

(Meta) Meta Model Extensions for Manageability
of Large Scale Collaborative Modeling

Graham McLeod

Inspired Consulting Training Research and Tools
P O Box 384, Howard Place, 7450, South Africa

mcleod@iafrica.com – http://www.inspired.org

Abstract. There is ample evidence to suggest that collaborative modeling offers
significant advantages over modeling carried out by individuals. Collaborative
modeling can be achieved by workshops and other interactive techniques.
Recently there has been increasing interest in supporting collaborative
modeling with web and repository based tools, especially where the desired
participants are separated by distance and time zones and potentially language.
This paper introduces and formalises some constructs and extensions to meta
models (and meta meta models) which have been found useful in enhancing the
usefulness of large scale collaborative modeling tools and the manageability of
the models employed in support of enterprise architecture management. Issues
addressed include: subject domain, ownership, authority, context, time, version,
status, multiple opinions, user groups/roles, multiple languages and avoiding
information overload.

Keywords: Meta Modeling; Contextual Modeling; Collaborative
Modeling; Repository

1. Collaborative Modeling

Modeling is the activity of creating manageable and useful representations of things
in the real world. Models offer the ability to understand complex structures,
phenomena or behaviours in a safe and cost effective way. They also offer the
opportunity to safely and cheaply alter assumptions and input variables and observe
the outcomes that these produce. In Information Systems, modeling is widely used to
understand business requirements, processes, data and information and technical
architectures and solutions. Collaborative modeling has been used extensively and
productively for many years in the shape of Joint Application Design (JAD) and other
facilitated physical group session techniques.

Information systems are increasingly vital to organizations, indeed strategic in
many industries. They often nowadays extend beyond the confines of a department,
single business function, business unit or even the enterprise itself. The user and
specifier community also frequently spans geographic locations and time zones.
These factors have driven researchers and practitioners to pursue technology
supported techniques, including groupware, knowledgebases, wikis, electronic

156 Proceedings of EMMSAD 2008

whiteboards and others, with the aim of achieving some of the benefits of
collaborative physical sessions in the virtual world (Engelbart, 1992). Additional
benefits could potentially be achieved by the ability to involve more parties, reduce
costs, achieve collaboration despite distance, time zone and language barriers.

2. Background to Our Work

Our organization has developed and marketed a collaborative web-based enterprise
modeling repository and tool environment (Archi/EAWebModeler) since 2000. This
is primarily applied in the development of Enterprise Architectures, Programme
Management, Methods Management and Strategy Formulation. As our clients have
tackled larger and more complex projects, we have been encouraged and pressured to
provide a range of services which assist in the management of these efforts and
improve the usefulness of the tools. Some of these requirements have already been
incorporated into existing product. Some have been prototyped in pre-release versions
of the tools or in proof of concept developments. Others have yet to be fully tested
and designed. Our experience in dealing with these problems and in finding solutions
is brought together in this paper, which intends to summarise the requirements and
identify and formalise proposed solutions meeting these.

An example of the application environment is one of the world's best known
Information Technology hardware and services vendors which is managing a process
of transformation and rationalisation, including global business unit reorganization,
business process improvement, ERP implementation on a massive scale and reducing
the count of in house applications from over ten thousand down to less than four
hundred while simultaneously ensuring continuity. This involves a massive amount of
modeling (including business structure, business process, applications, data
collections, services and supporting infrastructure and other aspects) by several
distributed teams working concurrently. Much of the information is imported from or
exported to other tools, captured, navigated or maintained via web interfaces, or via
graphical models.

3. Challenges Encountered

In deploying this type of repository and collaborative modeling environment, the
project, client and ourselves have encountered a variety of challenges, including:

� Volumes and performance. Our tool achieves great flexibility (extension and
redefinition of meta models at run time) through the use of a high degree of
abstraction in the definition of internal repository structures and persistence
layer as well as the run-time parsing of interface and business logic patterns,
generating required web interfaces. This abstraction has a cost in terms of
amount of processing and input/output activity for persistence. Volumes can
grow to dealing with millions of repository objects and several hundred
thousand of a single type (e.g. Data Column). When one multiplies this by

 Proceedings of EMMSAD 2008 157

the number of concurrent users and the number of objects that may require
retrieval for one instance of the type, significant challenges arise in
maintaining acceptable response times.

