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Abstract 
A typical separation process is formalized using the example of iron ore (magnetite quartzites) 
beneficiation technology. This study examines the suitability of various neural network 
structures as mathematical models for regression. The results of computer modeling for 
training using real indicators of magnetite quartzite beneficiation and reference models are 
presented. Comparison of the approximation results for different neural network bases is also 
included. The authors tested various samples of reference and noisy data. The best intellectual 
models are recommended for automating separation processes. 
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1. Introduction 

This study solving the problem of selecting optimal scientific approaches for formalizing 
technological processes (TP) in separation technology, with the aim of automating control. A typical 
example is the TP for beneficiation (separation or concentration) of iron ore (magnetite quartzites). 
Numerous works of the authors [1-3] have convincingly demonstrated that artificial intelligence (AI) 
technologies hold the greatest potential here. This is mainly due to factors such as non-linearity, non-
stationarity, a large number of parameters, incomplete information, etc. [4] Despite the existence of 
numerous studies in this area, some issues require ongoing clarification and adaptation to the conditions 
of specific TP. These include the selection of architecture, topology, teaching methods, and hardware 
and software implementation, etc. [4-6] Therefore, this paper examines several promising intellectual 
approaches and mathematical models based on the use of artificial neural networks. 

2. Formalization models of the process based on neural networks 

A scheme is proposed [2] for using artificial intelligence technologies (neural networks, fuzzy logic, 
evolution, synergetic, etc.) to build models of technological processes. This scheme represents a 
formalized version of a multi-stage concentrating process.  

The following notations are used in the scheme: Pi represents an apparatus or stage in the 
technological process (scheme PG); X represents the set of input actions that affect the control object. 
This set includes both external PG inputs to the process and inputs of individual devices Pi. The inputs 
can be controlled influences (i.e., control inputs) and uncontrolled influences (i.e., disturbances). 
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Disturbances are sometimes measurable, but in other cases, they can only be assessed verbally (e.g., 
large, small, etc.). Y represents the set of outputs, which, similar to X, combines the outputs of the entire 
process and individual devices Pi. While all outputs are potentially controllable, in practice, only a 
subset of them are typically controlled. Not all connections between input signals and outputs can be 
determined using classical transfer functions (W(p)). This limitation is due to the dimension of the 
problem and the level of knowledge of the object under study. Although certain parameters (factors) 
may be known to exist, it may not always be possible to measure or evaluate them accurately enough. 
However, if a parameter is expected to have a significant effect on the dynamics of the process, it should 
be included in the consideration. If an accurate (quantitative) assessment is impossible, a fuzzy 
(linguistic) assessment can be assigned to a parameter. The implemented approach for developing 
technology for operational forecasting of concentration processes assumes the presence of implicit 
mutual influence among the technological parameters of the process and the characteristics of 
separation products.  

To begin the analysis, we consider a scenario where the characteristics of the feedstock and all 
technological parameters are assumed to have a significant influence on the process outputs. The 
process model is represented as a directed graph, with the parameters as nodes and the arcs indicating 
their mutual influence. This representation of the technological process is similar to a neural network, 
where the nodes contain functions that convert signals. 

 
Figure 1: Scheme of a formal representation of a multi-stage technological process [2] 

 
It is known that to formalize the beneficiation TP under the conditions of a technological line, we 

need to consider a number of parameters that can be represented as a "black box" in classical cybernetics 
(see Fig. 2). 
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Figure 2: Process line (section) of concentrating as the object of intelligence control [1, 3] 
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It should be noted that the indices, such as εγβα ,,, , can be monitored for several products (e.g., 

total iron and magnetic properties, etc.). Additionally, the factors 0,,,, dgρξα  (Fig.2) can be 
considered a priori information, as they are determined in preceding technological processes, such as 
ore extraction from an open-pit mine or crushing in a crusher, and are not directly controlled (thus, they 
can be considered as disturbances). Other indices (Fig.2) are generated during the beneficiation process 
and can be regulated or adjusted based on the specific process conditions. Monitoring of these factors 
is performed, but not always with the necessary precision and accuracy (particularly for qualitative 
indicators). Therefore, the distribution of the state vector on input and output indices is conditional, as 
most of the parameters on output of the first stage will serve as input for the second stage, and so on. 



