

A Distributed Malware Detection Model Based on Sandbox
Technology

Pavlo Rehidaa, Tomas Sochor b, Valeriy Martynyuka , Olha Tarasovaa and Viktoriia Orlenkoa

a Khmelnytskyi National University, Institutska str., 11, Khmelnytskyi, 29016, Ukraine
b Prigo University, Havirov, Czech Republic

Abstract
The article proposes a model for distributed malware detection using sandbox technology.

The analysis of modern malware detection tools and an overview of existing attacks were

carried out. The justification of the selected detection method to be used by the model is

carried out. Its main disadvantages are identified and the use of the distributed system as its

solution is proposed. The key features of the use of heterogeneous computer systems for

calculations and their adaptation to perform the task were considered. Detection of malware

is proposed to be solved by analyzing the states of sandboxes, and evenly distributing these

states among the computational elements of the system. Analysis how these states are

changing will signal about potentially malicious software that uses anti-emulation techniques,

thereby allowing the detection of malware. The basic set of levels of the proposed model is

presented. The main tasks for the protection of calculations are defined, taking into account

that the model will work in system with dynamical topology. The basic concept of load

distribution between computing elements is proposed in order to ensure the synchronous

operation of the system, taking into account the heterogeneity of the system. Two main

strategies for protecting computing both at the level of computational elements and at the

level of intermediate servers are defined. A basic algorithm for adding new elements to the

system is proposed, and the use of a rating model is presented, which will ensure an

appropriate level of protection of calculations.

Keywords 1
Malware detection, distributed computing, heterogenous computer systems, anti-malware

techniques, voting system.

1. Introduction

In the modern world, the use of IT is widespread in almost all spheres of life, which greatly

facilitates the completion of everyday tasks. Services based on the use of IT actively use personal or

corporate information, which makes them very convenient to use. We trust our personal data to

software and mobile applications, store it in cloud environments, companies use IT to automate

internal processes, and conveniently operate confidential documents, etc. Therefore, the issue of the

security of such information is important and considering the trends in their development [1,2], and it

is necessary to investigate new methods and approaches of detecting malware.

The problem of malicious software in particular lies in several aspects, namely: the total number of

already existing ones; speed of appearance of new ones; speed of appearance of new types; also with

new software and hardware comes new vulnerabilities comes too. Considering all these factors, it is

IntelITSIS’2023: 4th International Workshop on Intelligent Information Technologies and Systems of Information Security, March 22–24,

2023, Khmelnytskyi, Ukraine
EMAIL: pavlo.rehida@gmail.com (P. Rehida); tomas.sochor@osu.cz (T. Sochor); martynyuk.valeriy@gmail.com (V. Martynyuk);

tarasovao@khmnu.edu.ua (O. Tarasova); orlenkovs@khmnu.edu.ua (V. Orlenko);

ORCID: 0000-0002-6591-7069 (P. Rehida); 0000-0002-1704-1883 (T. Sochor); 0000-0001-5758-4244 (V. Martynyuk); 0000-0001-8574-
6466 (O. Tarasova); 0000-0001-9601-1916 (V. Orlenko);

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:pavlo.rehida@gmail.com
https://orcid.org/0000-0002-6591-7069

necessary to look for new ways of detecting malicious software, to use successes in other areas of IT

to form a combined method that will effectively fulfil the task.

In paper [3], a thorough study was conducted on the dependence between the complexity of

computer viruses and the probability of their detection. Thus, a comparison of the effectiveness of

modern existing threat detection tools is carried out here, having previously divided them into the

following categories: static threat detection [4], dynamic threat detection and modern web service

solutions. Static tools include software analysers that can determine the application compilation time,

check whether the application was packed by the UPX packager (which is often used for virus

packaging [5]), check which functions and DLLs are used when the program is launched. Dynamic

detection [6] is generally based on the use of a certain environment that allows you to observe its

behaviour, namely: compare the status of registers [7], analyse the activity of processes and their

impact on the operating system, and create an isolated environment for testing new software. Web

service solutions usually use both detection approaches and are mostly free to use, but have one

drawback, which is the maximum size of the file (software) that can be analysed.

