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Abstract 
The paper proposes a method for creating a computer agent for supply chains. The novelty of 

the research lies in the fact that to increase the efficiency of the computer agent, its 

functioning is based on the connectionist approach instead of using the classical production 

and logical approach. To expand the range of tasks solved by agents, the article proposes a 

reactive agent with feedback, which makes a decision based on perception or a sequence of 

perceptions and a previous action or a sequence of previous actions, as well as a reactive 

agent with an internal state and feedback, which is an extension of the reactive agent with an 

internal state and makes a decision based on perception, previous internal state, and previous 

action. For a reactive agent with an internal state and feedback, a Jordan-Elman artificial 

neural network was proposed, which is a combination of Jordan and Elman neural networks, 

and the structure of its model was determined in the course of a numerical study. The 

experiments performed showed that when the number of hidden neurons is not less than the 

number of neurons in the input layer, the value of the root mean square error does not change 

significantly, and the selected network gives results with a minimum error. Methods for 

determining the parameters of the proposed Jordan-Elman neural network model were 

proposed. This made it possible to ensure high speed and accuracy of calculations based on 

the model. The proposed method for creating an agent based on artificial neural networks can 

be used in various intelligent computer systems that use multi-agent interaction. 
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1. Introduction 

The fourth industrial revolution or Industry 4.0 has brought about rapid changes in technology, 

manufacturing and social processes in the 21st century due to increasing interconnection and 

intelligent automation. Part of this phase of industrial change is the integration of artificial intelligence 

with robotics, which blurs the boundaries between the physical, digital and biological worlds. In terms 

of logistics, Industry 4.0 is expressed in high customer orientation, strong links between industries, 

dynamic supply chains. These characteristics can be achieved through the use of multi-agent systems. 

The work aims to develop an agent based on an artificial neural network. To achieve the goal, the 

following tasks were set and solved: 

 propose a formal description of reactive agents' functioning models; 

 propose a formal description of neural networks-based reactive agents’ functioning models; 

 create a neural network model for the proposed agent with internal state and feedback; 
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 propose a performance assessment criterion of a neural network model for the proposed agent 

with an internal state and feedback; 

 create methods for determining the parameters values of the neural network model for the 

proposed agent with internal state and feedback; 

 perform numerical studies. 

2. Literature review 

Currently, the main types of computer agents in multi-agent systems are reactive and proactive 

agents. 

Traditionally, a simple reactive agent decides by applying production rules (called behaviors), and 

this agent has a database (which stores its current state) and a production rule base. The condition of a 

production rule is a perception (or a sequence of perceptions), the conclusion is an action. 

Advantages of simple reactive agents [1]:  

1. Ease of implementation. 

2. Quick reaction (quick decision-making). 

3. Robust decision-making. 

4. Ease of organization of multi-agent interaction. 

Disadvantages of simple reactive agents [2]: 

1. Simple reactive agents do not use world models, so they must have enough local information 

(i.e., information about their current state) to determine an acceptable action. 

2. Since simple reactive agents make decisions based on local information (i.e., information 

about their current state), it is difficult for them to make a decision based on non-local information 

(i.e., information about the current state of other agents). 

3. Weak learning ability of simple reactive agents. 

4. It is not clear how the resulting behavior of simple reactive agents emerges from their 

interactions between themselves and the environment since inference is not used. 

5. It is difficult to build a simple reactive agent with a large number of production rules. 

6. Low level of intelligence, providing low autonomy. 

Traditionally, a reactive agent with an internal state (or based on a model) makes a decision 

through inference, and has a database (it stores information about the state of the world - an internal 

state), a world model (a knowledge base containing knowledge about how the world changes 

independently from the agent, and knowledge about how the agent's actions affect the world) and the 

inference engine. 

Advantages of reactive agents with internal state [3]: 

1. Simple logical semantics. 

2. High level of intelligence, providing high autonomy. 

Disadvantages of reactive agents with internal state [4]: 

1. The environment can change faster than an agent with an internal state makes a decision. 

2. The complexity of mapping the environment into symbolic (logical) perception (in the form 

of logical formulas) performed by the perception function. For example, there is the problem of 

converting an image or sound to a set of declarative statements representing that image or sound. 

