
Guiding System Modelers in Multi View Environments:
A Domain Engineering Approach

Arnon Sturm

Department of Information Systems Engineering

Ben-Gurion University of the Negev, Beer Sheva 84105, Israel

sturm@bgu.ac.il

Abstract. Nowadays, due to system complexity, it is well understood that
system analysis and design should be done at various levels of abstraction via
various perspectives. This situation of multiple views over a system causes
inconsistencies within the system model, which reduces the model maturity for
the next stages (e.g., implementation and testing). In this paper, we address this
gap by integrating two approaches from the area of domain analysis: feature
modeling and the Application-based DOmain Modeling Approach (ADOM).
Using the integrated approach we provide the system developers with
guidelines of how to construct a multi-view system model in a way that the
various views will be synchronized and adhered with the desired specification.
In this paper we adopt UML as the modeling language and demonstrate the
usage of the proposed method on multi view UML based model.

1. Introduction

As the complexity of system is increased, it is desirable to decompose the system into
hierarchical parts reducing the complexity of each one of these. The analogy of that
situation to modeling is the division of models into packages of different parts and of
different perspectives. However, when referring to that kind of models, the model
multiplicity problem is raised as appears in [11]. The authors in that paper advocate
that the specification quality is reduced due to that model multiplicity problem in
some of the cases. In [15] the authors had claimed the same and propose a
methodology to reduce that problem. However, these works somewhat neglect the
need for capturing the system at different levels of abstraction and at various
viewpoints. The Unified Modeling Language (UML) has addressed this need,
however, it falls short in synchronizing the various diagrams. Thus causes
inconsistency among the diagrams. Inconsistency problems include syntactic and
semantic errors. While syntactic rules deal with diagrams being well-formed and can
be checked by CASE tools, semantic consistency which deals with the meaning of
different views and the compatibility between these is difficult to check. In addition,
having multiple views may become an obstacle when deciding which views a
designer should choose when specify a specific application. For example, in [4] the

Proceedings of EMMSAD 2008 131

authors survey the usage of UML and found that it is only partially used with respect
to the multiple aspects specification.

In this paper we address both the designer guidance problem as well as the support
for consistency in multiple-view environments problem. In particular, we utilize two
approaches originated from the domain analysis era, namely, feature modeling [9],
and the Application-based Domain Modeling (ADOM) [12, 16] for the task at hand.

Feature modeling enables defining the prominent and distinctive user visible
characteristics of a system [8]. When referring to a domain, feature modeling captures
the commonality and variability among the applications of that domain.

ADOM treats a domain as an application in its own right that needs to be modeled
before systems in that domain are specified and designed, yet the entire domain is
modeled as a regular application that serves as a reference to applications in that
domain. The same paradigm, along with its semantics—the set of concepts, and its
syntax—the set of symbols, is used for specifying domains and the applications
within them. The modeled domain structure and behavior serve to define and enforce
static and dynamic constraints on application models in that domain. ADOM consists
of three layers: (1) the language layer, which is concerned with the underlying
modeling language, pertinent ontologies, and their constraints; (2) the domain layer,
which uses the language defined within the language layer to model the various
domains, including the building blocks of each domain and the relationships among
them; and (3) the application layer, which consists of domain-specific system models.
The ADOM approach explicitly enforces constraints among the different layers: the
domain layer enforces constraints on the application layer, while the language layer
enforces constraints on both the application and domain layers.

We advocate that the integration of both approaches: feature modeling and
ADOM leads to an increase within a systems specification quality due to the
guidelines provided to developers and due to the constraints provided (and checked)
within the domain model.

The rest of the paper is organized as follows. Section 2 reviews studies related to
the problem of consistency in multi-view approaches and to the problem of missing
guidelines for developing system specifications. Section 3 introduces the principles on
which the integrated approach works and demonstrates its use. In Section 4 we
conclude and set our plans for the continuous research.