One of the best methods for detecting malware is using sandboxes, as they provide full control

over an isolated environment that will allow you to analyse the executable file. The main problem

with the use of such tools is the significant need for computing resources. The purpose of this work is

to present a method of testing software for anomaly behaviour by using a distributed sandbox system.

2. Emulation as an approach of detecting malicious software.

The article [3] presents a wide analysis of the use of modern tools for detecting malware, but if we

analyse the test results for the selected set of malware, we can see that the largest percentage of

detected threats is associated with the use of a sandbox, if we consider each technology separately.

Symantec uses emulation technology to create an isolated environment, to test potentially malicious

software. Emulators can use various techniques to search for viruses [8], in particular Cuckoo

sandbox [9] uses the behavioural features of binary files. Independent studies performed by NSS Labs

Breach Detection System Test in 2017. They showed the advantages of complete emulation of the

system in the tasks of detecting malware. Lastline's sandbox, which uses emulation, has reached a

100% threat detection rate.

Therefore, emulation occupies an important place among the approaches that can protect computer

systems. The following advantages of using this technology are determined:

1. Controlled environment for software testing.

2. Protection of hardware, operating systems, and the registry.

3. If malicious is detected, the sandbox is removed, which ensures the protection of the host.

4. Emulation technology eliminates incompatibility problems with software or hardware.

The disadvantages include the usual need for all software to constantly update, because older

versions may contain security gaps and the fact that the sandbox technology requires large computing

resources. It is important to take these features into account when creating a new tool for detecting

malware. Also, before passing the malware check, the software will be considered as potential

malware.

In addition to a large number of types of malwares, a large number of their pre-detection

techniques are determined, which include: self-encryption and self-decryption, junk code, usage of

equivalent instructions, block reordering [10], polymorphism, metamorphism, disguise and so on.

Considering these tools from the point of view of using an emulator, such techniques are defined as

anti-emulation, and are classified as obfuscation techniques. To detect emulation, the following are

used: timing attacks, CPU semantics attacks, hardware characteristic attacks, fake API calls [11,12],

structured exception handling. [13,14]

Timing CPU attacks include attacks that generally involve measuring the time required for a

particular operation by the processor. These attacks are used to obtain cryptographic keys. Modern

processors use the transition prediction module to build an effective order for executing instructions.

Such attacks are aimed at confusing these queues, after which the processor will have to rebuild the

execution queue [15].

CPU semantics attacks are aimed at analyzing the execution of instructions and their semantics.

The developers of such attacks are guided by a well-formed set of instructions that will shift the

execution of certain instructions so that important sensitive data remains in the cache.

Hardware characteristic attacks work with an attempt to use additional instructions to track

changes in physical characteristics (such as electricity consumption), or to use error injections that

will manipulate its behavior.

Fake API calls use scripts or programs that mimic the behavior of an authorized user or program

and are used to search for system vulnerabilities.

Structured exception handling attacks uses an exploit to search for vulnerabilities in its

mechanism, which involves overwriting the SEH chain, which will allow you to gain control of the

program and execute needed code. A similar result can be obtained using a buffer overflow.

The attacks described above at first glance will not carry a threat, given that they are launched in a

controlled environment. However, malware developers can use the results of their execution to

analyze the external environment [16], and if emulation has been detected, then all malware actions

are masked or stopped until the environment changes. Malware will wait for changes in the

environment in which it operates in order to prevent it from being exposed and to continue performing

its tasks. Taking into account these behaviors, it is proposed to introduce the concept of the sandbox

state. The sandbox state accepts a certain set of characteristics that define it (command processing

time, number of processes running, etc.) at a certain point in time. Define single state as, 𝑆𝐵1 then the

set of states will depend on the number of characteristics (𝑛 ∗ 𝑛), so all state will be defined as:

𝑆𝐵𝑠𝑡𝑎𝑡𝑒 = {𝑆𝐵1, 𝑆𝐵2 … 𝑆𝐵𝑛2}

One of the biggest advantages of using sandboxes is full control over it and its state, so in [17] the

proposed sandbox analyzes potential malware at 3 basic levels, namely: static analysis, real-time

analysis and network analysis of malware. Modern technologies like machine learning also used in

order to increase the malware detection rate by sandboxes, and based on RF, NN, DT and SWM

algorithms [18]. Heuristic scanning also used as additional method of malware detection that based on

examining its behaviour and characteristics. This approach based on three procedures: pattern

matching, automatic learning, and environment emulation. In paper [19] this approach was analysed

and one of the key conclusions is that it has high rate of false positive report, but combining both

technologies: heuristic scanning and sandbox may help to achieve more reliable security results.

