
The Hardware and Software Part of a Distributed Decentralized Systems
Detection Malicious Software

Oleg Savenko a, Mykola Stetsyuk a, Yuriy Stetsyuk a, Antonina Kashtaliana, Bohdan Savenko a

a Khmelnytskyi National University, Institutska str., 11, Khmelnytskyi, 29016, Ukraine

Abstract
The paper analyzes the problems that arise from ensuring the security and protection of
information in corporate networks of enterprises. A variety of tools are used to detect
malware in the computer of the power grids of enterprises. This approach makes it possible to
improve the security and protection of information resources of enterprises. For corporate
networks of enterprises, such tools are usually distributed. Attackers have knowledge of
standard known tools detection of malware in corporate networks, and also have the
appropriate means to carry out attacks by various methods. Therefore, to counter them in
corporate networks, not only standard sets of network screens, intrusion detection systems,
attack prevention systems, anti-virus tools, but also various means should be used. Such tools
can baits developed individually for a specific corporate network, malware detection systems.
In this case, it will be difficult for the attacker to go unnoticed when trying to invade the
corporate network. The use of exclusively anti-malware or malware detection tools affects
the effectiveness of the protection process and its effectiveness compared to hardware and
software.
The work proposes to improve the security and protection of information in corporate
networks to use the individual means of users of the corporate network and, at the same time,
they would be part of the malware detection system. These individual means of identifying
users in a corporate network would become part of one large sensor at the same time. This
sensor would be a decentralized distributed malware detection system. Computational actions
would be sent to a certain part of the component, and they, in turn, would use hardware and
software to support the operation of the system as a whole and would make calculations in
them. If such a hardware and software element of the system components would give an
incorrect result compared to the rest, then the system itself would respond to the actions of
such a component. This provides the ability to automate the malware detection process and
make it harder for an attacker to understand this system.
The results of the experiments with the developed system according to the proposed approach
confirm the possibility of their implementation and effective use in corporate networks.

Keywords 1
Distributed systems, USB calculator, schematic diagram, microcontroller, malicious
software, honynet

1. Introduction

In order to detect malware in the computer networks of enterprises, a variety of tools are used.
Diversifying the tools allows you to improve the security and protection of information resources of
enterprises. For corporate networks of enterprises, such tools are usually distributed and they use
multi-agent technologies [1].

IntelITSIS’2023: 4rd International Workshop on Intelligent Information Technologies and Systems of Information Security, March 22–24,
2023, Khmelnytskyi, Ukraine
EMAIL: savenko_oleg_st@ukr.net (O. Savenko); mikstt777@gmail.com (M. Stetsyuk); y.stetsuk@ultra-company.com (Yu. Stetsyuk);
yantonina@ukr.net (A. Kashtalian); savenko_bohdan@ukr.net (B. Savenko)
ORCID: 0000-0002-4104-745X (O. Savenko); 0000-0003-3875-0416 (M. Stetsyuk); 0000-0003-0312-2276 (Yu. Stetsyuk); 0000-0002-
4925-9713 (A. Kashtalian); 0000-0001-5647-9979 (B. Savenko)

© 2023 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:y.stetsuk@ultra-company.com

Attackers have knowledge of standard known malware detection tools on corporate networks, and
also have the appropriate means to carry out attacks using a variety of methods. Therefore, to counter
them in corporate networks, not only standard sets of network screens, intrusion detection systems,
attack prevention systems, anti-virus tools, but also various means that the attacker is not aware of,
should be used. Baits can be used by such means developed individually for a specific corporate
network, malware detection systems, which are placed at a certain level among the installed anti-
attack systems. That is, in this case, it will be difficult for the attacker to go unnoticed when trying to
invade the corporate network.

When using only antimalware or malware detection software, the effectiveness of the protection
process and its effectiveness compared to hardware [2] and software is lower. Overcoming the
hardware and software protection of corporate networks is a much more difficult task.

An attacker may be in the middle of a corporate network and, even, may have certain rights of
access to enterprise resources. Therefore, the use of certain distributed malware detection systems
may not be effective enough. This is due to the fact that an attacker can violate at least one of the
properties of information, in particular, integrity, accessibility, or confidentiality. As a result, it can
distort even unique malware detection tools on the corporate network, which will lead to the
concealment of its activities. In connection with In this regard, it is proposed to add hardware and
software to such distributed malware detection systems on the corporate network, which would
complicate the work of attackers and at the same time improve the security and protection of
information on the network.

Such tools could include the individual means of each user of the corporate network and, at the
same time, they would be part of the malware detection system. Thus, these individual means of
identifying users in a corporate network would become part of one large sensor at the same time. This
sensor would be a decentralized distributed malware detection system (DDS) [1]. Computational
actions would be sent to a certain part of the component, and they, in turn, would use hardware and
software to support the operation of the system as a whole and would make calculations in them. If
such a hardware and software element of the system components would give an incorrect result
compared to the rest, then the system itself would respond to the actions of such a component. This
provides the ability to automate the malware detection process and make it harder for an attacker to
understand this system.