2. Literature Review

Modeling complex system includes structural and behavioral aspects. For example, in
UML different diagrams, or views, deal with different aspects of the system. Using
different views assists in focusing on the specific developed aspect and in keeping
each diagram size reasonable. However, having different views of the same system
raises consistency problems between the different views. In addition, the problem of
which views are required for a specific application remains unsolved.

In [14] the author provides a comprehensive survey related to consistency and
integration problems occur in UML models. These originated due to the multiple view
definition. Furthermore, the proposed solutions only partially addressed the

132 Proceedings of EMMSAD 2008

aforementioned problems. In addition, that paper proposes TLOOF, which is a
framework that addresses that problem. However, although providing tools for
keeping consistency and avoiding integration problems, TLOOF does not provide
guidelines for the system developers of which views (i.e., diagrams) are required for a
specific application.

In [1] the author aims at providing guidelines for creating an analysis model that is
both complete and correct. However, these guidelines refer mainly to the development
process perspective neglecting the process artifacts, i.e., the models. Thus, there is no
reference for handling the consistency problem.

Other approaches originated for the domain engineering area [6]. For example, the
feature modeling technique has been used for that purpose. In [2] the authors propose
a template based approach for mapping feature models to other models to represent
variability. A similar approach appears in [10]. In [7] the proposed approach also
associates features with models. The latter approaches narrow the system
specification to be configurative and restrict the addition of new features to the system
specification.

In [13] the authors experiment the correctness and completeness of a system
UML–based specification when providing a domain model. The results of that
experiment showed that when providing a domain model the completeness of the
application model is increased. However, the experiment checked the various views
(i.e., diagram) separately, and the subjects were asked to provide specific views.
Thus, the consistency among views and integration problems were out of the scope of
that work.

3. The Proposed Approach

Following the gaps aforementioned, in this paper we aim at providing an approach to
enable the provisioning of guidelines for specifying applications in multi-view
environments. By guidelines, we refer to what are the views that should be provided
when specifying a specific application and what are the elements within these views
that should be instantiated. We support two types of instantiation: specialization and
configuration. In addition, we would like the approach to be able to enforce various
constraints that will maintain the integrity among the various views.
 In order to facilitate the proposed approach we utilize two complementary
techniques: feature modeling and the ADOM approach, and refer to a model at two
levels: the domain level and the application level.

3.1. The Domain Level

 The domain level models provide specification guidelines, serve as a validation
template, and enforce multi-view consistency. For that purpose, the domain level
consists of the following:

A feature model: The feature model aims at capturing the features applicable to a
specific domain. In particular, we adopt the cardinality-based version as appear in [3].

Proceedings of EMMSAD 2008 133

However, we used the feature models at different level of abstraction. That is, an
instantiation of the feature model might be a configuration, a specialization as appear
in [8] but may also include sub typing of the various features and new features can be
added as well. The feature model serves as an external point of view of the system
and should help the designer to capture the system internal structure (and
functionality). Figure 1 presents a feature model of a Resources Allocation and
Tracking (RAT) domain and its instantiation related to an elevator control system.
The RAT domain consists of applications that process customer requests, allocate
resources to realize those requests and monitor the status of requests at all times [5].
The elevator control system is responsible for the registration of passenger requests,
allocating an elevator for that request, and handling the request.

Fig. 1. A domain feature model and its instantiation within the RAT domain

Fig. 2. A use case diagram of the RAT domain

134 Proceedings of EMMSAD 2008

Fig. 3. A class diagram of the RAT domain

Fig. 4. A Handle a Service Request by a Service Provider SD belongs to the RAT domain

