410-4240£0

Reinhartz-Berger, |. and Sturm, A., Enhancing UML Misd A Domain Analysis
Approach, Journal of Database Management 19(19472008

Reinhartz-Berger, |., Conceptual Modeling of Structamd Behavior with UML — The
Top Level Object-Oriented Framework (TLOOF) ApproaER'2005, LNCS 3716, 1-
15, 2005.

Shoval, P. and Kabeli, J., FOOM-functional and obiented methodology for
analysis and design of information systemsAdmanced Topics in Database Research
Vol. 1, K. Siau, Ed. IGI Publishing, Hershey, PA, 58-8602.

Sturm, A. and Reinhartz-Berger, I., Applying the Apation-based Domain Modeling
Approach to UML Structural Views, the 23rd Inteiinatl Conference on Conceptual
Modeling (ER'2004), Lecture Notes in Computer Scie32@8, 766-779, 2004.