Using the sandbox, we can record its state, throughout the entire potential malware set of commands,

follow the behavior of the executable file during its operation [20] or, for example, generate a hash

value, each step taking into account the result of the previous state, as this happens when using smart

contracts. Thus, we will form a kind of imprint of the potential malware execution in the sandbox.

Considering anti-emulation techniques and changing sandbox states, we can assume that if we

provide each potential malware with the required number of sandboxes with all sets of states that

cover the processing of all anti-emulation techniques, we will be able to detect malware.

This approach will increase the success of the detection of malware, but it has one drawback: it is

necessary to provide a large amount of computing resources to maintain all sandbox states for

potential malware. Therefore, it is necessary to suggest a model that will meet all the described

requirements.

3. Model of the distributed detection system using sandboxes.

Distributed computing has begun to be used in many areas of life. They are used to model natural

processes, test hypotheses, help determine whether scientific research is taking place in the right

direction. They have various forms and uses different approaches in relation to their organization.

With the widespread use of IoT, the amount of data has also increased, and the importance of its

processing also leads to the wide development of distributed computing. Since the widespread use of

distributed computing, it is necessary to find a way of involving it in the issues of data security.

To solve the problem, it is proposed to use a distributed computing system. But first we will

characterize it. Since, that it is a huge number of various components that is used to create computers

and workstations, we can determine that designing a heterogeneous distributed computing system will

be the most optimal approach. In addition, such systems form the most effective, in terms of

computing resources, solutions [21], and a distributed computing system based on the use of volunteer

resources, at peak times, had computing power that was 10 times greater than IBM Summit [22].

Let’s define the main components of the model taking into account its features:

 Server.

 Set of intermediate servers.

 Computing elements with an emulator for detecting malware.

 Distributed signature database.

This system provides a single-entry point for all users, that is, a server. All users (who have

access) will be able to transfer through a web client or with the help of the application to send

executable files for checking. It is assumed that the system will have a large number of computing

elements, so the server will process incoming files using intermediate servers (𝑆𝑦𝑠𝑡𝑒𝑚 =
{𝐶𝑆1, 𝐶𝑆2, … 𝐶𝑆𝑖}, where 𝐶𝑆 – intermediate computing system, and 𝑖 – their number), which will

control a certain number of computing devices (𝐶𝑆 = {𝐶𝑁1, 𝐶𝑁2, … 𝐶𝑁𝑙}, where 𝐶𝑁 – computing

element, and 𝑙 – their number). The choice of an intermediate server is based on the current level of

workload at the moment of each of them. After receiving the executable file, the intermediate server

randomly distributes among all members of the network a set of states for which each of them is

responsible, to cover all the necessary states (Fig. 1.). If a malware is detected, the intermediate server

will update the signature database.

Figure 1: Intermediate computing subsystem

Each computing element during the operation of the system, in a certain period, will return one or

more results of checks – imprints. All imprints are collected on the intermediate server, and the results

are compared. Since each computing element uses the same emulator, it is expected that the imprint to

be the same for all states of the same potential malware.

In general, each subsystem and its computing elements should work synchronously only in the

middle of the subsystem itself since each subsystem works independently of each other. Also, for

each subsystem, intermediate servers should be duplicated, since in case of failure of any of them, the

computing elements should be able to send their results to the additional one.

Let's determine what answers the intermediate server can receive from its entire group:

 The task is completed, the format of the answer is correct.

 The task is completed, the format of the answer is not correct.

 The computing element did not finish task according to the time provided, instead of

answering, a special message arrives, the computing element perform test check again, and joins

another group with other characteristics, the level of trust in it decreases.

 Computation error notification.

 The answer did not come (a decrease of trust level in database that stores information about

existing computing elements is recorded).