� Managing ownership of objects and rights regarding who can create, edit,
delete, retrieve and otherwise manipulate them. These need to be managed
for groups, roles and individual users as well as for composite objects (such
as models and documents) and at the levels of abstraction relevant to the
meta model, the instances of types and the values of defaults and templates.

� Avoiding information overload in the user interface. With the vast amount of
information available (more than 300 types; up to several hundred thousand
instances of a given type; the richness of a single item's information (given
all the contexts in which it might be used) running into large numbers of
properties (30+) and extensive relationships (30+) for a single item) it
becomes a real challenge to only show users what is relevant and interesting
and in a way that is responsive and useful. This requires selecting just the
types required, the instances required as well as the view of that information
required (subset of properties and relationships as well as preferred
representation)

� Managing local and global views – which may involve promotion of items
based upon state. e.g. I may want something to appear only in my personal
view while I am toying with an idea; to move to a group visibility when we
work on a more defined version as a team; and then to be promoted to global
visibility when it is ratified as a corporate policy or approved item

� Presenting information in the best way for different user groups. Managers
may respond best to a “rich picture” view allowing drill down from a
dashboard; Technical personnel and analysts may want a report or matrix;
analysts and modelers may prefer a graphical model while we may need an
XML representation for integration with another tool or environment

� Supporting different “versions of the truth”. These may represent the
evolving picture over time (previous version, current version, future
version), scenarios given different assumptions or goals or even opinions of
various stakeholders about a single concept at a single time

� Dealing with the same semantics in different languages. Where the modeling
community is large, a variety of languages may be used natively by the
participants. It is desirable to allow users to work in their own language but
still produce meaningful views of the information or models for other
language users

� Variable information quality or status. When one looks at a community
product (e.g. Wikipedia), some content items will be more authoritative than
others (Anderson, 2006). In a collaborative modeling environment, items
will often evolve through a variety of states, e.g. from the idea of one
individual to a group draft for critique, to an official sanctioned view. We

158 Proceedings of EMMSAD 2008

may want to see only some of these, or at least be informed of the status of
what we are viewing.

4. Potential Solution Concepts

We formulated (through literature research, our own individual work and
collaborative modeling) a set of concepts for addressing the challenges introduced
above. Some of these are already deployed in the production product, but others were
the subject of prerelease development or proof of concept implementations. These
include:

� Caching and inherent hierarchies have been pursued to preload instance
collections and provide rapid presentation and navigation (via expansion) of
own type relationships between items of a single type which support
hierarchies and network relationships. It is possible to support multiple
hierarchical relationships per type. E.g. Business Unit objects might be
arranged in a hierarchy of geography as well as reporting structure

� Domains, defining a collection of related types, usually by subject area, were
introduced to provide a convenient way of administering subsets of the meta
model from a security and rights perspective, as well as a way of rapidly
filtering repository content to reduce information overload for users who
have rights to large tracts of the repository, but currently wish to work within
a restricted focus area (e.g. Process Architecture)

� Context was conceived as a way to provide a selection and filtering
mechanism for instance data. Examples of context are: Business Unit;
Project; Geographic Location. Note that these can be instances of types used
for other modeling purposes as well

� Filters are a very important mechanism in the current implementation and
will be enhanced further in future designs. These live functionally between
the persistence layer which retrieves data from the repository and the
business logic layer which processes it and passes it to the view layer for
presentation, import or export. Filters are attached to an active user session
and influence what that user will see from the universe allowed by security
permissions. Filters exist to allow:

� Filtering domains of interest

� Filtering items based upon attribute values (including identity; date/time
of update; user modifying)

� Filtering based upon relatedness of items to other items (either types of
items or specific instances)

� Filtering based upon hierarchy (level within own type hierarchy;
membership of the tree below a given parent; relatedness to an item
within a designated membership tree within the same or another type)

 Proceedings of EMMSAD 2008 159

It is possible to combine filters with logical conditions (AND/OR), to
sequence them, and to force them to be active upon user login, thereby
extending the security system. Filters can be named and saved for ease of
reuse. Plans exist to extend the filter capabilities to also allow:

� Filtering via context

� Filtering on status

� Filters which accept execution time user inputs as arguments for
comparison

� Filters which allow sampling instances (e.g. Return every nth item..)
useful for analysis, testing etc.

