What is an Aspect
in Aspect-oriented Requirements Engineering?

Hermann Kaindl

Vienna University of Technology, Gusshausstr. 27-29
A-1040 Vienna, Austria
kaindl@ict.tuwien.ac.at

Abstract. Addressing the issue of crosscutting concernsinvahsoftware sys-
tem, the notion of amspecthas been introduced, first for so-called Aspect-
Oriented Programming (AOP) and then, more generétlly Aspect-Oriented
Software Development (AOSD). Unfortunately, thigtioo is used with two
different meanings: one as a synonym for “crossayittoncern”, and the other
as a means to deal with a crosscutting concerrinnitie software. Later, this
notion has been carried over to so-called Asper@rd Requirements Engi-
neering (AORE). This raises questions about the mgés) of an aspect in this
context, and about the relationship of this notmAORE and the same notion
in AOP. We try to answer these questions and atguiefine anaspectas a
means to deal with crosscutting concerns, aotlas a synonym of “cross-
cutting concern”. Most importantly, an aspect in RBis not necessarily re-
lated to an aspect within the software.

Keywords: Crosscutting concerns, aspects, requirements.

1 Introduction

Decomposing a software system according to sonengipproach leads to a modular
decomposition, where the resulting modules encapsuaertain concerns. Other con-
cerns, however, are usually not encapsulated ih swadules and they “end up being
scattered across many modules and tangled wittapather” [4]. Such concerns are
known ascrosscutting concerns

This was the motivation for developing Aspect-OtéehProgramming (AOP) first,
and later generalizing the approach to Aspect-@eknSoftware Development
(AOSD). More recently, Aspect-Oriented Requiremehisgineering (AORE) re-
ceived some attention.

However, the term “aspect” as used in AOSD doesaiways match well the in-
tuitive and usual meaning of “aspect” in naturalgaage, and it is not uniformly
defined even in the context of programming. Andt isimply possible to carry the
concepts and techniques over to the realm of remgnts?

We try to pinpoint open issues and to clarify tloéion of an aspect. In particular,
we investigate its meaning in AORE and distinguisbsscutting concerns in a re-
quirements representation from crosscutting corscerithin the software.



Proceedings of EMMSAD 2008 165

The remainder of this paper is organized in thio¥ahg manner. First, we provide
some necessary background on AOSD for making tigiepself-contained. Then we
present a critical view of AORE approaches, witfoeus on how the notion of an
aspect is defined and used. We also highlightdtascutting concerns in AORE are
not necessarily the same as crosscutting concédthisithe software.

2 Background on AOSD

Since we try to answer the question what an asp@ntAORE, we review first how
this term is defined in AOP and AOSD. As it turng,dhere are two different views,
a problem view and a solution view. In contrast term aspect means in natural
language a particular way in which something appearmay be regarded. So, it is
synonymous to, e.g., appearance, look, or facet.

2.1 Problem View

The first paper on AOP that we are aware of is [i8provides the following defini-
tion (dots are inserted by us):

“With respect to a system and its implementatiomgi® GP-based language, a property
that must be implemented is:

An aspect, if it can not be cleanly encapsulated ia generalized procedureAspects tend
not to be units of the system’s functional deconitims but rather to be properties that af-
fect the performance or semantics of the comporierggstemic ways. ...”

We do not think that this text makes it really cledat an aspect would be, but it
seems as though this term means hereptbblem of crosscutting concerns rather
than a means to deal with it.

The following definition from the AOSD Wiki in th&Veb pages of the Aspect-

Oriented Software Development community is muchearexplicit in this regard:
http://www.aosd.net/wiki/index.php?title=Glossarggact

“Aspects are one kind of concern in software devakq. With respect to a primary or
dominant decompositioaspects areoncernghat crosscut that decomposition.

While it is useful to explicitly take crosscuttimgncerns into account, what is the
point of calling them “aspects”? In particular, g¢hiloes not even match the usual
meaning of this notion in natural language.

2.2 Solution View

Interestingly, the very same Web pages contairifardnt definition of “aspect” in
the context of the definition of “concern”, whichi@avs a different view (dots are
inserted by us):
http://www.aosd.net/wiki/index.php?title=Glossargticern




166 Proceedings of EMMSAD 2008

“... There are many formulations used to capture eotgas well-identified separate units,
aspectsare one such mechanism, that are tuned to cagindsscuttingconcerns.”
We consider this aolutionview, since it is about a “mechanism” to deal withss-
cutting concerns, rather than crosscutting concéremselves.
Also in the literature of Aspect-Oriented Programg{AOP) an aspect is defined,
e.g.,in[4] as
“... a mechanism beyond subroutines and inheritancedcalizing the expression of a
crosscutting concern.”

In AOSD, the term aspect is used, e.g., in [6]
“for a module that is potentially able to encapsulsoftware or design artifacts treating an
otherwise crosscutting concern”.