Considering the received answers, the system should be able to constantly balance groups of

computing elements, this will allow to perform the tasks efficient and secure. In addition, intermediate

servers should check each other's work. Since, intermediate servers are part of controlled system, it is

possible to use additional security approaches, so it is possible to use some kind of simplified checks.

The simplified checking approach basically stands for partial checks, in which each intermediate

server will choose a certain part of its completed tasks, and send them to the main server with a

special mark. Such tasks will undergo a full cycle of checks by all computing elements of another

subsystem. If one intermediate server has completed for example ten tasks, the other intermediate

server can choose randomly few of them at random and complete them too, and if the results match

both of intermediate servers can trust each other. These checks can also be initiated by the main

server.

We can present the whole system as follows:

𝑆𝑦𝑠𝑡𝑒𝑚 = {𝐶𝑁1 … 𝐶𝑁𝑙 , 𝑃𝑀1
1 … 𝑃𝑀𝑚

1 , 𝑃𝑀1
𝑆𝐵 … 𝑃𝑀𝑀

𝑆𝐵, 𝑆𝐶1 … 𝑆𝐶𝑖, 𝑀𝑆, 𝐷}

where, 𝑆𝑦𝑠𝑡𝑒𝑚 – abstract distributed malware detection system, 𝐶𝑁1 … 𝐶𝑁𝑙 – computing elements

that perform potential malware analysis in different states, 𝑃𝑀1
1 … 𝑃𝑀𝑚

1 , 𝑃𝑀1
𝑆𝐵 … 𝑃𝑀𝑀

𝑆𝐵- potential

malware (1 … 𝑚 – number of potential malwares, 1 … 𝑆𝐵- number of states to check), 𝑆𝐶1 … 𝑆𝐶𝑖 –

intermediate servers that works with 𝐶𝑁, 𝑀𝑆 – main server, 𝐷 – signature database.

The proposed abstract system will be as follows:

Subsystem 1

Subsystem 2

Subsystem 3

Main Server

Signature

DatabaseUser

Figure 2: Abstract model of distributed malware detection based on sandbox.

In addition to the overall operation of the system, it is also necessary to describe the process of

protecting the execution of calculations. The type of calculations described above involves the use of

voluntary participants who propose to attract their computing resources to solve the problem.

Although, this approach solves the problem of the necessary computing resources, it imposes one

limitation, namely: complete trust in any member of the network is impossible. And this situation

arises due to the inability to control all computing elements, so it is important to provide options for

how to protect the results of calculations themselves from distortions of those interested in

compromising such systems. Another important task is to protect intermediate servers from various

types of attacks, in particular, it is necessary to pay attention to protection against DDoS attacks. The

stability of each such element of the system affects the performance of the whole system. In paper

[23], the difficulty of detecting the type of such attacks is considered, and their types are presented.

Paper [24] presents a model that uses ML in real time to detect DDoS traffic. Such tools are useful to

consider and implement as an additional module for the protection of a distributed computing system.

Also, since the system is defined as heterogeneous, it will be necessary to identify the mechanisms for

the correct distribution of tasks between the participants, taking into account their computational

resources.

4. Evaluation performance efficiency of computational tasks

Considering the heterogeneity of the proposed model [25,26], attention should also be paid to the

correct distribution of the complexity of the tasks. The first task is to try to identify its current

computing elements. The system can store certain information about them, such as IP address,

processor model, number of physical and logical cores, amount of RAM, etc. You can supplement

this data with behavioral features, system time, session duration, number of completed tasks and so

on. By combining both sets of knowledge, you can try to identify each user the next time when it

connects to the system. This is important for several reasons, in terms of the efficiency of using

computing resources. The problem of stabilizing the system [27] in such conditions is very important,

and it is these methods that will help to solve it in some aspects.

When adding a new computing element to an intermediate server, the following actions are

performed:

1. The system records all possible characteristics about the new computing element.

2. Sends a set of already completed tasks with varying complexity.

3. Records the results of performed tasks and sets assessment of efficiency.

4. Checks the correctness of completed tasks, and if all tasks are completed correctly (assigns a

trust level of computing element as 50%.

5. Adds a new element in specific group (algorithmically chooses the best group: chooses a

group where there are not enough computing elements, or with an excess of such in other group –

forms a new group, taking into account the rate of delay in packet transmission).