� Automated chunking of large result sets has been implemented to:

� (For types with an inherent hierarchy): present an expanding tree view
(not new but enhanced with caching and Ajax to improve performance)

� Examine the pattern of identity properties for a set of instances and
achieve a meaningful pseudo hierarchical index which presents a
reasonably small result set and allows easy navigation to individual
items. This can provide an alphabetically organized tree while ensuring
that levels do not contain too few or too many entries

� Opinions are to be supported by allowing values per property per user (but
only within the content layer of the schema)

� Representation can include a variety of views of the data, including:

� Text

� HTML plus CSS (for browser presentation)

� XML (for import, export, API or tool exchange)

� CSV (for exchange with spreadsheets and other tools)

� Matrix (cross reference between instances of two types)

� Worksheet (similar to spreadsheet or relational table with rows
representing items, columns representing properties)

� Graphical. This includes models and embedded vector graphics or
bitmaps representing repository instances and relationships. Meta
models and model types are also supported.

� Model Type is a structure for defining the combination of types, relationship
types and representation required for a given viewpoint or model goal.
Examples would be UML Use Case; Domain Business Object Model;
BPMN Process Model. Arbitrary model types can be user defined at run time
and use any concepts present in the meta model. Representation symbols can
be user defined

160 Proceedings of EMMSAD 2008

� Model is a collection of repository items and associated relationships which
are visually represented in the same model. Models are consistent with a
single model type

� Project – a collection of related items or models (themselves items) from the
repository, of interest to a given community. Could also be seen as a
“namespace” within which identities would be unique

� Documents provide a way to define a meta structure (start point and
navigation path over types and relationships as well as specifying sequence
and required properties) for retrieving matching item data and generating a
composite document

� Versions – The ability to hold previous, current and future values and states
of content for repository items

� Scenarios – Larger scale collections of repository content associated with a
scenario and having a relationship describing the association (e.g. An item
might appear in multiple scenarios and be described in one as: “Retain, but
improve performance” while in another it may be described as: “Replace
with ERP solution”.

� Packages were introduced as a way to specify export sets, including
domains, types, item instances. Primary purpose is support of migration,
distribution of meta-sets (meta models + model types + instance data), and
synchronisation between repositories

� Journaling – with many participants potentially updating shared content
from many locations and 24/7 operation, it becomes vital to log all updates
and record who performed them. This is necessary at both instance and meta
model level. This is achieved by non destructive updating (by cloning and
modifying a new instance of the item modified) with automatic chaining
between previous and current versions

5. Prototype

While the current production implementation is powerful and reliable, it has grown
over time and various concepts have been added for pragmatic purposes, not always
in a comprehensive or consistent way. It was realised that it may be possible to unify,
simplify and improve the efficiency and efficacy of the design by analysing the
current facilities and merging these with purer versions of the concepts discussed
above. We were also influenced by the work of Martin Fowler in Analysis Patterns
1997; Pieter Wisse in Metapattern 2001; Lukas Renggli in the Magritte meta
described system 2006 and our long experience with the Smalltalk language and the
Squeak implementation thereof.

 Proceedings of EMMSAD 2008 161

We undertook prototyping activity and proof of concept work in Squeak with a view
to trying out different implementations of some of the above concepts. Useful insights
were obtained in this way, including:

� The need to include a clean separation of a three layer object architecture
(not for the user interface, business logic and user interface i.e. MVC, but for
the meta meta, meta and instance levels of representation of model defintion
and semantics). This needs to be achieved at a logical level even though the
implementation may flatten the higher two layers to Smalltalk classes

� The idea of context is very powerful and can potentially be used for many of
the solution requirements, including:

� User concepts such as Business Unit or Geographical Location

� Separating local (User), shared (Team or Group) and Global contexts
where a user's default view might include items from his/her own local
context, his/her team and his/her organization's global context

� Distinguishing items by state or “officialness”

� Scenarios

� Models

� Packages

� Projects

In short, anywhere where we need a selected subset of items. Similar
concepts can be exploited at the meta level for concepts such as domains and
model types

� It was found to be useful to introduce a meta meta classification of
relationship types as well to allow some relationships to be treated in special
ways. These will include concepts such as “parent/child”; “requires/required
by”; “instances/instance of”; “contains/part of”; “precedes/follows” and also
spatial relationships such as “above/below”

