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Abstract
In the lack of data, an appropriate inductive bias is one of the key factors for the successful training of a model. One approach
to transfer inductive bias between the different structures of networks is to utilize knowledge distillation. Several studies have
achieved promising results in computer vision datasets using response-based knowledge distillation. However, we observe
that the previous method fails to transfer inductive bias when the dataset contains fewer data points or classes. To solve
the problem, we propose to use feature-based knowledge distillation instead of response-based knowledge distillation for
effective inductive bias transfer. Through extensive experimentation and analysis, we demonstrate that the suggested method
can transfer inductive bias and outperform previous methods.
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1. Introduction
Inductive biases are constraints enforcing the model to
have specific properties [1, 2]. For example, convolution
layer enforces the model to have properties of transla-
tional invariance and translational equivalence, and re-
current layer enforces the model to have properties of
temporal invariance. The effect of an appropriate induc-
tive bias is comparable to the effect of additional data;
in other words, one can compensate for the lack of data
by exploiting strong inductive biases [1, 2]. Nevertheless,
such constraints are not always advantageous. If the in-
ductive bias is too restrictive, the model can only learn
limited representations [1]. One approach for encoding
inductive bias in balance is knowledge distillation. For ex-
ample, Data-efficient image Transformers (DeiT) use the
convolution neural network to inherit its inductive bias
to the Transformer network. It uses the distillation token
to predict the output of the pre-trained convolutional
neural network, achieving performance on par with the
model already trained with a strong inductive bias [3]. By
adjusting the hyperparameters of knowledge distillation,
the level of inductive bias can be controlled.

We wonder about the applicability of transferring the
inductive bias via knowledge distillation in various real-
world datasets. To verify this, we evaluated the technique
transferring the inductive bias in used DeiT on two types
of medical datasets: the inductive biases (1) in convolu-
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Figure 1: Performance in (a) ECG from Physionet 2021 and
(b) EHR from Physionet 2019. F1 refers to the f-1 score (the
left side of the y-axis), and P-19/P-21 indicate the physionet
19 and physionet 21 scores (the right side of the y-axis).

tional neural networks (CNN) on the electrocardiograms
(ECG) and (2) in recurrent neural networks (RNN) on the
electronic health records (EHR). As shown in Figure 1, we
observed that the performance of the transformer trained
with DeiT is significantly inferior to that of the teacher
networks. The result is a completely different result from
DeiT [3]. This is the beginning point of our study. In
this study, we first identify the reasons for the previous
method’s failure. After then, we propose a method for
resolving it.

Our contributions to this study are the following: First,
we analyze the limitation of the previous methods of
transferring the inductive bias through knowledge distil-
lation. Second, we examine the reason for the failure of
the previous methods via rigorous experiments. Third,
based on the findings from the experimental results, we
propose an effective way to transfer inductive biases
through knowledge distillation.
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2. Demystifying inductive bias
encoded in the student network

There are two possible reasons for the failure of the previ-
ous method. First, if the teacher’s inductive bias is weak,
the signal from the teacher can be insufficient to pro-
vide valid information to the student (Figure 2(a)). The
second possible explanation is that, even if the teacher
has a sufficient inductive bias, the force pushing the stu-
dent network to encode the teacher’s inductive bias may
be insufficient (Figure 2(b)). In this section, we explore
the teacher’s and student’s representations and filters
to identify the reason for the limitation of the previous
approach.

Figure 2: Inductive bias transfer depending on teacher model.
(a) The inductive bias of teacher is not proper for the task. (b)
Driving force to encode inductive bias to student is too weak.

2.1. Experiment setting
2.1.1. Dataset

We used the following datasets with different proper-
ties: Physionet 2021 for CNN and Physionet 2019 for
RNN. Physionet 2021 is a public ECG datasets [4], which
contains approximately 88,000 ECGs. Each ECG is as-
signed one or more arrhythmia labels for 26 classes of
arrhythmia [4]. PhysioNet 2019 [5] is an EHR consisting
of hourly clinical variables collected from the intensive
care unit (ICU) of two hospital systems with 40,336 pa-
tients. The task is to predict sepsis within 12 hours, and
the onset of sepsis is given to each patient.