2. Analysis of known solutions

Researchers pay a lot of attention to malware detection. This has become especially relevant in
recent years and today this area is gaining momentum. As for the means, their architectures, which
would be the basis for the synthesis of various means of detection, such a combination in scientific
works is not enough. Therefore, the principles of creating distributed architectures that could be used
to create distributed malware detection systems in corporate networks are common, that is, without
taking into account the peculiarities of such detection tools.

Consider the following features in scientific works. The results of scientific work are mainly
elements of distributed systems, their protocols of interaction of components, principles of
construction. Consider them in this aspect. In the works [3-4] Byzantine protocols are analyzed and
their synchronization is proposed to ensure the result. In the works [5-7] an autonomous distributed
system for heterogeneous storage of information is proposed. The system has developed different
levels of storage. In the works [8-9], experimentally evaluating the method of comparing the scheme
based on instances for attributes that store numerical data. It uses data distribution and correlation
between two attributes. Working with databases is important in the context of distributed processing.
In [10] the paper considers the cyber-physical production system for the relationship between
operational technology and information and communication technology between machines and
decentralized production management. The architecture of this system is decentralized and, according
to the principle of construction, has common criteria by which DDS is synthesized. The work [11]
deals with security incidents in cyber-physical systems. A new approach is proposed to present and
share knowledge about incidents between different organizations. In [12] the principles of creating
distributed systems are considered. In [13] considered distributed computing environment.

An equally important direction that should be taken into account when projecting DDS is to take
into account malware detection methods that can be based on evolutionary algorithms, fuzzy
inference systems, etc. [14-17]. And these methods should be organically combined with the
architecture of the system and its component. In [18] analyzed security incidents that can be in
distributed systems. Work 19] analyzes the protection of hardware components of computers. In [20-
24] the analysis of trends in the development of malware and means of counteracting them is carried
out. In [25] the methods of malware analysis are considered. Manuscripts [26-30] are devoted to
malware detection.

3. Hardware and software part of a component of a distributed
decentralized systems

To improve security when using a distributed decentralized malware detection system, a USB
computer must be added to its software implementation.

A USB computer is a hardware and software part of a component of a distributed decentralized
malware detection system and is designed to perform calculations. As part of its block diagram shown
in Fig. 1 contains a computing unit, non-volatile memory of programs and data, an operational storage
device and a USB interface controller, combined into a single circuit with the corresponding buses.

Consider thein scription of the functional scheme of the USB-calculator. A USB computer is
designed to perform calculations in the interests of a decentralized distributed system for detecting
malware.

Figure 1: Functional diagram of USB – calculation

The computing device is designed to directly perform calculations to determine the security status

of a decentralized distributed system by commands that are received from the host, which includes a
USB computer, to save the results of calculations in the data memory, followed by their transfer at the
request of the host. Its functional scheme (Fig. 1) includes a processor device, non-volatile memory
of programs and data, RAM and a USB interface controller, combined into a single scheme by the
corresponding buses.

The processor device is designed to directly perform calculations for determining the security
status of a DDS by commands received from the host, which includes a USB computer, saving the
results of calculations in data memory and subsequently transmitting them at the request of the host.

Program and data memory (PPD) is used to store programs that control the operation of the USB
computer, save the results of calculations of the state of the DDS.

RAM is designed to store current local data used during the computational process.
The USB interface controller serves to enable data exchange between the USB computer and the

host.
Consider the description of the schematic diagram of a USB computer. The developed schematic

diagram (Fig. 2) is a variant of the implementation of the USB computer diagram described above. Its

feature is the implementation in the form of a micromodule with overall dimensions corresponding to
the flash drive.

Figure 2: Electrical circuit diagram

The basis of the circuit is the chip DD 1 - the microcontroller of the company Atmel
AT90USB1287-16MV. This is an 8-r KMOP-m and a controller, on the bases and archandtecturи
AVR RISC. By score of execution of b and more commands for one pen and od synchrony and
produkyouvnity of this microcontroller dos one m and l and wan operation and even per second at 1
MHzclock speed i. Its AVR is a core set of 135 commands that can manipulate 32 universal working
registers. This allows you to implement in the code of this microcontroller quite complex calculation
algorithms DDS.

Table 1
USB principal computer circuit specification

Denomination Name Quantity
 Chip

DD1 AT90USB1287-16MU 1
DA1 SML-020MLT 1
DA2 PRTR5V0U2X 1
ZQ1 8Mhz, GSX-752 1

 Resistors
R1,R2 SMD 0201 0,05Вт 220 Ом +-5% 2
R3,R4 SMD 0201 0,05Вт 22 Ом +-5% 2

R5 SMD 0201 0,05Вт 100 кОм +-5% 1
 Capacitors

C1,C5-C7 SMD 1206 X7R 50V 0,1мкФ +-10% 3
C2 SMD 1210 X7R 50V 1,0 мкФ +-10% 1

C3,C4 SMD 1206 NPO 50V 18 пФ +-5% 2
 Connectors

XP1 NUSB-0,5-f 1

Figure 3: Structural diagram of the microcontroller AT90USB1287

In addition to the productive arithmetic-logical device, the architecture of the microcontroller (Fig.