3. The complexity of representing the dynamic environment properties of the real world using 

classical first-order predicate logic. Representing even simple procedural knowledge (that is, 

knowing what to do) in traditional logic can be quite difficult. 

4. The complexity of organizing multi-agent interaction. 

Traditionally, a proactive agent decides on the choice of a goal (from possible goals) and how to 

achieve it (forms an action plan) based on a logical conclusion, and has a database (it stores 

information about the state of the world - an internal state, as well as a selected goal), a world model 

(a knowledge base containing knowledge about how the world changes independently of the agent, 

and knowledge about how the agent's actions affect the world) and an inference engine. A proactive 

agent may also use a utility function. 

The advantages and disadvantages of proactive agents are analogous to the advantages and 

disadvantages of internal state reactive agents. 



Thus, the lack of effectiveness of the considered computer agents is a relevant problem. 

Nowadays, instead of expert systems with logical inference, used in decision-making agents, 

artificial neural networks are actively used [5]. Depending on the types of agents used and the tasks 

they solve, static, dynamic and recurrent neural networks can be selected [6, 7]. 

Advantages of neural networks: 

 the possibility of their training and adaptation [8, 9]; 

 parallel information processing that increases computing power [10]; 

 the ability to identify patterns in the data, their generalization, i.e., extracting knowledge from 

data, so knowledge about the object is not required (for example, its mathematical model) [11,12]. 

Disadvantages of neural networks: 

 a high probability of the training and adaptation method hitting a local extremum [13]; 

 inaccessibility for human understanding of the knowledge accumulated by the network (it is 

impossible to represent the relationship between input and output in the form of rules), since they 

are distributed among all of the elements of the neural network and are presented in the form of its 

weight coefficients [14, 15]; 

 difficulty in determining the structure of the network, since there are no algorithms for 

calculating the number of layers and neurons in each layer for specific applications [8, 16]; 

 difficulty in forming a representative sample [17, 18]. 

Thus, none of the networks satisfies all the criteria. 

To improve the efficiency of determining the parameter values of neural network models, 

metaheuristic search is used instead of local search. 

Advantages of metaheuristic methods [19]: 

 combines heuristic methods with an efficient strategy; 

 low probability of the method hitting a local extremum due to the use of random search. 

Disadvantages of metaheuristic methods [20-22]: 

 the method may not converge; 

 the method is not very accurate; 

 iteration number is not present when searching for a solution; 

 there is only a generalized method structure or the method structure is focused on solving only 

a specific problem; 

 real potential solutions are inadmissible; 

 the method is not designed for conditional optimization; 

 there is no formalized search strategy for parameter values. 

This raises the problem of constructing an effective metaheuristic optimization method for training 

neural networks. 

3. Formal description of the reactive agents’ functioning models 

A simple reactive agent functioning model 

Perception function 

PerEsee :  
maps the current state of the environment into a new perception. 

Action selection function 

AcPeraction :  
maps a new perception into a new action 

or 

AcPeraction *:  
maps a sequence of perceptions (new and previous) into a new action.  

Functioning model of a reactive agent with an internal state 

Perception function  

PerEsee :  
maps the current state of the environment into a new perception. 



State change function  

IPerInext :  
maps a previous internal state and a new perception into a new internal state. 

Action selection function 

AcIaction :  
maps the new internal state into a new action. 

In addition to these two types of reactive agents, this article proposes a feedback reactive agent that 

makes a decision based on a perception (or a sequence of perceptions) and an action (or a sequence of 

actions). Also, a reactive agent with an internal state and feedback is proposed, which is an extension 

of the reactive agent with an internal state and also considers action. 

The functioning model of a reactive agent with feedback, proposed by the authors 

Perception function  

PerEsee :  

maps the current state of the environment into a new perception. 

Action selection function 

AcAcPeraction :  

maps a new perception and a previous action into a new action 

or 

AcAcPeraction  **:  

maps a sequence of perceptions (new and previous) and a sequence of previous actions into a new 

action.  