We additionally used two external datasets to see if
the DeiT preserves the inductive biases of CNN/RNN re-
gardless of the data distribution. The Hangzhou dataset
[6] contains 20,036 ECG recordings, and the eICU Collab-
orative Research Database [7] is a multi-center database
containing over 200,000 admissions to ICU.

2.1.2. Architecture

We develop two teacher networks: (1) the ResNet-based
network for ECG datasets [8]. Each block of ResNet
contains two layers of convolution, and there are eight
blocks in total. The architectural detail is identical to
Hannun et al. [8]. (2) the long short time memory (LSTM)

network for EHR datasets [9]. LSTM is stacked with the 3-
layer, and each layer has 256 hidden units with a residual
connection between each layer.

As a student network, we adopt a transformer [10].
There are two student networks, each of which has eight
blocks for the ECG dataset and three blocks for the EHR
dataset. Training a transformer on ECG datasets, we split
a signal into patches following Dosovitskiy et al. [11].
Each patch consists of 100ms (20 timestamps) without
overlapping and is used as the input of a transformer. In
EHR datasets, a patient has multiple rows, each of which
consists of a medical record at a time. A single row is
used as a token of the input.

2.1.3. The other details of experiments

We set a batch size of 512 for the ECG dataset and a batch
size of 256 for the EHR dataset. We use an Adam op-
timizer with the weight decay and the cosine warmup
scheduler that peaks at ten epochs. In the experiment
with ECGs, the rand augment policy [12] is adopted with
six data augmentation methods, including the gaussian
smoothing, time resampling with cut, gaussian noise,
baseline wander, time mask, and channel mask. In the
case of EHRs, data augmentation is not applied. Hy-
perparameters, such as the learning rate, weight decay,
dropout, and parameters for the augment policy, are
randomly selected from predefined search space, tuned
by the asynchronous successive halving algorithm [13]
using the ray framework [14]. The search space and
selected hyperparameters are provided in Appendix A.
Train, validation, and test set are divided into a ratio of
0.7:0.15:0.15.

2.2. Representation analysis
In order to analyze the inductive bias caused by the
structure of networks, we first compare the represen-
tations of the teacher and the student networks. If the
student(Transformer) successfully encodes the inductive
bias of the teacher(CNN/RNN), there are high similarities
in the representations between them (Figure 2(a)). On
the other hand, if the similarities between the teacher’s
and the student’s representations are low, the teacher’s
representation is not effectively transferred to the stu-
dent (Figure 2(b)).

2.2.1. Output similarity

We first examine the output similarity as shown in Table
1. The number in the table is the r-square value. The
similarity between DeiT and its teacher (CNN/RNN) is
slightly higher than the similarity between the naive
transformer and CNN/RNN; however, the discrepancy
between the teacher and the student is still large. This



Table 1
Probability similarity between the CNN/RNN and the trans-
formers trained using different methods.

ECG EHR
P21 Hanzhou P19 eICU

Transformer 0.530 0.174 0.439 0.308
DeiT 0.601 0.206 0.464 0.351
BBM 0.796 0.592 0.776 0.728

implies the possibility of failure of DeiT encoding the
inductive bias of its teacher architecture.

2.2.2. Internal representation similarity

To examine internal representation similarity driven by
the architecture, we exploit central kernel analysis [15].
Figure 3 illustrates the representational similarity be-
tween CNN/RNN in comparison to DeiT and Transformer.
We observe that CNN/RNN’s feature extraction process
differs from that of Transformer. DeiT has higher simi-
larity to CNN/RNN compared to Transformer, but there
is still a substantial difference to its teacher. Specifically,
in the case of DeiT, only the early layers exhibit a signifi-
cant dissimilarity between the representations, indicating
that the early layers of DeiT failed to learn the CNN/RNN
representation.

Figure 3: The representational similarity between the CN-
N/RNN and the transformers. Axes of each matrix represent
the order of blocks. (a), (b), (c), and (d) are similarity in Phys-
ionet 2021, Hangzhou, Physionet 2019, and eICU dataset.