 
Neural networks are successfully used for the synthesis of such control systems for dynamic objects 

[3]. Neural networks have a number of properties that make them promising as an analytical tool for 
control systems. In the context of the task under consideration, this is, first of all, the ability to learn 
from examples. The presence of large volumes of monitoring data, in which interrelated measurements 
of inputs and outputs of the system are presented, makes it possible to provide the neural network with 
representative training samples. Other important properties are the ability of the neural network to adapt 
to changes in the properties of the control object and the external environment, as well as high resistance 
to “failures” of individual elements of the network due to the parallelism originally incorporated into 
its architecture. The ability of a neural network to predict directly follows from its ability to generalize 
and highlight hidden dependencies between input and output data. Once trained, the network is able to 
"predict" future output values based on a few previous values and current monitoring data with a high 
degree of precision.  

Within the framework of ongoing research, the use of backpropagation networks seems to be the 
most promising. Networks of this type generally have significantly shorter training times than 
backpropagation networks, which allows them to respond more quickly to changes in the conditions of 
the enrichment process, such as fluctuations in feedstock characteristics, process parameters, or 
equipment wear. The counter-propagation neural network combines two well-known algorithms: 
Kohonen's self-organizing map [4] and Grossberg's star [5]. This combination enhances the network's 
generalizing abilities and enables correct output even with incomplete or slightly distorted input data. 

The analysis of the potential of using neural networks for creating models for express analysis of 
production processes has led to the determination of the neural network model structure. This was 
achieved by analyzing the technological scheme of the flotation department, taking into account the 
study's previous results and the conceptual principles of the technology for modeling production 
processes, such as mineral ore enrichment, which were already adopted within the project. 

The parameters used in the model are classified into three groups: benchmarks, control parameters, 
and indicators. Benchmarks include the characteristics of the input and output products of the flow 
sheet. The model considers 15 control parameters, which are the parameters that can be influenced to 
change the conditions for the implementation of the technological process and the values of control 
indicators. The control parameters in the model include temperature, humidity, pressure, liquid level, 
voltage, current, etc. Overall, approximately 27 indicative parameters can be considered. 

 
Figure 3: Model of a standard three-layer counter-propagation neural network [7] 

 
Layer 0 neurons do not perform calculations but serve as branching points. Each layer 0 neuron is 

connected to every neuron in layer 1 (Kohonen's layer), and each neuron in layer 1 is connected to every 
neuron in layer 2 (Grossberg's fracture). Each connection link has its own weight associated with it. 
The weights wi of connections of layers 0 and 1 form a matrix of weights W, and the weights VJ of 
connections of neurons in layers 1 and 2 form a matrix of weights V. The weight values are adjusted in 
the network training mode, when a priori known vectors of inputs X and outputs Y are fed into the 