3) includes 128 kbytes of non-volatile, electrically programmable flush memory with read-write
support, 4 KB of software ROM, 4 KB of RAM. This made it possible to implement the PPD and
RAM modules of the functional scheme internally systematically, without including additional
components in the schematic diagram.

The architecture of the AT90 USB1287-16MV microcontroller (Fig. 3) includes a hardware
implementation of the USB data transfer interface (Fig. 4). This not only allowed the internal system
to implement the USB controller of the functional circuit, but also to greatly simplify the procedure
for initializing the USB computer and abandon the use of the programmer.

Figure 4: Block diagram of the USB controller and the power supply circuit of the AT90USB1287
mikrocontroller from the VBUS bus of the USB port

The USB controller contains all the necessary components to connect the USB channel to the

built-in dual-port RAM (DPRAM). It is synchronized with a frequency of 48 MHz±0.25% (for
operation in FS mode), which is generated by the PLL unit. Its peculiarity is that the high-frequency
signal (48 MHz) is synthesized from a low-frequency signal (2 MHz). The source of this signal is the
quartz generator ZQ 1, connected to the input XTAL 1 of the DD1 chip and the previous frequency
divider of the synchronization unit of the PLL. This method of receiving a 48MHz synchronization
signal made it possible to meet the requirements of the USB controller for frequency stability and
phase noise, which ensures its proper functioning.

The 48 MHz synchronization signal is further used to generate a bit synchronization signal with a
frequent 12 MHz in FS mode (or 1.5 MHz in LS mode) when receiving and transmitting differential
data, taking into account permissible deviations in the corresponding speed mode. The resumption of
synchronization is performed by the block of digital phase auto-tuning of the frequency (DPLL unit).

To meet the electrical performance requirements of the USB bus, the D+ and D- outputs must have
high voltage levels in the 3.0... 3.6V. For this purpose, the microcontroller has a built-in special
voltage stabilizer, which made it possible to use its power supply circuit with voltages up to 5.5V.

In addition to the hardware internally present in the DD 1 chip, current limiting resistors R3 and
R4, the DA2 PRTR5VU2 chip are included in the principle diagram of the USB controller. Together
with the resistors R 3 and R4, it performs the protective and stabilizing functions of the USB
controller.

The DA1 chip contains two diode lights, which serve as indicators of power supply to the USB
computer and the access to it of the host in which it is used.

The inclusion of the indicator for accessing the USB-computer is performed programmatically by
writing the value of logical zero to the sixth digit of port B.

As DA1, considering the overall dimensions as a priority parameter, the SML-020MLT
microassembly was selected.

The resistances R1 and R2 perform the function of limiting the current that passes through the
light of the diodes of the microassembly DA1.

The ZQ1 element connected to the XLAT1 and XLAT2 DD1 inputs serves to excite the
microcontroller synchronization system. It sets the operating frequency of the clock pulse generator
at 8 MHz. Its standard connection requires inclusion in the princely circuit of capacitors C3, C4. As
ZQ1, a small-sized component G5K-752 was used.

Capacitors C1, C2, C 5, C6 implement the standard, recommended by the developer, connection
scheme of the microcontroller, to ensure the appropriate quality of the voltage of the
sameequalization.

Resistor R5 and capacitor C6 serve to generate the hardware signal for installing the USB
computer circuit to its original state, which is fed to the inverse input DD1 RESET. The duration of
the RESET signal depends on the nominal values of the resistor R5 and the capacitor C6 and for
reliable installation of the CPU DD1 in RESET (Fig. 8), 32 synchronization cycles are required.
When the USB computer is connected to the USB port of the host, a logical zero signal is set at the
input D 1 RESET, since the C6 capacitor is currently discharged and the potential of its top cover is
zero. Next, the C6 capacitor begins to charge through the resistor R5 and, accordingly, the potential of
its top cover begins to grow. When it reaches the level of a logical unit, the RESET signal stops and
the CPU chip DD1 moves from the RESET state to the IDLE state and then to the DEVICE state to
execute the first command of program module 2.

As an XP1 connector, a USB connector MUSB-0.5-Type A pin 90 was used, which has minimal
mounting dimensions due to the placement of outputs at an angle of 90 degrees.

The assembled circuit does not require hardware debugging and is ready for the initialization
procedure.

Let's initiate a USB calculator on the host side. USB calculator, like any other USB device,
supports "hot" (plug'n'play) connection with dynamic loading and unloading of drivers. After the user
inserts the device into the USB port, host finds this when connected, polls t and but in thein stalled
device and loads the appropriate driver. This USB computer is defined in Windows as a device
AT90USB1287 (Fig. 5).