2.3. Self-attention analysis
Suppose the inductive bias of the teacher(CNN/RNN) is
appropriately transferred to the student(Transformer). In
that case, the student’s self-attention should display the
pattern of the teacher, i.e., spatial/temporal invariance
and locality (Figure 2(a)). However, the student’s self-
attention would not exhibit the pattern of the teacher
if the inductive bias of the teacher is not appropriately
transferred to the student (Figure 2(b)). Figure 4 depicts
the averaged self-attention matrices in each block across
all samples and heads. It is difficult to distinguish the
pattern of DeiT distinct from Transformer. To elaborate,
DeiT does not exhibit the characteristics that demon-
strate the inductive bias of CNN/RNN, such as transla-
tional/temporal invariance or locality.

Figure 4: The self-attention of the transformers. Each (a),
(b), (c), and (d) is self-attention matrix in Physionet 2021,
Hangzhou, Physionet 2019, and eICU dataset. B𝑁 indicates
the self-attention matrix at 𝑁 th layer.

2.4. Discussion
The examination reveals that using DeiT, the teacher’s in-
ductive bias is not well transferred to the student, which
is the case of Figure 2(b). There could be several rea-
sons why DeiT works with ImageNet but not with our
dataset. The first possibility is the size of the dataset.
In the case of ImageNet, large data of 1M is sufficient
to transfer inductive bias via KD. However, the size of



Figure 5: Pink and orange boxes are blocks of the student and the teacher, respectively. The yellow box is a dimension
transformation layer. From the left to right, the panels present Equation 2, 3, and 4, respectively.

the data we utilized is only 8 percent of ImageNet, so it
may be challenging to transfer inductive bias via KD. The
second possibility is the number of classes. ImageNet
consists of one thousand classes, whereas the dataset we
utilized consists of twenty-six for Physionet 2021 and two
classes for Physionet 2019. With this respect, DeiT may
not work with our dataset because distributions obtained
from our dataset contain less information than distribu-
tions obtained from ImageNet. Based on this, we believe
the problem can be alleviated if the student is provided
with more information to encode inductive bias.

3. Better solution for transferring
inductive bias

3.1. Feature-based knowledge distillation
The knowledge distillation utilized in the DeiT is a type of
response-based knowledge distillation that distills knowl-
edge using the model’s output. In contrast to the previous
works, we impose a stronger signal by using feature-
based knowledge distillation to enforce the student net-
work to learn the teacher’s inductive bias. Additionally,
knowledge distillation is performed on feature maps in
order to transfer spatial information from the teacher to
the student effectively.

First, we divide the teacher (𝑔) and student (𝑓 ) into the
same number of blocks and then perform the knowledge
distillation between corresponding blocks (𝑓𝑛, 𝑔𝑛) of the
teacher and the student. Since features transverse multi-
ple layers, the dimension of it varies. For example, in the
case of CNN, the pooling operation and convolution with
stride change the dimensions with temporal direction,
and the convolution operation change also increases the
dimension of the feature. Because of this, the dimension
of features used for knowledge distillation can vary. To
solve the problem, we introduce a transformation func-
tion (ℎ) that transforms each dimension to be identical.
This function resizes the feature’s dimensions along the

temporal axis and projects them along the depth axis.

ℎ𝑓→𝑔(𝑧) = 𝐼(𝑧) 𝑊 (1)

where ℎ(·) := R𝑡×𝑑 → R𝑡′×𝑑′ consist of two-layer:
𝐼(·) := R𝑡×𝑑 → R𝑡′×𝑑 represents the resize along the
temporal axis, and 𝑊 ∈ R𝑑×𝑑′ is linear transformation
along the depth axis.

With a transformation function, we match and train
each block of the teacher and the student (𝑓𝑛, 𝑔𝑛) to be
similar as illustrated in Figure 5. In addition to matching
between blocks of the teacher and the student, we also
perform knowledge distillation between the output of
the successive composition of blocks of the teacher and
the student (𝑓𝑛 ∘· · ·∘𝑓1, 𝑔𝑛 ∘· · ·∘𝑔1). Each loss function
term is formulated as follows.