The functioning model of a reactive agent with an internal state and feedback, proposed by the 

authors 

Perception function  

PerEsee :  

maps the current state of the environment into a new perception. 

State change function  

IAcPerInext :  

maps a previous internal state, a new perception, and a previous action into a new internal state. 

Action selection function 

AcIaction :  

maps the new internal state into a new action. 

4. Formal description of the neural networks-based reactive agents 
functioning models 

The following main functioning models of reactive agents based on shallow neural networks are 

possible: 

1. For a simple reactive agent, the non-linear regressive/autoregressive model corresponds to:  

 forward neural network (FNN) 

)))(x(()(y nfgn  , 

 nonlinear autoregressive neural network NAR(p) 

))(),...,1(),(()( pnxnxnxfny  . 

2. For a reactive agent with feedback, the nonlinear input-output model corresponds to the: 

 Jordan neural network (JNN) 

)))1(y),(x(()(y  nnfgn , 

 nonlinear autoregressive moving average neural network NARMA(p,q) 

))(),...,1(),(),...,1(),(()( qnynypnxnxnxfny  . 

3. For a reactive agent with an internal state, the nonlinear state space model corresponds to an 

Elman neural network (ENN) or a simple recurrent neural network (SRN) 

))1(s),(x()(s  nnfn , 



))(s()(y ngn  . 

4. For a reactive agent with an internal state and feedback, the nonlinear state space model with 

backward output corresponds to the Jordan-Elman neural network (JENN) proposed by the authors 

in this article 

))1(y),1(s),(x()(s  nnnfn , 

))(s()(y ngn  . 

5. Jordan-Elman neural network model 

Figure 1 shows the structure of the proposed Jordan-Elman Neural Network (JENN) model, which 

is a recurrent two-layer artificial neural network based on MLP. 
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Figure 1: The structure of the Jordan-Elman neural network (JENN) model 
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2. The output layer output signal calculation 
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where 
)(kN  – number of neurons in the k th

 layer; 
)(k

ijw  – connection weight from the i
th
 neuron to the j

th
 neuron on the k

th
 layer;  

)(

0

k

jw  – offsets on the k
th
 layer;  

)()( ny kj  – output of the  j
th
 neuron on the k

th
 layer at the time n;  

)(kf  – activation function of neurons of the k
th
 layer (usually )()()( ssigmsf k  ). 

6. Performance assessment criterion of the Jordan-Elman neural network 
model 

In this work, to determine the parameters’ values of the Jordan-Elman model, the model adequacy 

criterion was chosen, which means the choice of such values of parameters 
)1({ ijwW  , })2(

ijw , that 



deliver a minimum of the mean square error (the difference between the model output and the desired 

output): 

W

P
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P

F min)(
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1
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 , (1) 

where P  – test set cardinality.  

7. Determining the parameters’ values of the Jordan-Elman neural network 
model based on the Adam method 

1. Initialization. 

1.1. Number of training iteration 0n .  

1.2. Initialization using the uniform distribution on the interval (0,1) or [-0.5, 0.5] weights )0()1(

ijw , 

)2()1()0(,0 NNNi  , 
)1(,1 Nj , )0()2(

ijw , 
)1(,0 Ni , 

)2(,1 Nj , where 
)(kN  – number of 

neurons in the k th
 layer. 

1.3. The zero vector of the first moments )1(m  of length qN  is set 

)2()1()1()2()1()0( )1()1( NNNNNNNq  . 

1.4. The zero vector of the second moments )1(v  of length qN  is set 

)2()1()1()2()1()0( )1()1( NNNNNNNq  . 

1.5. Parameter   is set to determine the learning rate (usually 001.0 ), the first and second 

moment decay rates are 1  and 2  respectively, )1,0[, 21   (usually 9.01   and 999.02  ), 

and the stability parameter   to prevent division by zero (usually 
810 ). 

2. Setting the training set },|),{(
)2()0( NN RR   dxdx , P,1 , where x  –  th

 learning 

input vector, d  –  th
 learning output vector, 

)0(N  – number of input layer neurons, 
)2(N  – number 

of output layer neurons, P  – the power of the training set. The number of the current pair from the 

training set 1 . 