6. At a certain time interval, updates basic user information to have the most accurate data about

computing element.

Allowed

computing

element Allowed

computing

element

Allowed

computing

element

Element

performing

testing

calculations

before been

added to

group

Finished tasks

Figure 3: Checking a new computing element that connects to the system.

Considering that the system cannot hope for regular cooperation with each computing element, it

is necessary to use all possible ways to reduce the time to check and find the appropriate group for the

newly connected element to perform a real task. By recording information about participants, the

system can reduce this time. For example, while started working with an already known computing

element, reduce the portion of test tasks, or even assign a higher level of trust for it, which can help to

balance quickly the group in the number of correctly completed tasks. Test tasks will also help

determine the computing resources of new computing element, that connects to the system. These

details can be used in order to find a better subsystem to take part into computing. In some cases,

amount of computing resources that provided by element may change even in one session. On this

case with proposed algorithm will help to detect this and will find the better group for computing, if it

is needed.

5. Features of the protection of distributed computing in a heterogeneous
environment.

To organize the protection of the chosen computing model, various approaches are proposed,

and one of them is based on the trust model [28]. Its use is appropriate for several reasons: the

system cannot manage its participants; the system does not have access to the list of the installed

software and used hardware on the side of the computing element, and as a result cannot control

the process of performing the calculation. So, the system cannot hope for a guaranteed computed

result. That is, the system does not trust any connected computing element to the system. The

trust model is based on the rating of each client, which is based on many factors, depending on

the specific implementation. Examples of such factors can be the number of correctly completed

tasks, the ratio of the number of correctly completed tasks to incorrectly completed ones, the total

time of successful work in the system, and so on. This approach allows you to solve certa in

problems and, with the appropriate configuration, provide the necessary level of protection for

both the entire system and the results of the calculation.

The rating model for organizing the protection of the presented computing system is a good

practice [29] and is used in many modern tasks [30], since when using tools for controlling and

changing the rating of users in the system can solve the issue of security of distributed computing

and to a certain extent help with the effective distribution of tasks between clients. A key solution

in the issue of computational protection is based on usage of replication approach [31, 32], which

is aimed at selecting number of computing elements for one task. As a result of execution, the

server or intermediate server will track the results of the calculation and, based on the result of

computing elements voting, make decisions on the correctness of the task as a whole group,

relative to each user. The obtained data must be converted into a rating, which may change

throughout the computing element work in the system. On the other hand, computing element’s

rating will allow him to be evaluated as a whole, and plan future calculations accordingly. It will

also reduce the cost of recalculation.

For example, at the beginning of work, the system cooperates with computing elements, after a

some period of time, all of them received a positive assessment of their work (most of the tasks

were completed correctly), so the system make a decision to divide this group into two smaller

groups, each of which contains 𝑛/2 computing elements, and now the system can simultaneously

perform twice as many calculations per unit of time. Another example of using the rating is the

formation of groups of computing elements with low and high ratings, in which case the trusted

client will play the role of the controller of calculations of the entire group, that is, when voting,

it will have the highest priority and, as a result, influence the result of the calculation.

The use of the trust model in distributed computing issues, that considered in this paper is

appropriate, which is why it is proposed to use an additional analysis in addition to classical

calculation checks to improve the accuracy of its work. Authorization of the computing element

in the system does not give us a full guarantee of his ability to correctly and quickly perform the

computing, so it is proposed to use other information that the user leaves about oneself. During

the adding to system, the server can record data about the user's address, a unique identifier of the

hardware and its features, language, connection time, average working session time, etc. The data

set may vary depending on the technology stack used in designing of the computing system.

Behavioral features of the computing element – a set of data about the user that characterize

his work during the calculations. The main idea of using such a characteristic is to constantly

record information about the user's activity in the system, taking into account his resul ts in voting

(Fig. 4.)

Voting settings will allow correctly distribute computing elements between subsystems. In

case all customers send different results, it may be advisable to break down the current group and

add them all in different subsystems. It is also needed to consider the situation when all trusted

computing elements provide one computed answer, and other elements in the subsystem another

computed answer. In this case, the trusted elements may be compromised, so the one of the

possible scenarios may be: breaking down the current group and set usual status for trusted

elements.