ℒ1
𝑛 =

∑︁
𝑡,𝑑

⃒⃒⃒⃒⃒⃒
𝑓𝑛(𝑧

𝑓
𝑛−1)− (ℎ𝑔→𝑓

𝑛 ∘ 𝑔𝑛 ∘ ℎ𝑓→𝑔
𝑛−1 )(𝑧

𝑓
𝑛−1)

⃒⃒⃒⃒⃒⃒2
2

(2)

ℒ2
𝑛 =

∑︁
𝑡,𝑑

⃒⃒⃒⃒⃒⃒
𝑔𝑛(𝑧

𝑔
𝑛−1)− (ℎ𝑓→𝑔

𝑛 ∘ 𝑓𝑛 ∘ ℎ𝑔→𝑓
𝑛−1 )(𝑧

𝑔
𝑛−1)

⃒⃒⃒⃒⃒⃒2
2

(3)

ℒ3
𝑛 =

∑︁
𝑡,𝑑

⃒⃒⃒⃒⃒⃒
(ℎ𝑓→𝑔

𝑛 ∘ 𝑓𝑛 ∘ · · · ∘ 𝑓1)(𝑥)− (𝑔𝑛 ∘ · · · ∘ 𝑔1)(𝑥)
⃒⃒⃒⃒⃒⃒2
2

(4)
Incorporating all, the loss function used in transferring
the inductive bias is ℒℬℬℳ =

∑︀
𝑛

(︀
ℒ1

𝑛 + ℒ2
𝑛 + ℒ3

𝑛

)︀
.

We refer to the proposed method as block-by-block
matching (BBM) because it performs knowledge distil-
lation by matching each block of the teacher and the
student. Using BBM method, the final loss function used
for training is as follows: ℒ = ℒ𝒞ℒ𝒮 + 𝜆ℒℬℬℳ, where
𝐿𝐶𝐿𝑆 indicates the loss function for classification with
cross entropy and 𝜆 is weight term for BBM.

3.2. Results
3.2.1. Details of experiments

We divide Transformer and CNN into four blocks in the
ECG experiment, respectively. Each network’s blocks



are divided equally, so each ResNet block contains four
sub-blocks, and each transformer block contains two
sub-blocks. Transformer and RNN are divided into three
blocks for the EHR experiment, with each block contain-
ing one block of Transformer and one layer of LSTM,
respectively.

3.2.2. Result

Table 2 shows the performance of the proposed method
against other methods in Physionet 2021 and 2019. In
Physionet 2021, there is a significant gap between Trans-
former and CNN. DeiT is unable to close this gap, but our
approach not only closes the gap but also outperforms
CNN. A similar trend is observed in Physionet 2019.

Table 2
Generalization performance of existing methods and proposed
method. The teacher network stands for CNN in ECG dataset
and RNN in EHR dataset.

ECG EHR
F-1 P-21 F-1 P-19

Transformer 0.4959 0.6070 0.1579 0.1876
Teacher 0.5890 0.6895 0.1526 0.2528

DeiT 0.5322 0.6571 0.1609 0.2177
BBM 0.6037 0.7026 0.1610 0.2619

3.2.3. Evaluation on inductive bias transfer

As shown in Figure 1 and 3, BBM demonstrates higher
similarity in representation with its teacher. In addi-
tion, as demonstrated in Figure 4, we observe that the
self-attention matrix of BBM successfully encodes its
teacher’s inductive bias, such as spatial/temporal invari-
ance or locality in the self-attention analysis. These prove
that the proposed method encodes the inductive bias of
its teacher successfully.

3.3. Ablation study
We viewed the network as composite functions, perform-
ing knowledge distillation on each function. Here, the
question of the optimal number of blocks naturally arises.
We perform experiments with varying the number of
blocks to answer this question. As shown in Table 3, the
performance increases as the number of blocks increases.

4. Conclusion
We show the limitation of DeiT on the transfer of induc-
tive bias and demonstrate that this issue can be resolved
using feature-based knowledge distillation. Through ex-
perimental studies in medical data, we demonstrate that

Table 3
Ablation study on the effect of the number of blocks. Each
row indicate the number of blocks used for function matching.
Block 1 uses the entire encoder as the single block.

ECG EHR
F-1 P-21 F-1 P-19

BBM-block1 0.5938 0.7001 0.1617 0.2066
BBM-block2 0.6027 0.7015 - -
BBM-block3 - - 0.1610 0.2619
BBM-block4 0.6037 0.7026 - -

our method consistently outperforms existing methods
as well as the strong inductive bias models. Addition-
ally, an extensive analysis verifies that the proposed
method transfers meaningful inductive bias to transform-
ers. Many studies focus on transferring the inductive
bias into Transformer on ImageNet. However, there is
insufficient analysis of other real-world data with differ-
ent properties to ImageNet. We expect our study will
help bridge the gap between research on ImageNet and
real-world data.