3. The output signal initial calculation for the first layer  
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4. The output signal calculation for each layer (forward run) 
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)(kN  – number of neurons in the k

th
 layer; 
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)(kf  – activation function of neurons of the k
th
 layer. 

5. Calculation of ANN error energy 
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6. Setting of synaptic weights based on the generalized delta rule (reverse move) 
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where   – parameter that determines the learning rate (with large   learning is faster, but the risk of 

getting an incorrect solution increases) 10  , 
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7. The vector of weights is formed 
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8. The vector of partial derivatives (gradient) is formed 
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9. The vector of the first moments is calculated based on the exponential moving average 
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10. The vector of second moments is calculated based on the exponential moving average 
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11. The weight vector is calculated (the first and second moments are corrected due to their 

initialization by zero and the training step is scaled) 
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12. Checking the termination condition. 

If 0 mod Pn , then 1 , 1 nn , go to 4. 



If 0 mod Pn  and 
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8. Determining the parameters’ values of the Jordan-Elman neural network 
model based on the modified metaheuristic method for a charged system 
search 

Charged system search (CSS) was proposed by Kaveh and Talatahari and is based on Coulomb's 

law from electrostatics and Newton's second law from mechanics. The position of each particle in 

space corresponds to a solution (vector of parameters’ values). The target function is the adequacy 

criterion of the neural network model (1). In this paper, a modification of this method is made - 

annealing simulation is introduced, which allows you to explore the entire search space at the initial 

iterations (the exploitation parameter is small, the exploration parameter is large), and at the final 

iterations the search becomes directed (the exploitation parameter is large, the exploration parameter 

is small), while the operation and research parameters change non-linearly. 

1. Initialization. 

1.1. Setting the probability of generating a position randomly 
genP ; probability of modifying the 

position selected from memory 
updateP , parameter   for generating a new position, moreover 

10  , initial temperature 0T , cooling coefficient  . 

1.2. Setting the maximum number of iterations N , population size K , memory size maxL , particle 

position vector length M  (number of neural network model parameters), minimum and maximum 

values for the position vector 
maxmin , jj xx , Mj ,1 , minimum and maximum values for the velocity 

vector 
maxmin , jj vv , Mj ,1 . 

1.3. Randomly generating the best position vector 

),...,( **
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*

Mxxx  , )1,0()( minmaxmin* Uxxxx jjjj  , 

where )1,0(U  – is a function that returns a uniformly distributed random number in the range 

]1,0[ . 

1.4. Creation of the initial population P . 

1.4.1. Particle number 1k , P . 

1.4.2. Randomly generating a position vector kx  

),...,( 1 kMkk xxx  , )1,0()( minmaxmin Uxxxx jjjkj  . 

1.4.3. Randomly generating a velocity vector kv  

),...,( 1 kMkk vvv  , )1,0()( minmaxmin Uvvvv jjjij  . 

1.4.4. If Pvx kk ),( , then )},{( kk vxPP  , increase particle number k  by one. 

1.4.5. If Kk  , then go to 1.4.2. 

1.5. Order P  by target function, i.e., )()( 1 kk xFxF . 

1.6. Put maxL  best (first) particles into the memory Q . 

2. Iteration number 1n . 

3. Determine the best particle in terms of the target function 
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5. The sphere radius calculation 
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6. The particle charge calculation 
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7. Calculation of the gap between two charged particles 

||2/)(||

||||

*klk

lk
kl

xxx

xx
r




 , Klk ,1,  , 

where ||||   – is the norm (for example, Euclid). 

8. Determine if one particle is moving towards another, and it is believed that all good particles 

can attract bad ones, but only some bad particles can attract good ones 
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9. Determine if the particle is inside the sphere 
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10. Calculate the resulting electrical force acting on particles inside or outside the sphere, taking 

into account Coulomb's law 
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11. Calculate particle acceleration 

k

k
k
m

f
a  , Kk ,1 . 

12. Modify the position of the particles, taking into account Newton's second law and simulated 

annealing. 

12.1. k

old

k xx  , Kk ,1 . 

12.2. )1,0(1 U . 

12.3. )1,0(2 U . 