Figure 5: Devices window of the Windows operating system

To do this, do not bypass the program Flip installer from Atmel of the corresponding version. It

must be installed on the computer on which the USB computer will be initialized.
When you first connect the USB computer via a USB port, the system will ask for its driver. You

must specify the path "c:\Program Files\Atmel\Flip 3. x. x\usb\ “. There is a driver for the bootloader
a loader and Flip installer.

After completing the sequence of steps described above, the device AT90USB 1287 will appear in
the system, as can be seen in the figure. 5.

We will directly initiate the USB-calculator.
Initialization of the USB computer is performed by loading the application software (firmware)

into the memory of the programs of the AT90USB1287 microcontroller when it is prepared for work
as part of DDS.

To do this, you need to use the software of Atmel, the developer of the AT90USB1287
microcontroller, which allows you to program the microcontroller memory by command via a USB
port via the Atmel® USB DFU protocol.

In the microcontroller DD1 (Fig. 2), when it is delivered, there is a flashed a programs
bootloader, another name is Device Firmware Uploader (DFU), which serves to load the first and
second software modules of the USB computer into memory controll era via USB -and interface her
on thei konnya.

In this case, the second module is loaded from the address 0000H. This is the starting address of
the processor device of the microcontroller. After that, when the USB computer is connected to the
host, each time the hardware initialization procedure will be performed (setting the microcontroller
circuits to its original state) (described in paragraph 5 of paragraph 8) of the USB computer, as a
result of which control will be transferred to the first command of the second software module.

Let's set the algorithms for the operation of the software (software) of the USB-calculator.
The algorithms of the USB computer software are built on the basis of the rule that the initiator of

the transaction can be a host machine, which includes a USB computer.
The application software of the USB calculator consists of two main modules that interact through

a common part of the RAM, used as a ring software command buffer (CBC) of 256 bytes (Fig. 6).

Figure 6: Scheme of operation of the circular software command buffer (CSKB)

Since computational processes performed by the host machine and USB computer are asynchronous
relative to each other, therefore, the use of an annular buffer allows you to organize a channel for
transmitting commands from the host to the USB computer at the lowest cost.

The first software module (Fig. 7) is implemented as a subroutine for processing interrupts of the
microcontroller processor and is responsible for receiving commands from the host under the control
of DDS to perform calculations of its security status, storing the results of these calculations and
issuing them at the request of DDS components.

Figure 7: Module 1 operation algorithm

This module is activated by interruption signals for USB controller transactions. It is entrusted

with the control of the CPBC USB-computer. If the buffer is not full of commands, then the module
places the commands received via the USB interface in the command buffer with simultaneous
modification of the pointer to the command (WOK).

Consider the steps of the algorithm from Fig. 7.
1.Start of the procedure for receiving the next command from DDS (module 1).
2.Checking the filling of the loop buffer of DDS commands. If the pointer of the last LCP

command does not match the pointer of the first FCP command contained in the buffer, then go to
step 4.

3.Check the value of the CC command counter. If its value is bandmore than zero (the buffer is
completely filled with commands), then we go to step 2.

4. Move the LCP pointer to the next free cell of the command buffer.
5. Take the next byte of the command from DDS and place it at the address indicated by the LCP

pointer.
6. Check whether the last byte of the command is accepted. If not, then we go to step 2.
7. Increase by one the value of the CC command counter.
8. End of the procedure.
The operation of the USB computer software is organized in such a way that when it is connected

to the host, its hardware is installed in its original state, after which the processor starts, the first
command of which is the command that is part of the second software module. Thus, the control of
the USB computer immediately after the start is transferred to the second software module.

The second software module is a USB-computer application program (Fig. 9).

After passing the RESET hardware signal, the microcontroller is installedin the initial idle state
(Fig. 8).

Figure 8: Grapf of microcontroller states

In this mode, the processor core enters the stop mode. IDLE mode does not affect the activity of

the USB controller: it may and may not work. The processor core is output to the active state on the
first interruption from the USB controller.

When the USB computer is connected to the USB port of the host, it will detect the connection of
the new device. At the same time, on the side of the USB calculator, when power is supplied to the
device, a voltage appears on the VBUS bus, which leads to setting the DETACH bit to a logical zero
state, which in turn turns on the tightening to plus D+ signals or to zero D- and thereby initiates a
data channel between the host and the USB controller.

When the host system contacts it in order to determine its parameters, an interrupt signal from the
USB controller will appear on the USB computer side, which will transfer the core of the
microcontroller processor to the active state.