References
[1] A. Goyal, Y. Bengio, Inductive biases for deep

learning of higher-level cognition, arXiv preprint
arXiv:2011.15091 (2020).

[2] S. Abnar, M. Dehghani, W. Zuidema, Transferring
inductive biases through knowledge distillation,
arXiv preprint arXiv:2006.00555 (2020).

[3] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablay-
rolles, H. Jégou, Training data-efficient image trans-
formers & distillation through attention, in: Inter-
national Conference on Machine Learning, PMLR,
2021, pp. 10347–10357.

[4] M. A. Reyna, N. Sadr, E. A. P. Alday, A. Gu, A. J.
Shah, C. Robichaux, A. B. Rad, A. Elola, S. Seyedi,
S. Ansari, et al., Will two do? varying dimensions
in electrocardiography: The physionet/computing
in cardiology challenge 2021, Computing in Cardi-
ology 48 (2021) 1–4.

[5] M. A. Reyna, C. Josef, S. Seyedi, R. Jeter, S. P.
Shashikumar, M. B. Westover, A. Sharma, S. Nemati,
G. D. Clifford, Early prediction of sepsis from clin-
ical data: the physionet/computing in cardiology
challenge 2019, in: 2019 Computing in Cardiology
(CinC), IEEE, 2019, pp. Page–1.

[6] Alibaba-Cloud, Hefei high-tech cup, ecg human-
machine intelligence competition-prediction of ab-
normal ecg events, 2019. URL: https://tianchi.aliyun.
com/competition/entrance/231754/introduction.

[7] T. J. Pollard, A. E. Johnson, J. D. Raffa, L. A. Celi, R. G.
Mark, O. Badawi, The eicu collaborative research

https://tianchi.aliyun.com/competition/entrance/231754/introduction
https://tianchi.aliyun.com/competition/entrance/231754/introduction


database, a freely available multi-center database
for critical care research, Scientific data 5 (2018)
1–13.

[8] A. Y. Hannun, P. Rajpurkar, M. Haghpanahi,
G. H. Tison, C. Bourn, M. P. Turakhia, A. Y. Ng,
Cardiologist-level arrhythmia detection and classi-
fication in ambulatory electrocardiograms using a
deep neural network, Nature medicine 25 (2019)
65–69.

[9] J. Wang, B. Peng, X. Zhang, Using a stacked resid-
ual lstm model for sentiment intensity prediction,
Neurocomputing 322 (2018) 93–101.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin, At-
tention is all you need, in: Advances in neural
information processing systems, 2017, pp. 5998–
6008.

[11] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-
senborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al., An image is
worth 16x16 words: Transformers for image recog-
nition at scale, arXiv preprint arXiv:2010.11929
(2020).

[12] E. D. Cubuk, B. Zoph, J. Shlens, Q. V. Le, Ran-
daugment: Practical automated data augmentation
with a reduced search space, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, 2020, pp. 702–703.

[13] L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina,
M. Hardt, B. Recht, A. Talwalkar, Massively parallel
hyperparameter tuning (2018).

[14] P. Moritz, R. Nishihara, S. Wang, A. Tumanov,
R. Liaw, E. Liang, M. Elibol, Z. Yang, W. Paul, M. I.
Jordan, et al., Ray: A distributed framework for
emerging {AI} applications, in: 13th {USENIX}
Symposium on Operating Systems Design and Im-
plementation ({OSDI} 18), 2018, pp. 561–577.

[15] S. Kornblith, M. Norouzi, H. Lee, G. Hinton, Simi-
larity of neural network representations revisited,
in: International Conference on Machine Learning,
PMLR, 2019, pp. 3519–3529.

A. Implementation details
All the hyperparamters in experiments are chosen based
on extensive hyperparameter search, which is performed
using asynchronous successive halving algorithm. The
search space and selected hyperparameters are described
in the following.