It is also necessary to consider the situation when the computational element returns

constantly incorrect answers, which may mean the impact on it of viruses that affect the result,

thereby slowing down the entire system. In this case, it is necessary to provide mechanisms for

blocking its future participation in the system.

The result of trusted

element 1

Voting of

trusted

elements
Task sending

back on

recalculating

The

calculation

result is

accepted

Voting module

The result of trusted

element 2

The result of trusted

element 3

The result of element 1

The result of element 2

The result of element N-1

The result of element N

Figure 4: Computing element voting model.

Usually, when organizing such calculations, the system forms groups of elements with one or

more trusted elements. Such clients have the highest trust rating and can significantly influence the

outcome of voting. Not only the success of the calculation, but also the rating of all elements in the

current iteration of calculations will depend on the result of the vote. Therefore, it is advisable to

include three or more trusted clients in the groups so that they first vote among themselves on their

calculations, and then consider the results of other users.

Figure 5 shows an abstract computational module, it consists of a voting module that will evaluate

the obtained results, a module for storing performed calculations that will be used to add new

computing elements, and a computational planning module, the main task of which will be to plan the

number of cycles required to perform one task, which will depend on the current state of the

computing resources of the entire subsystem.

Computing

element 1

Computing

element 2

Computing

element 3

Computing

element 4

Computing

element N

Computing module

Calculation planning

module

Module for storing

calculation results
Voting module

Figure 5: Computing module

The proposed methods and tools will help to solve the issue of protection of needed computing

tasks, considering that the system will work with dynamic topology. Basic algorithms for adding

elements in computing groups will help to balance the system, because in one hand new element in

an already working group will not be able to significantly affect the results of computing with

elements with a good trust level, and in another hand the existing elements can either use its

computing resources or exclude it from the system by voting. Thus, the described measures will be

able to ensure the correct implementation of the tasks for the detection of malware.

6. Experimental research

Presented methods for organizing distributed malware detection provide fault-tolerant working.

As part of this work, detection is considered in a limited form, and needs more detail. The sandbox

is currently under active development and records changes in its state due to the formation of hash

values of all registers. In further work, it is planned to transfer the right to decide on the anomaly of

the set of commands to an intermediate server, which will collect the hash values of all computing

elements in its subsystem. The voting system at this stage of the system's operation does not

consider the rating of computational elements, the decision is made on the basis of most of the

answers received are true or false. This aspect requires detailed research defining an algorithm for

updating the rating after completing the task, and adjusting it after providing the wrong answer,

abnormal behavior, etc.

7. Conclusions

This paper presents a model of system for malware detection, based on the use of distributed

computing technology to analyse the state of the sandbox. To identify it, it is proposed to use the

concept of the state of the sandbox and monitor its state during the execution of executable files in

them. The concept of sandbox states is considered, and ways of its use in malware detection issues

are presented. The proposed model eliminates the issue of the computational complexity of the use

of sandboxes, by using distributed computing based on heterogeneous computer systems. The main

tasks of ensuring the stability and security of calculations, considering the dynamic topology of

system, are presented it is proposed to use voting methods and a rating system. It is proposed to

consider the identification of users based on behavioural characteristics and their basic information

in order to involve them more quickly in the execution of calculations and with the provision of an

appropriate level of protection for computing inside system.

8. References

[1] Cyber Threat Report. Sonicwall 2022, 2022. URL: https://www.infopoint-

security.de/media/2022-sonicwall-cyber-threat-report.pdf

[2] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk, A.Nicheporuk, A Technique for

detection of bots which are using polymorphic code, Computer Networks: 21st International

Conference, Proceedings 21 ISSN: 1865-0929 (2014). 265-276. doi: 10.1007/978-3-319-

07941-7_27

[3] Ö. Aslan, R. Samet, Investigation of Possibilities to Detect Malware Using Existing Tools,

IEEE/ACS 14th International Conference on Computer Systems and Applications (2017) 1277

– 1284. doi: 10.1109/AICCSA.2017.24.

[4] S. Talukder, Tools and Techniques for Malware Detection and Analysis, arXiv preprint (2020).

doi: 10.48550/arXiv.2002.06819.