In the same spirit, we transferred this aspect @gugr to architectures of general
systems involving mechanical, electronic and saféwgarts [1]. The key point is to
bundle the part of the architectural design thalgiaith the crosscutting concern in
an extra modular unit, even though it may crosseethanical, electronic and soft-
ware parts.

In all three cases, an aspect is clearly somethitigin the software system, more
generally as a mechanism or more specifically asodule. We argue that it makes
more sense to use the notion of an aspect for aunkans to deal with crosscutting
concerns rather than as a synonym of “crosscuttorgcern”. While this use of the
notion does also not match its usual meaning inrabtanguage, it makes sense as a
technical term for a technical solution.

2.3 “Early Aspects”

More recently, there was a trend to deal with aspégarlier” in the life cycle, see,
e.g., [3]:
“Early aspectsare concerns that crosscut an artifacksminant decompositioror base
modules derived from the dominant separation-ofeeoms criterion, in the early stages of
the software life cycle. “Early” signifies occurgrbefore implementation in any develop-
ment iteration.”
Here, requirements and software design are simphtdad together, as opposed to
implementation in AOP.
Also in [3], a straight-forward distinction betweeequirements and architecture
can be found as follows:
“An aspect in requirements is a concern that crgdssequirements artifacts; an aspect in
architecture is a concern that crosscuts architelcauntifacts.”

Still, how do crosscutting concerns of requiremeantiifacts relate to those of
architectural artifacts? Can the mechanisms toucapghem be the same? What is an
aspect in the context of requirements?



Proceedings of EMMSAD 2008 167

3 A Critical View of AORE

Let us have a closer look into the literature of ) where aspects have been carried
over to requirements engineering. Also in AORE, s@pproaches use this notion as
a synonym of “crosscutting concern”, while otheregmse mechanisms for dealing
with such concerns. Both do not make clear, howeat crosscutting concerns in
the context of requirements are not necessarilysdme as crosscutting concerns
inside the software. In this spirit, we provider#ical view of AORE.

3.1 Claim of Usefulness for Design and Implemertian

Generally, AORE approaches claim that dealing wibects (in either meaning) is
useful for software development. See, e.g., [3]Jraga
“Identifying and managing early aspects helps tpriome modularity in the requirements
and architecture design and to detect conflictingcerns early, when trade-offs can be
resolved more economically.”
This is, in effect, mixing requirements and softevaiesign, since modularity in the
requirements and in the architecture design areextssarily the same.
In [4], even a direct link is made from certain uggments to the implementation
w.r.t. crosscutting concerns:
“Aspectual requirements are concerns that (for commstructural decompositions) intro-
duce crosscutting in the implementation.”

3.2 Hidden Assumption

The part of this quote “for common structural depositions” may even indicate an
otherwise well-hidden assumption. Most AORE apphheacseem to tacitly assume
that there is theame(or at least similar) dominant decomposition & thquirements
(from outside the software) and of the softwardesysitself!

Only under such an assumption, tsemeconcerns might crosscut the require-
ments and the software design and implementationisSt usually fulfilled?

The requirements are often decomposed into furetiand non-functional ones.
The functional requirements are often grouped aliogrto a functional decomposi-
tion of the overall functionality needed. Use camesrelated to each other in use case
diagrams. Such diagrams may be viewed as reprageatiunctional decomposition
according to use. W.r.t. to such a dominant decaitipa, at least some of the non-
functional requirements usually crosscut the flomal requirements and/or use cases.

Is the software internally always decomposed adogrth these same principles?
This is not necessarily the case, since certaihiteatural styles such as layers,
distributed architecture, repository style etc. dsg other decompositions, at least in
addition. Ironically, the non-functional requirentgemre the ones that may indicate a
certain software architecture following a differadgcomposition, e.g., security re-
quirements may indicate a layered architecture.



168

Proceedings of EMMSAD 2008

3.3 Mix of Requirements and Software Design

So, there is a similar confusion of requirementd aanftware design in AOSD as
previously in object-oriented development methoflf Much as the wide-spread
confusion of “analysis” and “design” especially time object-oriented community,
this confusion may create issues both in theoryiamdactical applications.

3.4 AORE Approaches Based on this Assumption

The following AORE approaches seem to be basedhenhtdden assumption of
having the same decompositions for requirementsaatiih the software:

In [9], a systematic way of identifying crosscugticoncerns using and
w.r.t. viewpointsis presented. It leads to understanding crossgution-
cerns in a representation of requirements thatrdarozed according to
viewpoints. We could not find there any indicatiabout consequences
for possible aspects within the software, howeWghether or not the
same crosscutting concerns will exist inside thitwsoe will largely de-
pend on the dominant decomposition of this software

In [11], a systematic way of identifying crosscuogticoncerns from goal
models is presented (including “functional goalstdsoft-goals”). The
dominant decomposition appears to be a functioeabohposition. Also
here we could not find any indication about conseges for possible as-
pects within the software. Whether or not the sanosscutting concerns
will exist inside the software, will also here lahg depend on the domi-
nant decomposition of this software.