A.1. Experiments on Physionet2021
A.1.1. Convolution network

The total of 100 search space is explored for maximum
epoch of 100 with early-stopping rate of 0.5 every 20
epochs. Learning rate ∈ [0.00001, 0.01] and weight de-
cay ∈ [0.00001, 0.1] are sampled from log-uniform dis-
tribution. And dropout ∈ [0, 0.3], rand-augment num-
ber ∈ [1, 5], rand-augment intensity ∈ [0, 1] are sam-
pled from quantified uniform distribution with the in-
terval of 0.05, 1, and 0.1, respectively [12]. The chosen
set of hyperparameters are 0.0003552 for learning rate,
0.00002430 for weight decay, 0.1 for dropout, and 3/0.7
for rang-augment number/intensity.

A.1.2. Transformer trained from the scratch

Experiment setting is identical to convolution network,
and the selected set of hyperparameters are 0.0002331
for learning rate, 0.00001312 for weight decay, 0.15 for
dropout, and 3/0.8 for rang-augment number/intensity.

A.1.3. DeiT

For DeiT, We performed hard-label distillation as de-
scribed in equation (3) of [3]. In the search space, we
added loss ratio between classification token and knowl-
edge distillation token 𝜆. As𝜆 is closer to 0, the ratio of
knowledge distillation in loss increases. The other setting
is identical to the setting in the convolution network. The
selected set of hyperparameters are 0.0002517 for learn-
ing rate, 0.00002253 for weight decay, 0.15 for dropout,
3/0.5 for rang-augment number/intensity, and 0.6 for
knowledge distillation loss ratio.

A.1.4. BBM: Knowledge distillation

The total of 30 search space is explored for maximum
epoch of 500 with early-stopping rate of 0.5 every 30
epochs. Learning rate ∈ [0.0001, 0.1] and weight decay
∈ [0.00001, 0.1] are sampled from log-uniform distri-
bution. And dropout ∈ [0, 0.3], rand-augment number
∈ [3, 5], rand-augment intensity ∈ [0.5, 1] are sampled
from quantified uniform distribution with the interval
of 0.05, 1, and 0.1, respectively. The chosen set of hy-
perparameters are 0.0007713 for learning rate, 0.03116
for weight decay, 0.1 for dropout, and 3/0.9 for rang-
augment number/intensity.

A.2. Experiments on Physionet2019
A.2.1. Recurrent network

The total of 100 search space is explored for maximum
epoch of 100 with early-stopping rate of 0.5 every 20
epochs. Learning rate ∈ [0.0001, 0.01] and weight decay



∈ [0.00001, 0.1] are sampled from log-uniform distri-
bution. And dropout ∈ [0, 0.3] is sampled from quan-
tified uniform distribution with the interval of 0.05.
Hidden dimension of hidden unit is sampled from ∈
{128, 256, 512}. The chosen set of hyperparameters are
0.0007194 for learning rate, 0.00001238 for weight de-
cay, 0.1 for dropout, and 256 for hidden units.

A.2.2. Transformer trained from the scratch

For the transformer, the number of head ∈ {4, 8}, the
dimension of the model ∈ {128, 256, 512}, the dimen-
sion of transformed network in the feed forward layer
∈ {128, 256, 512} are randomly sampled. Other set-
tings are identical to the recurrent network. The chosen
set of hyperparameters are 0.0008136 for learning rate,
0.00001523 for weight decay, 0.25 for dropout. For hy-
perparameters of transformer architecture, each hidden
unit, model, and head is 128, 512, and 8.

A.2.3. DeiT

For the hyperparameters related to transformer’s archi-
tecture, We used the hyperparameter set selected in the
transformer trained from the scratch. We performed hard-
label distillation as the experiment in Physionet2021. In
the search space, we added loss ratio between classifica-
tion token and knowledge distillation token. The chosen
set of hyperparameters are 0.0001554 for learning rate,
0.0001728 for weight decay, 0.05 for dropout, and 0.2
for the the ratio of knowledge distillation.

A.2.4. BBM: Knowledge distillation

The architecture selected in transformer trained from
the scratch is used. The total of 30 search space is ex-
plored for maximum epoch of 500 with early-stopping
rate of 0.5, every 30 epochs. Learning rate∈ [0.0001, 0.1]
and weight decay ∈ [0.00001, 0.1] are chosen with log-
uniform distribution. And drop out ∈ [0, 0.3] is sampled
from quantified uniform distribution with the interval of
0.05. The chosen set of hyperparameters are 0.002099
for learning rate, 0.0001718 for weight decay, and 0.05
for dropout.
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