This, in turn, will lead to the execution of the code of the software module 2, which begins with
the procedure for initializing the microcontroller in DEVICE mode (Fig. 9 block 2) and involves the
following steps:

- configuring and activating endpoint 1 to receive data from the host;
-configuringand activating endpoint 2 to transfer data to the host;
-selection of LS speed mode (bit LSM=1 in VDCON register).
The next step is the initialization of the CPBC with the allocation of memory for it (Fig. 9 block

3), setting the initial values of the pointers of the first and last commands, issuing permission to
interrupt the processor device and, thereby, allowing the operation of the first software module.

After completing the initialization procedure, the software module two enters the mode of
monitoring the state of the CPBC (Fig. 9 block 5).

If the CPBC is not empty, then the module reads the command using the first command pointer
(MIC) with the subsequent modification of the military-industrial complex (fig. 9 block 7).

In the next step, the RBC team selected from the CPBC is decrypted (blocks 12-14,18,19). The
DDS command system for the USB computer includes five basic commands K01 - K05 and can be
expanded.

The K01 command is designed to clean the non-volatile memory of the USB calculator, allocated
for saving the results of DDS security state calculations.

The K02 and K05 commands are designed to perform calculations of the security states of the
DDS at the 1st and 2nd stages, respectively.

Team K02 (fig. 9 block 1 6) programmatically implements the algorithm for calculating the state
DDS according to the formula (1):

𝑃𝑃 𝐷𝐷𝐷𝐷𝑆𝑆,2 =

∑ ∑ (𝑡𝑡ПМ,𝑠𝑠,𝑗𝑗
′ ∙ 𝑤𝑤ПМ,𝑠𝑠,𝑗𝑗

′) 8
𝑠𝑠=1,

 𝑡𝑡ПМ,𝑠𝑠,𝑗𝑗
′ >0,

 𝑤𝑤ПМ,𝑠𝑠,𝑗𝑗
′ >0

𝑛𝑛
𝑗𝑗=1

𝑛𝑛
, (1)

where is the probability of being affected for the DDS 𝑃𝑃 𝐷𝐷𝐷𝐷𝑆𝑆,2 based on the probabilities of the time-
generated stay in certain states and the number of stays in the context of the DDS program modules.

The calculation of the product for a certain state is carried out provided that the components has

been in it at least once. If the components was in a certain state at least once, then the time of its stay
will be more than zero, what is needed to obtain the value of the term. The denominator contains a
number equal to the number of active components in the DDS at the current time. Since components
are active, then they have indicators of time and amount of stay in certain states, the values of which
are not zero.

Figure 9: Algorithm of the 2nd software module

Command K05 (fig. 9 block 21) according to the formula (2):

𝑅𝑅𝑏𝑏,𝐷𝐷𝐷𝐷𝑆𝑆,2 = 1
4
∙

⎝

⎜
⎛
∑ �1 − ∏ �1 − 𝑝𝑝𝑠𝑠,𝑗𝑗�𝑛𝑛

𝑗𝑗=1,
𝑝𝑝𝑠𝑠,𝑗𝑗<1

�𝑚𝑚
𝑠𝑠=1 ∙ 𝑘𝑘𝑠𝑠 + ∑ ∑ � 𝑡𝑡𝑠𝑠,𝑗𝑗

∑ 𝑡𝑡𝑠𝑠,𝑗𝑗
𝑚𝑚
𝑠𝑠=1

∙ ∙𝑚𝑚
𝑠𝑠=1,
𝑡𝑡𝑠𝑠,𝑗𝑗>0,
𝑤𝑤𝑠𝑠,𝑗𝑗>0

𝑛𝑛
𝑗𝑗=1

𝑤𝑤𝑠𝑠,𝑗𝑗
∑ 𝑤𝑤𝑠𝑠,𝑗𝑗
𝑚𝑚
𝑠𝑠=1

� + ∑ �(1 + 𝑘𝑘𝑠𝑠) ∙
∑ 𝑤𝑤𝑠𝑠,𝑗𝑗
𝑛𝑛
𝑗𝑗=1

∑ ∑ 𝑤𝑤𝑠𝑠,𝑗𝑗
𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑠𝑠=1

∙
∑ 𝑡𝑡𝑠𝑠,𝑗𝑗
𝑛𝑛
𝑗𝑗=1

∑ ∑ 𝑡𝑡𝑠𝑠,𝑗𝑗
𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑠𝑠=1

�𝑚𝑚
𝑠𝑠=1

⎠

⎟
⎞

, (2)

where 𝑅𝑅𝑏𝑏,𝐷𝐷𝐷𝐷𝑆𝑆,2 is the level of security of the DDS, determined at the second stage; 𝑏𝑏 – security
designation; 𝑠𝑠 – number of the DDS program module; 𝑛𝑛 – the number of DDS software
modules; 𝑚𝑚 – the number of components states; – the 𝑘𝑘𝑠𝑠 coefficient of threat to be affected by
the components – the state of the components, the value of which is set from the segment [0; 1] ,
depending on what functional loads are laid down in a certain 𝑠𝑠 state; 𝑝𝑝𝑠𝑠,𝑗𝑗 – the being affected by
the DDS; 𝑤𝑤𝑠𝑠,𝑗𝑗 - the number of stays of the components with the number 𝑗𝑗 in the state𝑠𝑠; 𝑖𝑖 =
1, 2, … ,𝑛𝑛 ; 𝑠𝑠 = 1, 2, … ,𝑚𝑚 ; – the 𝑡𝑡𝑠𝑠,𝑗𝑗 total time of stay of the components with the number in the
state 𝑗𝑗 – the number of components.