model (Fig. 1). In the predictive mode, the input vector X, which is generated based on the current 
monitoring data, is fed into the model, and the output vector Y is generated by the network. The output 
of each layer neuron is simply the sum of the weighted inputs. The Kohonen layer uses a competitive 
learning process in which the neuron with the highest weighted sum of inputs is selected as the winner. 
The output of this neuron is assigned the value "1", and the outputs of the remaining neurons of the 
Kohonen layer are assigned the value "0". The Grossberg layer functions in a similar way - its outputs 
are determined by the weighted sum of the corresponding inputs from the Kohonen layer. But, since 
only one neuron of the Kohonen layer has the value “1” set at the output, then in fact each neuron of 
the Grossberg layer only outputs the value of the weight that connects this neuron with the only non-
zero Kohonen neuron. In essence, the Kohonen layer classifies input vectors into similar groups, thereby 
providing the definition of regions of the multidimensional input space that map to a small 
neighbourhood of the same “point” in the output space. This is achieved by adjusting the weights of the 
Kohonen layer, which ensures that the same neuron of this layer is activated by the corresponding input 
vectors. Before training starts, all weights of the network are assigned some random values. During the 
learning process, the weight vectors change by "tracking" a small group of input vectors. Training ends 
when the required pattern of outputs is formed at the output of the neural network. The training of the 
Grossberg layer is carried out by adjusting only those weights that are associated with a Kohonen neuron 
that has a non-zero output. The amount of weight correction is proportional to the difference between 
the weight and the desired output of the Grossberg neuron to which it is connected. The use of a neural 
network model assumes an a priori classification of the states of the system (beneficiation process) into 
a finite number of options. Each state in which there is a violation of the procedural characteristics of 
the process is associated with a set of corrective actions that involve specific changes in control 
parameters. Both expert assessments and formal classification methods, such as factor and cluster 
analysis, can be used for classification. The values of output vectors Y are used as the main classification 
criterion. To determine the current state of the process, a comparison is made between the output of the 
neural network model and the stored vectors in the system's database that determine the selected states 
of the enrichment process. If the database indicates that the identified state corresponds to a violation 
of the regulatory characteristics, then the system retrieves recommendations from the database for 
correcting the state. If there is an appropriate actuator, the launch of corrective actions can be automated. 
The developed neural network model of the flotation process was implemented and studied in the 
Matlab environment [7]. All controlled input parameters are fed to the input of each element of the 
neural network. The weight coefficients were selected in the process of automatic learning on 
predetermined samples of real data obtained by the SCADA system as a result of monitoring the 
production process. In the course of a series of computational experiments, the model was adjusted and 
provided the synthesis of output vectors corresponding to a control sample of data from a real 
production process. 

3. Research of the effectiveness of methods of the effectiveness of methods 

To evaluate the efficiency of radial basis networks and multilayer perceptrons, consider the problem 
of approximating the function shown in [8] 
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where changing variables within -3 ≤ x≤ 3 and -3 ≤ y≤ 3. The graph of this 

function is shown in Fig.3. 
Based on a training set of 625 data groups ([x, y], d) generated with a uniform distribution of 

variables x and y in their domains of definition, a 2-36-1 network structure (2 input neurons, 36 
Gaussian-type radial neurons and one output linear neuron). We also used here a hybrid learning 
algorithm similar to the technique [8]. As a result, the maximum approximation error after 200 iterations 
was 0.06. Thus, the computational experiment performed showed that the neural network accurately 
restored the function d(x, y) from its tabular values. However, in real conditions, applied problems often 
arise. For example, they may be associated with the restoration of a function that describes some 
physical phenomenon. Or such experiments refer to data containing various noise and measurement 



errors. For this reason, it was decided to repeat the described computational experiment, adapting it to 
the applied area. This means that the data on which the neural network is built should not be the exact 
values of the function, as in the mentioned work, but contain some noise. This will make it possible to 
bring the experiment as close as possible to real problems (e.g., [9-11]). 
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Figure 4: Function Graph d(x,y) [12] 

 
The process of building a neural network model can be divided into 5 main stages (Fig. 5). 

 
Figure 5: The main stages of the process of building a neural network model [12] 

 
At the first stage, 2 sets of training samples ([x, y], d) containing random noise (errors) were 

generated in order to simulate the data obtained in the study of a stochastic process or physical 
phenomenon [12-14]. The first group, dʹ, contained highly noisy data (noise at the level of 20%), the 
second, dʹʹ, contained weakly noisy data (noise at the level of 2%). These datasets were generated in 
the following way. The function d(x,y) is tabulated within -3 ≤ x≤ 3 and -3 ≤ y≤ 3 with a step of 0.25, 
and a table of values of the function d is compiled. A certain value ε is added to each value of the 
function, obtained using a random number generator with a uniform distribution. The expression is used 
to evaluate 
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where p is the noise level in fractions of a unit. Thus, the sets of points [x, y, dʹ] and [x, y, dʹʹ] imitate 
the results of observations of some physical process containing measurement errors, on the basis of 
which the process d(x, y) itself will be modelled in a real problem for the researcher unknown. 

At the second stage, the data were normalized in the range [-1…1]. In this case, there is no need to 
divide the total sample into training and testing sets, since the required function d(x,y) is used for testing. 



The third stage involves choosing the type of neural network from two suitable for solving the 
approximation problem: a multilayer perceptron and a radial basic network. In this experiment, both 
types are used to compare their effectiveness. The architecture of the multilayer perceptron was defined 
as follows: the network consists of two hidden layers, each containing 8 neurons. The RBF network 
contains 1 hidden layer, and the number of neurons in this layer grows during the learning process. 