[5] X. Gao, C. Hu, C. Shan, W. Han, MaliCage, A packed malware family classification

framework based on DNN and GAN, Journal of Information Security and Applications 68

(2022). doi: https://doi.org/10.1016/j.jisa.2022.103267.

[6] J. Singh, J. Singh, A survey on machine learning-based malware detection in executable files,

Journal of Systems Architecture 112 (2021). doi: https://doi.org/10.1016/j.sysarc.2020.101861.
[7] C. Raghuraman, S. Suresh, S. Shivshankar, R. Chapaneri, Static and Dynamic Malware

Analysis Using Machine Learning, First International Conference on Sustainable Technologies

for Computational Intelligence: Proceedings of ICTSCI Springer Singapore (2019) 793-806.

doi: https://doi.org/10.1007/978-981-15-0029-9_62

[8] O. Pomorova, O. Savenko, S. Lysenko, A. Nicheporuk. Metamorphic Viruses Detection

Technique based on the the Modified Emulators, ICTERI ISSN: 1613-0073 (2016) 375-383.

[9] S. Talukder, Z. Talukder, A survey on malware detection and analysis tools, International

Journal of Network Security & Its Applications (IJNSA) Vol. 2020 (2020) 37-57. doi:

10.5121/ijnsa.2020.12203.

[10] O. Savenko, S. Lysenko, A. Nicheporuk, B. Savenko, Metamorphic Viruses’ Detection

Technique Based on the Equivalent Functional Block Search, ICTERI (2017) 555–569.

[11] Savenko, O., Nicheporuk, A., Hurman, I., Lysenko, S., Dynamic signature-based malware

detection technique based on API call tracing, ICTERI Workshops ISSN: 1613-0073 (2019)

633-643.

[12] O. Savenko, S. Lysenko, A. Nicheporuk, B. Savenko, Approach for the Unknown

Metamorphic Virus Detection, Proceedings of the 8-th IEEE International Conference on

Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications,

(2017) 71–76. doi: 10.1109/IDAACS.2017.8095052

[13] CV Liţă et al, Anti-emulation trends in modern packers: a survey on the evolution of anti-

emulation techniques in UPA packers, Journal of Computer Virology and Hacking Techniques

14 (2018) 107-126. doi: 10.1007/s11416-017-0291-9
[14] SA Ebad, et al, Measuring Software Obfuscation Quality, A Systematic Literature Review,

IEEE Access 2021 (2021) 99024-99038. doi: 10.1109/ACCESS.2021.3094517.

[15] T. Korkishko, A. Melnyk, Cryptographic processor architectures for DES algorithm, 1999

IEEE Africon. 5th Africon Conference in Africa (Cat. No.99CH36342) vol.1 (1999) 175-180.

doi: 10.1109/AFRCON.1999.820788.

[16] S. Liu, P. Feng, S. Wang, K. Sun, J. Cao, Enhancing malware analysis sandboxes with

emulated user behavior, Computers & Security 115 (2022) 102613. doi:

10.1016/j.cose.2022.102613

[17] G. P. Kachare, G. Choudhary, S. K. Shandilya, V. Sihag, Sandbox Environment for Real Time

Malware Analysis of IoT Devices, Computing Science, Communication and Security: Third

International Conference, COMS2 2022 (2022) 169-183. doi: 10.1007/978-3-031-10551-7_13

[18] F. Alhaidari, NA Shaib, M. Alsafi, H. Alharbi, M. Alawami, R. Aljindan, Atta-ur Rahman,

Rachid Zagrouba, ZeVigilante: Detecting Zero-Day malware using machine learning and

sandboxing analysis techniques, Computational Intelligence and Neuroscience 2022 (2022).

doi: 10.1155/2022/1615528

https://www.infopoint-security.de/media/2022-sonicwall-cyber-threat-report.pdf
https://www.infopoint-security.de/media/2022-sonicwall-cyber-threat-report.pdf
https://doi.org/10.1016/j.jisa.2022.103267
https://doi.org/10.1016/j.sysarc.2020.101861
https://doi.org/10.1007/978-981-15-0029-9_62

[19] J. N. Odii, J. A. C. Hampo, F. O. Nwokoma, and T. U. Onwuama, Comparative Analysis of

Malware Detection Techniques using Signature, Behavior and Heuristic, International Journal

of Computer Science and Information Security (IJCSIS) 17, no. 7 (2019) 33-50.