Fig. 5. A Check Service Request Status by a SD belongs to the RAT domain

Proceedings of EMMSAD 2008 135

A functional (multi-views) model: The functional model may include structural
diagrams, behavioral diagrams, dynamic behavioral diagrams, etc. In this paper, we
adopt UML as the modeling language, thus the functional model may include class
diagrams, use case models, sequence diagrams, etc. The functional model is
represented by following the guidelines of the ADOM approach. In particular, each
element within the model is associated with a multiplicity indicator which determines
the number of instantiations that can be part of application models in the specific
context. This is denoted by the <<min, max>> annotation. Figures 2-5 present four
views of the RAT domain: a use case diagram, a class diagram, and two sequence
diagrams. For example, the Service Client actor within the use case diagram should
appear at least once in any application within the RAT domain. Similarly, the Service
Client Info class within the class diagram is optional, yet may appear several times in
applications within that domain. In addition to the multiplicity indicator suggested by
the ADOM approach, the model elements should be assigned to features as well. This
determines whether a model element requires attention in case a specific feature is
instantiated. For example, the Service Request class is relevant for all features,
whereas the Classification Category class is relevant only when having a feature of
type Prioritize Request.
A mapping model: The mapping model maps the views to features. Figure 6 specifies
the mapping in the case of the RAT domain. For example, the Main Use Case Model
should appear for all features whereas the Check Service Request Status by a Client
sequence diagram is required only in a case of which the Produce Report feature is
selected.

Fig. 6. Mapping of domain views and features

3.2. The Application Level

The application level consists of models which are instantiations of the one within the
domain level. For example, the feature model of the elevator control system appears
in Figure 1 (b) instantiates the RAT feature model appears in Figure 1 (a). The
instantiations of the elevator control system functional model appear in Figures 7-10.

136 Proceedings of EMMSAD 2008

Fig. 7. A use case diagram of the elevator control system

Fig. 8. A class diagram of the elevator control system

Fig. 9. A Handle Request For Elevator SD

In this case each of the model elements is classified according to the domain model
element. For example, the User actor within the use case diagram appears in Figure 7
is classified as a Service Client, the Request an Elevator use case is classified as
Insert Request, Request For Floor and Request For Elevator classes within the class
diagram appears in Figure 8 are classified as Service Request. Note that additional

Proceedings of EMMSAD 2008 137

features and additional model constructs can be defined within the application model
even though these were not defined in the domain model. However, these additions
should not contradict constrains defined within the domain model. This capability
increases the support in systems variability within the domain.

Fig. 10. A Handle Request For Floor sequence diagram

3.3. The Modeling Paradigm

When using the proposed method we opt for the following procedure. First, the
designer should determine the domain of which the system-to-be is related to. Then
the domain model is retrieved and serves as a guideline as well as a validation
template. Note that we expect that the domain model is well-established. Next, the
designer should examine the external point of view of the system by selecting the
relevant features for the system and instantiates those. This model guides the designer
of which features are mandatory and which are optional. Upon selecting and
instantiating the selected features (and maybe add application specific ones), the
designer should follows the mapping model for the selected features in order to
provide the right set of views as determined by the domain model. In the case of the
elevator control system, since the selected features were Insert Request and Handle
Request, the required views are the Main Use Case Model, the Main Class Diagram,
and the Handle a Service by a Service Provider sequence diagram. Note that since
there are two instantiations of the Handle Request, there should be two instantiations
of the Handle a Service by a Service Provider sequence diagram as appear in Figures
9-10.

When developing each of the views, the designer should follow the mapping to
features as well. For example in the class diagram of the elevator control system
(appear in Figure 8), a Classification Category class is redundant since the Prioritize
Request feature was not selected1. The instantiation of each model should be valid

1
 Note that in the example only classes were classified by features, however, this can be done for each

meta model element within the model (e.g., associations, attributes, and operations).

138 Proceedings of EMMSAD 2008

with respect to the multiplicity indicator defined within the domain model (in case the
associated feature was selected). Furthermore, as allowed by the ADOM approach
each view may be enriched with application specific model constructs.
Having set the application model, or at any time during its development a validation
procedure may be executed in order to verify the consistency and completeness of the
application model with respect to the domain model. The procedure includes the
following stages:

1. Omitting application specific elements (i.e., the elements that are not
classified as domain elements)

2. Checking for each instantiation of a feature whether an instantiation of the
related view instantiations are created (as defined within the mapping
model).

3. Checking that no redundancies exist in case of a feature was not selected but
the related model elements were instantiated.

4. Checking the various instantiated views for their adherence with their
corresponding domain views following the principles defined by the ADOM
approach.