12.4. )))(/1exp(1()(1 nTn  , 0)( TnT n . 

12.5. ))(/1exp()(2 nTn  , 0)( TnT n . 

12.6. tvntanxx kk

old

kk  )()( 22
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where 1t  – time quantization step,  

km  – the mass of the l th
 particle, coinciding with the value of its charge, i.e., kk qm  , 

)(nT  – annealing temperature at iteration n , 

0T  – initial annealing temperature, 

  – cooling factor, 

)(1 n  – operation parameter at iteration n , 

)(2 n  – research parameter at iteration n . 

13. Modify the position of particles that are out of bounds. 

13.1. Particle number 1k . 

13.2. If ],[ maxmin

jjkj xxx  , then go to 13.9. 



13.3. If 
genPU )1,0( , then go to 13.8. 

13.4. The m th
 particle is randomly selected from the memory, i.e. 

))1,0()1(1( max ULroundm  , 

where ()round  – is a function that rounds a number to the nearest integer. 

13.5. If 
updatePU )1,0( , then mk xx ~ , go to 13.9. 

13.6. Generation of solution kx  from solution mx
~ . 

13.6.1. ))1,0(21)((~ minmax Uxxxx jjmjkj  . 

13.6.2. },max{ min

kjjkj xxx  , },min{ max

kjjkj xxx  . 

13.7. Go to 13.9. 

13.8. Random generation of position kx  

)1,0()( minmaxmin Uxxxx jjjkj  , Mj ,1 . 

13.9. If Kk  , then increase the number of particles k  by one and go to 13.2. 

14. Modify particle speed 

t

xx
v

old

kk
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
 , Kk ,1 . 

15. Order P  by target function, i.e., )()( 1 kk xFxF . 

16. Modify memory. 

Merge particles from the memory Q  and population P , order pool HP  by target function, i.e., 

)()( 1 kk xFxF , and put the top maxL  best (first) particles from the pool HP  into the memory 

Q . 

17. Stop condition. 

If Nn  , then increase the iteration number n  by one and go to 3. 

The result is 
*x . 

9. Experiments and results 

The simulation of the determination process of the parameters’ values of the neural network model 

based on the modified method of charged system search (CSS) was carried out in the Matlab package 

using the Parallel Computing Toolbox. It is proposed to perform parallel processing of particles using 

the parfor parallel loop, which is included in Parallel Computing Toolbox, since the formation of each 

particle and its velocity in step 1, the modification of the acceleration of each particle, the position of 

each particle, the velocity of each particle, in steps 6-11, 12-13 and 14, respectively, occurs 

independently of other particles, and the order of formation and modification of particles is arbitrary. 

The parallel loop parfor replaces the sequential for loop and is based on OpenMP technology, but 

unlike it, it can be used not only on a local multi-core machine but also on a cluster. The advantage of 

this approach over CUDA and MPI technologies [23, 24] (represented by the spmd block in Parallel 

Computing Toolbox) is the simplicity and clarity of technical implementation. Due to the small 

number of particles, it becomes possible to perform the formation and modification of each particle on 

the corresponding physical core of the machines’ processors united in a cluster. 

The size of the swarm of particles K =40, the number of iterations N=100, the memory size 

maxL =K/4, the probability of randomly generating a position 
genP =0.05, the probability of modifying 

a position selected from memory 
updateP =0.1, the parameter for generating a new position  =0.1, 

initial temperature 1060 T , cooling factor 94.0  were selected.  

The function of decreasing the annealing temperature is determined by the formula 0)( TnT n  

and is shown in Figure 2. 

 



 
Figure 2: The function of decreasing the annealing temperature 

 

The dependence (Figure 2) of the annealing temperature on the iteration number shows that the 

annealing temperature decreases with an increase in the iteration number. 

The operating parameter is determined by the formula ))(/1exp()(1 nTn   and is shown in 

Figure 3.  

 

 
Figure 3: Operating parameter 

 

The dependence (Figure 3) of the operating parameter on the iteration number shows that the value 

of this parameter increases non-linearly with time. 

The research parameter is determined by the formula ))(/1exp()(2 nTn   and is shown in 

Figure 4. 