At the fourth stage, two specified types of neural networks were trained on each of the data sets. The 
Neural Toolbox of the Matlab package was used for building and training the neural networks. 

At the final stage, response surfaces of the neural network models were built (Fig. 6, 7). The standard 
deviation, S2, was used as the error metric for evaluating the resulting models. 
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Figure 6: The function is approximated by the MLP network: a – based on highly noisy data; b - based 
on low noise data 

 
In Fig. 6a, the function is modeled on highly noisy data with standard deviation S2=1,806 (22%) 

multilayer perceptron. S2 neural network – 1,63 (20%). The deviation of the neural network from the 
noisy signal is S2 =0,844 (9%). 

In Fig. 6b function contains weak interference S2 =0,185 (2%) and approximated by a multilayer 
perceptron. S2 neural network – 0,179 (2%). The deviation of the neural network from the noisy signal 
is S2 =0,11 (1%). 
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Figure 7: The function is approximated by the RBF network: a - based on highly noisy data; b - based 
on low noise data 

 
In Fig. 7a function contains noise, S2 =1,88 (23%) and it is approximated by a radial basis network. 

S2 of neural network is 1,68 (20%). Deviation of a neural network from a noisy signal is S2 =0,85 (10%). 
On Fig. 7b function contains noise, S2 =1,185 (2%) and it is approximated by a radial basis network. S2 
of neural network is 0,184 (2%). Deviation of a neural network from a noisy signal is S2 =0,185 (2%). 



 
Figure 8: The standard deviation of the considered neural networks 

 
Both types of neural networks considered were able to build a regression model of a noisy signal. In 

all cases, the networks demonstrated the ability to filter noise similarly to [15-16]. Although the RBF 
network showed a slightly larger deviation (error) in all cases, the difference from the multilayer 
perceptron (Fig. 8) is small and insignificant. The radial basis network has an advantage over the 
multilayer perceptron because it does not require an expert to determine the number of layers and 
neurons [17, 18]. In the case of a radial basis network, the number of neurons increases during the 
learning process to achieve a given model accuracy. However, the number of neurons in the RBF 
network is significantly greater (in this study, by an order of magnitude) than in the perceptron, which 
slows down working with the RBF network. When predicting the behavior of a function outside the 
learning range, it is more beneficial to use a multilayer perceptron because it has the ability to 
extrapolate a function. Numerous studies by the authors [19-22] in various areas of applied neural 
network technologies confirm similar results. 

 

 
Figure 9: Training schedule for a 3-layer perceptron based on a linear activation function of the output 
neuron and hidden layers with a hyperbolic activation function (derived by the authors) 

 



 

 
Figure 10: Training of a 3-layer perceptron based on the logistic activation function of the inner layers 
(derived by the authors) 

 

 
Figure 11: Training a 3-layer perceptron based on the hyperbolic activation function of all neurons 
(derived by the authors) 

 



4. Conclusion 

Regarding the neural network architectures for approximation and regression analysis, multilayer 
perceptrons and radial basis networks are both applicable. While each type has its advantages and 
disadvantages in dependency recovery tasks, both effectively approximate complex functions by 
learning from noisy data. Multilayer perceptrons have shown good results in processing experimental 
data, including multidimensional data, making it possible to model patterns hidden within them. In 
terms of training, a three-layer perceptron based on a linear activation function for the output neuron 
and hidden layers with a hyperbolic activation function showed the best results in terms of convergence 
of the learning process and prediction accuracy. Therefore, the aim of this study has been fully achieved. 

Future research will be focused on identifying optimal methods for training these neurostructures in 
real-time. This will include classical gradient algorithms based on error backpropagation (first and 
second orders [23]) and non-iterative approaches [24]. We also plan to consider alternative neural 
network architectures, such as recurrent and dynamic structures [25]. These findings will be essential 
for solving problems related to structural and parametric identification, as well as intelligent control of 
the separation process (beneficiation or concentration). Based on a priori estimates, this approach has 
demonstrated sufficient effectiveness in mining plant conditions. 
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