Commands K03 and K04 serve to issue DDS results for calculating its safety states at stages 1
and 2, respectively. After executing the current command, the software module returns to the
CPBC status monitoring point.

Description of steps to fig. 9.
1. Start of the application program for executing the command of the DDS (module 2).
2. Performing the initialization procedure of the microcontroller in DEVICE mode.
3. Performing the initialization procedure of the CSKB ring software buffer (CC=0; FCP=0;

LCP=0).
4. Issuance for interruption of the microcontroller (Permission to perform the procedure of

module 1).
5. Checking the filling of the cyclic DDS command buffer. If the pointer of the last LCP

command does not match the pointer of the first FCP command contained in the buffer, then
proceed to step 7.

6. Check the value of the CC command counter. If its value is zeroy (the buffer is empty), then
we go to step 5 (we are waiting for the command to arrive).

7. Reading the next byte of the command from DDS.
8. Check if this is the last byte of the DDS command. If not, then we go to step 10.
9. Reduce the contents of the CC command counter, after completing the sample from the ring

buffer of the next DDS command.
10. Move the pointer of the first FCP command to the next one contained in the buffer. Go to

step 5.
11. Prohibit external interrupts for the duration of execution of the DDS command selected

from the buffer.
12. If this is command K01, then we perform the transition to step 15.
13. If this is command K02, then we perform the transition to step 16.
14. If this is command K03, then we perform the transition to point 17, if not, then to

paragraph 18.
15. Execution of command K01. The transition to point 22 is completed.
16. Execution of the K02 command. The transition to point 22 is completed.
17. Execution of command K02. The transition to point 22 is completed.
18. If this is command K04, then we perform the transition to step 20.
19. If this is command K05, then we perform the transition to step 21.
20. Execution of the K04 command. The transition to point 22 is completed.
21. Execution of the K05 command. The transition to point 22 is completed.

22. If the program for executing DDS commands is not the end of the program, then we
proceed to step 4.

23. End of work.
Thus, the hardware and software element of the DDS components has been developed. Its use

by users of corporate networks will improve the security and protection of information in it.

4. The results of experimental studies with DDS, in which the hardware
and software elements of the component are installed

Entries from the DDS log file that display the results of the system for several hours.

WorkingState: 04.02.2023 10:17:05.064 Scheduling next task. Working period = 10 minutes.
WorkingState: 04.02.2023 10:17:05.065 Start working on task: Checking running processes
WorkingState: 04.02.2023 10:17:05.067 Complete work on task: Checking running

processes, results: running processes = 5
WorkingState: 04.02.2023 10:27:05.104 Scheduling next task. Working period = 10 minutes.
WorkingState: 04.02.2023 10:27:05.104 Start working on task: Checking files in hard disk in

C:/Users/8.1x64/AppData/Local
WorkingState: 04.02.2023 10:27:05.337 Complete work on task: Checking files in hard disk

in C:/Users/8.1x64/AppData/Local, results: total dirs count = 802, total files count = 835, total
exe files = 16

WorkingState: 04.02.2023 10:27:05.337 Start working on task: Scanning files in hard disk
WorkingState: 04.02.2023 10:27:05.337 Complete work on task: Scanning files in hard disk,

results: scanning files = 16, infected files = 0
WorkingState: 04.02.2023 10:36:05.572 169.254.169.70 started working on: Optimizing

stored data
WorkingState: 04.02.2023 10:36:05.572 169.254.169.70 completed working on task:

Optimizing stored data, results: deleted entries = 11, file size before = 8418, file size after = 7335
WorkingState: 04.02.2023 10:36:05.588 169.254.169.70 started working on: Waiting next

task
WorkingState: 04.02.2023 13:48:12.178 Scheduling next task. Working period = 116

minutes.
…
WorkingState: 04.02.2023 14:12:15.103 Start working on task: Optimizing stored data
Message: 04.02.2023 14:12:15.134 Send message about completing working on: Optimizing

stored data
WorkingState: 04.02.2023 14:12:15.134 Complete work on task: Optimizing stored data,

results: deleted entries = 37, file size before = 15350, file size after = 11985
Message: 04.02.2023 14:12:15.134 Send message about starting woking on: Waiting next

task
Message: 04.02.2023 14:12:17.197 Receive startup message from 169.254.169.70
Message: 04.02.2023 14:12:17.197 Send greeting to 169.254.169.70
Message: 04.02.2023 14:12:17.212 Receive poll out message from 169.254.169.70
Message: 04.02.2023 14:12:17.212 Send current state to 169.254.169.70
WorkingState: 04.02.2023 14:12:19.212 169.254.169.70 started working on: Optimizing

stored data
WorkingState: 04.02.2023 14:12:19.228 169.254.169.70 completed working on task:

Optimizing stored data, results: deleted entries = 15, file size before = 11893, file size after =
10763

WorkingState: 04.02.2023 14:12:19.228 169.254.169.70 started working on: Waiting next
task

Message: 04.02.2023 14:12:51.962 Send shutdown message
Message: 04.02.2023 14:12:51.962 Engine is deinitialized

The obtained DDS results confirm the possibility of such implementation of the hardware and

software elements of its components.
The results of the study of the reliability of the developed DDS in the local network show that

the use of the developed software allows to increase the level of reliability of detection by 5-12%
compared to existing antivirus software, to reduce the level of errors of the first kind to 5% and
improve the efficiency of its functioning when detected.

5. Conclusions

The principles of formation of architectures of distributed systems, in which the property of
decentralization is synthesized, are analyzed. Also, the trends in the development of malware and
trends in the development of anti-malware tools were analyzed.

As a result, distributed malware detection tools were proposed, in which the components
would contain hardware and software. This provided an opportunity to improve the effectiveness
of countering malware by 5%.

The proposed architecture of such tools can be used to build various types of malware
detection tools in corporate networks, including honynet.

6. References

[1] O. Savenko, S. Lysenko, A. Kryschuk. Multi-agent based approach of botnet detection in
computer systems. Communications in Computer and Information Science 291 (2012) 171-
180 doi: 0.1007/978-3-642-31217-5_19

[2] T. Korkishko, A. Melnyk, Cryptographic processor architectures for DES algorithm, in:
Proceedings of the 5th IEEE Africon Conference (Cat. No.99CH36342), Cape Town, South
Africa, 1999, vol. 1, pp. 175-180. doi: 10.1109/AFRCON.1999.820788

[3] M. Bravo, G. Chockler, A. Gotsman, Making Byzantine consensus live. Distrib. Comput. 35,
(2022) 503–532. doi:https://doi.org/10.1007/s00446-022-00432-y

[4] I. Abraham, G. Gueta, D. Malkhi, L.Alvisi, R. Kotla, J. Martin, Revisiting fast practical
Byzantine fault tolerance (2017) arXiv:1712.01367

[5] Nunome, A., Hirata, H. Adaptive Parameter Tuning for Constructing Storage Tiers in an
Autonomous Distributed Storage System. Int J Netw Distrib Comput 10 (2022) 1–10. doi:
https://doi.org/10.1007/s44227-022-00004-3

[6] A. Nunome, H. Hirata, An adaptive tiering scheme for an autonomous distributed storage
system. In: Proceedings of the 8th international virtual conference on applied computing and
information technology (ACIT 2021), 2021, pp 62–68. ACM

[7] A. Nunome, H. Hirata, Performance evaluation of data migration policies for a distributed
storage system with dynamic tiering. Int J Netw Distrib Comput (IJNDC) 8(1) (2019) 1–8

[8] K. Nozaki, T. Hochin, Evaluation of Identification Method of Corresponding Numerical
Attributes in Heterogeneous Databases Based on Instances. Int J Netw Distrib Comput
(2022). doi:https://doi.org/10.1007/s44227-022-00001-6

[9] K. Nozaki, T. Hochin, H. Nomiya, Identifcation of corresponding numerical attributes in
heterogeneous databases based on instances. In: Proc. of 8th ACIS International Virtual
Conference on Applied Computing & Information Technology (ACIT 2021), 2019

[10] HC. Huang, CH. Tsai, HC Lin, Development of 5G Cyber-Physical Production System. Int J
Netw Distrib Comput (2022). doi:https://doi.org/10.1007

[11] F. Alrimawi, L. Pasquale, D. Mehta, N. Yoshioka, B. Nuseibeh Incidents are meant for
learning, not repeating: sharing knowledge about security incidents in cyber-physical

http://dx.doi.org/10.1007/978-3-642-31217-5_19
http://arxiv.org/abs/1712.01367
https://doi.org/10.1007/s44227-022-00004-3
https://doi.org/10.1007/s44227-022-00001-6
https://doi.org/10.1007

systems. IEEE Trans Softw Eng 48(1) 120–134 doi:
https://doi.org/10.1109/TSE.2020.2981310

[12] M. Azzam, et al. Forensic Readiness of Industrial
Control Systems Under Stealthy Attacks. Computers & Security, 125, article no. 103010.
doi:http://dx.doi.org/doi:10.1016/j.cose.2022.103010

[13] M. van Steen, A.S. Tanenbaum, A brief introduction to distributed systems. Computing 98,
967-1009 (2016). doi:https://doi.org/10.1007/s00607-016-0508-7J.