The dependence (Figure 4) of the research parameter on the iteration number shows that the value 

of this parameter decreases non-linearly over time. 

To determine the structure of the Jordan-Elman neural network model, i.e., to determine the 

number of hidden neurons, several experiments were carried out, the results of which are shown in 

Figure 5. As input data for determining the values of the parameters of the Jordan-Elman neural 

network model, a selection of values based on the data of the logistics company «Ekol Ukraine» was 

used. The number of input neurons was 8. The criterion for choosing the structure of the neural 

network model was the minimum mean square prediction error (MSE). 



 
Figure 4: Research parameter 

 

 
Figure 5: Graph of the dependence of the MSE value on the number of hidden neurons 

 

As can be seen from the graph in Figure 5, with an increase in the number of hidden neurons, the 

error value decreases. For prediction, it is sufficient to use 8 neurons of the hidden layer, since with a 

further increase in the number of neurons in the hidden layer, the change in the error value is 

insignificant. Thus, the number of hidden neurons coincided with the number of input neurons. 

Methods for determining the values of the parameters of the Jordan-Elman neural network model 

by the criterion of minimum mean square error (MSE) of the forecast and computational complexity 

were investigated in this work (Table 1), where 
)(kN  is the number of neurons in the k

th
 layer, Р is the 

power of the training set, N is the number of iterations, K is the particle swarm size. 

 

Table 1 
Comparative characteristics of methods for determining parameter values 

Method 
Criterion 

Adam modified CSS 

Minimum MSE of the 
forecast 

0.9 0.95 

Computational 
complexity ≈

)0(N *
)1(N *

)2(N *
)1(N *P*N 

≈
)0(N *

)1(N *
)2(N *

)1(N *P*N*K 

(without parallelism) 

≈
)0(N * )1(N * )2(N * )1(N *P*N  

(with parallelism) 

 



According to Table 1, in terms of MSE prediction, the modified CSS method gives the best results, 

in terms of computational complexity without using parallelism, the Adam method gives the best 

results, and in the case of parallelism, these methods give the same results. 

10. Conclusions 

The article examines the problem of increasing the efficiency of computer agents in supply chains. 

To solve this problem, the existing computer agents of multi-agent systems were investigated. These 

studies have shown that today the most effective is the use of a computer agent functioning model 

based on the connectionist approach. 

To expand the range of tasks solved by agents, the article proposes a reactive agent with feedback, 

which makes a decision based on perception or a sequence of perceptions and a previous action or a 

sequence of previous actions. Also proposed is a reactive agent with an internal state and feedback, 

which is an extension of the reactive agent with an internal state and makes a decision based on 

perception, previous internal state and previous action. 

For a reactive agent with internal state and feedback, a Jordan-Elman artificial neural network was 

proposed, which is a combination of Jordan and Elman neural networks. In the course of a numerical 

study, the structure of its model was determined. The experiments performed showed that when the 

number of hidden neurons is not less than the number of neurons in the input layer, the value of the 

mean square error does not change significantly, and the selected network gives results with a 

minimum error. 

Methods for determining the parameters’ values of the proposed Jordan-Elman neural network 

model were proposed. This made it possible to ensure high speed and accuracy of calculations based 

on the model. The proposed metaheuristic method for determining parameter values allows for 

parallelization and uses annealing simulation, which allows the entire search space to be explored in 

the initial iterations, and in the final iterations the search becomes directed. 

The proposed methods for determining the parameters’ values are intended for software 

implementation in the Matlab package using the Parallel Computing Toolbox, which speeds up the 

process of determining the parameters’ values of the Jordan-Elman neural network model. 

The developed neural network model and methods for determining its parameters make it possible 

to increase the efficiency of the agent's functioning. The software that implements the proposed 

method for creating an artificial neural networks-based computer agent was developed and studied 

with the database of the «Ekol Ukraine» logistics company. 

The experiments performed have confirmed the efficiency of the developed software and allow us 

to recommend it for practical use in solving supply chain management problems using multi-agent 

systems. The prospects for further research are to test the proposed method on a wider set of test 

databases. 
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