[20] A. Khalimov, S. Benahmed, R. Hussain, S.M.A Kazmi, A. Oracevic, F. Hussain, F. Ahmad,

CA Kerrache, Container-based sandboxes for malware analysis: A compromise worth

considering, Proceedings of the 12th IEEE/ACM International Conference on Utility and

Cloud Computing (2019) 219-227. doi: 10.1145/3344341.3368810

[21] C. Hagleitner, D. Diamantopoulos, B. Ringlein, C. Evangelinos, C. Johns, R. N. Chang, B.

D'Amora, J. A. Kahle, J. Sexton, M. Johnston, E. Pyzer-Knapp, C. Ward, Heterogeneous

Computing Systems for Complex Scientific Discovery Workflows, 2021 Design, Automation

& Test in Europe Conference & Exhibition (2021) 13-18. doi:

10.23919/date51398.2021.9474061.

[22] Folding@Home Network Breaks the ExaFLOP Barrier In Fight Against Coronavirus, 2020.

URL: https://www.tomshardware.com/news/folding-at-home-breaks-exaflop-barrier-fight-

coronavirus-covid-19

[23] N. A. Ignatev, E. R. Navruzov, Estimates of the Complexity of Detecting Types of DDOS

Attacks. International Journal of Computing, 21 4 (2022) 443-449. doi: 10.47839/ijc.21.4.2779

[24] R. S., Kanavalli, A. Gupta, A. Pattanaik, S. Agarwal, Real-time DDoS Detection and

Mitigation in Software Defined Networks using Machine Learning Techniques, International

Journal of Computing, 21, 3 (2022), 353-359. doi: 10.47839/ijc.21.3.2691

[25] K. Censor-Hillel, R. Gelles, B. Haeupler, Making asynchronous distributed computations

robust to noise, Distributed Computing 32 (2019) 405-421. doi: 10.1007/s00446-018-0343-5.

[26] M. Dinitz, J.T. Fineman, S. Gilbert, C. Newport, Smoothed analysis of dynamic networks,

Distributed Computing, 31 (2017) 273-287. doi: 10.1007/s00446-017-0300-8

[27] C. Lenzen, J. Rybicki, Near-optimal self-stabilising counting and firing squads. Distributed

Computing 32.4 (2019) 339-360. doi: 10.1007/s00446-018-0342-6

[28] N. Ramu, P. Vijayakumar, DL Jegatha, R. Sivakumar, A novel trust model for secure group

communication in distributed computing, Journal of Organizational and End User Computing

(JOEUC) 32, no. 3 (2020). 1-14. doi: 10.4018/JOEUC.2020070101

[29] W. She, Q. Liu, Z. Tian, J.-S. Chen, B. Wang and W. Liu,, Blockchain trust model for

malicious node detection in wireless sensor networks, IEEE Access 7 (2019) 38947-38956.

doi: 10.1109/ACCESS.2019.2902811

[30] S. Guo, X. Hu, S. Guo, X. Qiu, F. Qi, Blockchain meets edge computing: A distributed and

trusted authentication system, IEEE Transactions on Industrial Informatics 16, no. 3 (2019)

1972-1983. doi: 10.1109/TII.2019.2938001

[31] PS. Almeida, C. Baquero, Scalable eventually consistent counters over unreliable networks,

Distributed Computing 32, no. 1 (2017) 69-89. doi: https://doi.org/10.1007/s00446-017-0322-2

[32] S. Slimani, T. Hamrouni, F.B. Charrada, Service-oriented replication strategies for improving

quality-of-service in cloud computing: a survey, Cluster Computing 24 (2021) 361-392. doi:

10.1007/s10586-020-03108-z

https://www.tomshardware.com/news/folding-at-home-breaks-exaflop-barrier-fight-coronavirus-covid-19
https://www.tomshardware.com/news/folding-at-home-breaks-exaflop-barrier-fight-coronavirus-covid-19
https://doi.org/10.1007/s00446-017-0322-2