[14] S. Bernadette, T. Jared, A. Heather Harrington, N. Vidit, Geometric anomaly detection in
data. Proceedings of the National Academy of Sciences (2020), 117(33) 19664-19669. doi:
10.1073/pnas.2001741117

[15] O. Pomorova, O. Savenko, S. Lysenko, A Kryshchuk, Multi-Agent Based Approach for
Botnet Detection in a Corporate Area Network Using Fuzzy Logic, Communications in
Computer and Information Science 370 (2013) 243-254

[16] S. Lysenko, O. Savenko, K. Bobrovnikova. DDoS Botnet Detection Technique Based on the
Use of the Semi-Supervised Fuzzy c-Means Clustering. CEUR-WS 2104 (2018) 688-695

[17] O. Pomorova, O. Savenko, S. Lysenko, A. Nicheporuk. Metamorphic Viruses Detection
Technique based on the the Modified Emulators. CEUR-WS 1614 (2016) 375-383

[18] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk, A.Nicheporuk, A Technique for
detection of bots which are using polymorphic code, Communications in Computer and
Information Science 431 (2014) 265-276

[19] Anson Steve. Applied Incident Response. John Wiley & Sons, Inc., 2020, 448 p.
[20] S. Bhunia, M. Tehranipoor, Hardware Security: A Hands-on Learning Approach. Morgan

Kaufmann, 2019. — 501 p.
[21] S. Bhunia, S. Ray, S. Sur-Kolay, Fundamentals of IP and SoC Security: Design, Verification,

and Debug. Springer, 2017, 316 p.
[22] D. Fitzpatrick, D. Bodeau, R. Graubart, R. McQuaid, C. Olin and J. Woodill, (DRAFT)

Cyber Resiliency Evaluation Framework for Weapon Systems: Foundational Principles and
Their Potential Effects on Adversaries, The MITRE Corporation, Bedford, MA, 2019.

[23] A. Mohanta, A. Saldanha, Malware Analysis Lab Setup. In: Malware Analysis and Detection
Engineering. Apress, Berkeley, CA, 2020. doi: https://doi.org/10.1007/978-1-4842-6193-4_2

[24] A. Mohanta, A. Saldanha, Malware Components and Distribution. In: Malware Analysis and
Detection Engineering. Apress, Berkeley, CA, 2010. doi:https://doi.org/10.1007/978-1-4842-
6193-4_6

[25] E. Filiol, Viruses and Malware. In: Stavroulakis, P., Stamp, M. (eds) Handbook of
Information and Communication Security. Springer, Berlin, Heidelberg, 2010.
doi:https://doi.org/10.1007/978-3-642-04117-4_34

[26] M. Omar, Introduction to the Fascinating World of Malware Analysis. In: Defending Cyber
Systems through Reverse Engineering of Criminal Malware. Springer Briefs in Computer
Science. Springer, Cham. 2022. doi:https://doi.org/10.1007/978-3-031-11626-1_1

[27] Savenko O., Lysenko S., Nicheporuk A., Savenko B. Metamorphic Viruses’ Detection
Technique Based on the Equivalent Functional Block Search. CEUR-WS, ISSN: 1613–0073.
2017. Vol. 1844. – Pp. 555–569.

[28] J. Xue, Z. Wang and R. Feng, Malicious Network Software Detection Based on API Call,
2022 8th Annual International Conference on Network and Information Systems for
Computers (ICNISC), Hangzhou, China, 2022, pp. 105-110, doi:
10.1109/ICNISC57059.2022.00032.

[29] W. Hu, J. Cheng, X. Chong, R. Zhang, B. Lin and A. Xia, A GAN-Based Anti-obfuscation
Detection Method for Malicious Code, 2022 3rd International Conference on Pattern
Recognition and Machine Learning (PRML), Chengdu, China, 2022, pp. 484-488, doi:
10.1109/PRML56267.2022.9882255.

B. Li, Research on the behavior detection technology of mobile software based on Big Data
Mining, 2022 International Conference on Wearables, Sports and Lifestyle Management
(WSLM), Kunming, China, 2022, pp. 12-16, doi: 10.1109/WSLM54683.2022.00008.

https://doi.org/10.1109/TSE.2020.2981310
http://dx.doi.org/doi:10.1016/j.cose.2022.103010
https://doi.org/10.1007/978-1-4842-6193-4_2
https://doi.org/10.1007/978-1-4842-6193-4_6
https://doi.org/10.1007/978-1-4842-6193-4_6
https://doi.org/10.1007/978-3-642-04117-4_34
https://doi.org/10.1007/978-3-031-11626-1_1

	1. Introduction
	2. Analysis of known solutions
	3. Hardware and software part of a component of a distributed decentralized systems
	4. The results of experimental studies with DDS, in which the hardware and software elements of the component are installed
	5. Conclusions
	6. References