When utilizing the proposed approach we advocate that we provide the system
designer specification guidelines and tools for managing the adherence of the model
with the pre-defined constraints and for managing the integration and consistency
among the various views.

4. Summary

In this paper we propose an approach for guiding system developers in specifying
applications in multi-view environments. The approach is based on two domain
engineering techniques, namely, feature modeling, and the Application-based Domain
Modeling (ADOM) approach. We advocate that the integration of these techniques
provides guidelines to system developers and a validation template for the entire
system model. We set the procedure of working with the proposed approach and
demonstrate its use via a case study.

We plan to further formalize the proposed approach and validation rules and to
implement this within a CASE tool environment. In addition, we intend to conduct
experiments to verify our conjecture regarding the extent to which the guidelines
provided by the proposed approach help in achieving correct and complete
specification of the desired applications.

Acknowledgement

This work was partially funded by Deutsche Telekom Laboratories at Ben-Gurion
University.

Proceedings of EMMSAD 2008 139

References

1. Berenbach, B., Closing the Software Development Gaps with UML; Proc., of the 16th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications. OOPSLA 2001. Tampa, Florida, 2001.

2. Czarnecki, K. and Antkiewicz, M., Mapping Features to Models: A Template
Approach Based on Superimposed Variants. GPCE 2005, 422-437, 2005.

3. Czarnecki, K., Helsen, S.,and Eisenecker, U., Formalizing cardinality-based feature
models and their specialization, Software Process: Improvement and Practice, 10 (1), 7-
29, 2005.

4. Dobing, B. and Parsons, J., How UML is used, Communication of the ACM 49 (5) 2,
109-113, 2006.

5. Duffy, D. J., Domain Architectures: Models and Architectures for UML Applications.
John Wiley & Sons, 2004.

6. Eisenecker, U. and Czarnecki, K. 2000. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, Reading, MA.

7. Gomaa, H., Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison-Wesley, 2004.

8. Hwan, C. , Kim, P., and Czarnecki, K., Synchronizing Cardinality-Based Feature
Models and Their Specializations, Model Driven Architecture – Foundations and
Applications, LNCS 3748, 331-348, 2005.

9. Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. Feature-Oriented Domain
Analysis (FODA) Feasibility Study, CMU/SEI-90-TR-021 ADA235785, 1990.

10. Lee, K., Kang, K. C., Koh, E., Chae, W., Kim, B., and Choi, B. W., Domain-oriented
engineering of elevator control software: a product line practice. In Proceedings of the
First Conference on Software Product Lines: Experience and Research Directions:
Experience and Research Directions (Denver, Colorado, United States). P. Donohoe,
Ed. Kluwer Academic Publishers, Norwell, MA, 3-22, 2000.

11. Peleg, M. and Dori, D., The model multiplicity problem: experimenting with real-time
specification methods, Software Engineering, IEEE Transactions on 26(8), 742-759,
2000.

12. Reinhartz-Berger, I. and Sturm, A., Behavioral Domain Analysis – The Application-
based Domain Modeling Approach, the 7th International Conference on the Unified
Modeling Language (UML'2004), LNCS 3273, 410-424, 2004.

13. Reinhartz-Berger, I. and Sturm, A., Enhancing UML Models: A Domain Analysis
Approach, Journal of Database Management 19(1), 74-94, 2008

14. Reinhartz-Berger, I., Conceptual Modeling of Structure and Behavior with UML – The
Top Level Object-Oriented Framework (TLOOF) Approach, ER'2005, LNCS 3716, 1-
15, 2005.

15. Shoval, P. and Kabeli, J., FOOM-functional and object-oriented methodology for
analysis and design of information systems. In Advanced Topics in Database Research
Vol. 1, K. Siau, Ed. IGI Publishing, Hershey, PA, 58-86, 2002.

16. Sturm, A. and Reinhartz-Berger, I., Applying the Application-based Domain Modeling
Approach to UML Structural Views, the 23rd International Conference on Conceptual
Modeling (ER'2004), Lecture Notes in Computer Science 3288, 766-779, 2004.