� A goal identified earlier, viz simplifying definition of models, reports and
documents, is supported by unifying the concepts under the abstraction of
model type categorised into a variety of types including: document; report;
graphical model. An important addition to this list is User Interface, which it
was found, with the new flexibility in specifying representation, could be
described just as another kind of model/document

� Filters at the type/relationship type/domain level can be merged with the
structure of model type, but with different behaviours (exclusion rather than
assembly). Filters for instances can be merged with the concept of model in a
similar way, since the pattern required is similar

� The concepts of tracking changes over time, version and baselines can be
unified allowing easy identification of current, historical and future value

162 Proceedings of EMMSAD 2008

� The concept of retrieving items via state can be achieved with a property
filter

6. Formalising the Models

The resultant model is shown below. The notation shows concepts (conceptual
classes) in boxes. Inheritance is shown via a directed arrow (as in UML). Example
instances are shown as bullet points below the concept box. Containment is shown via
a UML aggregation symbol (diamond on the container end). Associations are shown
as lines. Cardinality of relationships is indicated simply via an asterisk indicating a
“many” possibility on that end of the relationship. An own relationship (such as a
hierarchy between items of the same type) is shown as a containment relationship to
the same concept – a square on the corner. Pure is the name of the proof of concept
project.

Fig 1. Conceptual Model Including Enhancements.

PURE Conceptual Model - Inspired 2007

Kind o f Type
Type

Model Type

Meta Filter

Named
Proper ty Lega l Proper ty

Legal
Re la tionship

Relationsh ip
Type

Kind of Proper ty

Kind o f Model
Type

Kind of
Relationsh ip

Permitted Value

Proper ty
Va lue

Mode l

Item

Relationsh ip

Represen-
ta tion

Filter

Document
Report
Graphical Model
User Interface

String
Decimal
XML
Structure
External Document
...

Type
Structure
View

Parent/Child
Contains/Part Of
Precedes/Follows
...

Text
XML
Bitmap
Symbol
Control
...

TimeStamp

Calendar Time Named Version

Also relates to all items
that are updated

Context
names

includes

Business Unit
Location
Level of Abstraction
...

Placement
Adornment

prior/next

User

*

*

*

*

*
*

*

* *

*

*

* *
*

*

*

* * *

*

*

*

*

Single Value
Enumerated Value
Range Start
Range End

**

* *

*

default

Current

Past

*

*

 Proceedings of EMMSAD 2008 163

Left hand column represents meta-meta constructs: next two columns hold the meta
model; and those on the right model instance content. Note that the above model does
not include the handling of users, groups and roles, mainly due to space constraints.

7. Remarks and Future Work

The model has shown high flexibility, but has also been challenging to implement at
the design level with the requirement for high performance. We are trying to integrate
all structure definition (including of user defined types and kinds of properties) with
the Smalltalk class system for ease of writing business logic, efficiency and
persistence. We have used collections heavily in the implementation and have found
these to be remarkably effective and efficient, provided the type of collection and
navigation strategy are carefully chosen. We are investigating the use of set
operations to implement many filtering, selection and presentation operations
previously coded as application logic in prior implementations. We have to date not
tested massive volumes, but early results are encouraging.

Further work is required in the areas of:

� defining business logic patterns and

� using the representation model to drive automatically generated user
interfaces for complex property types (to date we have confined efforts to
simple data types)

While we have only exploited the concept to a certain degree in this work, we
believe that the concept of context as espoused by Wisse has great merit and would
suggest that language designers (particularly Smalltalk and Ruby) consider
implementing these constructs in a direct and accessible way.

References

Anderson, Chris, 2006: The Long Tail – How endless choice is creating unlimited
demand, Random House Business Books
Englebart, Douglas, 1992: Toward High-Performance Organizations: A Strategic
Role for Groupware, Bootstrap Institute
Fowler, Martin, 1997: Analysis Patterns: Reusable Object Models, Addison Wesley
Inspired, 1999-2007: Internal Archi design documents.
McLeod, Graham, 2001: PAMELA: A Proto-pattern for Rapidly Delivered, Runtime
Extensible Systems, Proceedings EMMSAD 2001, Interlaken, Switzerland
Renggli, Lukas, 2006: Magritte - Meta-Described Web Application Development,
Masters Thesis, University of Bern, Institute for Information Systems and Applied
Mathematics
Wisse, Pieter, 2001: MetaPattern: Context and Time in Information Models, Addison-Wesley