In [2], a systematic way of identifying crosscugtiooncerns is presented,
and modeling them in a software design languagegutsieir Themeap-
proach. This seems to bridge requirements and mesi@ye consciously
with regard to crosscutting concerns.

3.5 AORE Approaches Using Aspects as a Solutioroficept

The following AORE approaches use the aspect natisra solution concept for
dealing with crosscutting concerns:

In [7], aspectsare basic “modules” of requirements specificationpre-
sented using XML tagging. Such an aspect groupsscridting require-
ments. This is in the spirit of the aspect defamitiof [6], but the hidden
assumption of the same dominant decomposition @félquirements and
of the software system itself seems to be behiisdaghproach as well.

In [10], a very appealing application of the aspddea from program-
ming in use cases is proposed. The program codbeoformer corre-
sponds to the action sequences of the latter, tbeithg behavior specifi-
cations. The former behavior is inside the softwavhile the latter is



Proceedings of EMMSAD 2008 169

behavior in the composite system (including theveafe system and the
user). While this approach leads to untanglinghef $cenarios of these
use cases, it is not clear what the consequenedsranntangling of code
in the implementation.

4 Conclusion

The very notion of amspectin software development is a misnomer somehovegsin
it barely matches the intuitive and usual meanifhdaspect” in natural language.
Even worse, it is ambiguously defined in AOP.

Therefore, we tried to clarify the different meagsnof “aspect”, with a focus on
AORE. We argue to define it as a means to deal @ritlsscutting concerns, and not
as a synonym of “crosscutting concern”.

From a research point of view, it is important avé a conceptually clean view of
these issues and concepts. Otherwise, there maprfesion in practical applica-
tions. In particular, the hidden assumption ofghene dominant decomposition of the
requirements and the software itself is dangerdlsenever it is not fulfilled, a cross-
cutting concern identified in a requirements repngation is not necessarily a cross-
cutting concern inside the software, i.e., in desigd implementation.

Still, AORE is useful in its spirit of dealing wittrosscutting concerns “early” and
also in the context of requirements. This may lem@ better understanding of the
requirements and of some of the issues involvedeweloping the system. However,
it is necessary to consider the decompositions irs#te requirements representation
and in the software itself. An aspect identifiedagpect-oriented requirements engi-
neering is not necessarily related to an aspebimihe software.

Acknowledgments

Edin Arnautiovic provided useful comments to arieawersion of this paper.

References

1. Arnautovic, E., Kaindl, H.Aspectsfor crosscutting concerns in systems architecljres
Proc. of the Second Annual Conference on Systegiadating Research (CSER-02p04,
pp. 1-10

2. Baniassad, E., Clarke, S., 2004. Theme: An Apprdac Aspect-Oriented Analysis and
Design. InProc. of the 26th International Conference on Sofénangineering (ICSE’'04)
pp- 158-167

3. Baniassad; E., Clements, P.C., Araujo, J., MoréiraRashid, A., Tekinerdogan, B., 2006.
Discovering early aspectEE Software23(1): 61-70

4. Elrad, T., Filman, E.R., Bader, A., 2001. Aspettited programming: Introduction.
Communications of the ACM4(10):29-32



170 Proceedings of EMMSAD 2008

5. Kaindl, H., 1999. Difficulties in the Transitidrom OO Analysis to DesignEEE Software
16(5):94-102

6. Katara, M., Katz, S., 2003. Architectural VieafsAspects. IfProc. of the Second Interna-
tional Conference on Aspect-Oriented Software Devetopt (AOSD 2003)ACM Press,
pp. 1-10

7. Katz, S., Rashid, A., 2004. From aspectual requénts to proof obligations for aspect-
oriented systems. IRroc. of the 12th IEEE International Requirementsyiieering Con-
ference (RE'04)pp. 48-57

8. Kiczales, G., Lamping, J., Mendhekar, A., Madda,Lopes, C., Loingtier, J.-M., Irwin, J.,
1997. Aspect-Oriented Programming.Rnoc. ECOOP '97LNCS 1241, Springer-Verlag,
pp. 220-242

9. Rashid, A., Sawyer, P., Moreira, A., Araujo, 2002. Early aspects: a model for aspect-
oriented requirements engineering.RAroc. of the IEEE Joint International Conference on
Requirements Engineering (RE'Qpp. 199-202

10.Xu, D., Vivek Goel, Nygard, K., 2006. An Aspéatiented Approach to Security Require-
ments Analysis. IProc. of the 30th Annual International Computer ®afe and Applica-
tions Conference (COMPSAC'Q@p. 79-82

11.Yu, Y., Leite, J.C.S.P., Mylopoulos, J., 2004orR goals to aspects: discovering aspects
from requirements goal models. Pnoc. of the 12th IEEE International Requirementgie
neering Conference (RE'04)p. 3847



