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Abstract
Major flaring events on the Sun can have hazardous impacts on both space and ground-based infrastructure. An effective
approach of predicting that a solar active region (AR) is likely to flare after a period of time is to leverage multivariate time
series (MVTS) of the AR magnetic field parameters. Existing MVTS-based flare prediction models are based on training
traditional classifiers with preset statistical features of univariate time series instances, or training deep sequence models
based on Recurrent Neural Network (RNN) or Long Short Term Memory (LSTM) Network. While the earlier approach is
affected by hand-engineered features, the latter approach uses only the temporal dimension of the MVTS instances. The
variables of MVTS do not depend only on their historical values but also on other variables. In this work, we used the dynamic
functional network representation of the MVTS instances to leverage higher-order relationships of the variables through
Graph Convolution Network (GCN) embedding. In addition to finding spatial (inter-variable) patterns through functional
network embedding, our model uses local and global temporal patterns through LSTM networks. Our experiments on a
real-life solar flare dataset exhibit better prediction performance than other baseline methods.
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1. Introduction
Solar flares are characterized by sudden bursts of mag-
netic flux in the solar corona and heliosphere. Extreme
Ultra-Violet (EUV), X-ray, and gamma-ray emissions
caused by major flaring events can have disastrous ef-
fects on our technology-dependent society. The risks of
life and infrastructure in both space and ground include
radiation exposure-based health risks of the astronauts,
disruption in GPS and radio communication, and dam-
ages in electronic devices. The economic damage of such
extreme solar events can rise up to trillions of dollars [1].
In 2015, the White House released the National Space
Weather Strategy and Space Weather Action Plan [2] as a
roadmap for research aimed at predicting and mitigating
the effects of solar eruptive activities.

In recent years, multiple research efforts of the helio-
physics community aim to predict solar flares from the
current and historic magnetic field states of the solar
active regions. Due to the absence of direct theoretical
relationship between magnetic field influx and flare oc-
currence in active regions (AR), solar physics researchers
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rely on data science-based approaches for predicting so-
lar flares. The data is collected by the Helioseismic Mag-
netic Imager (HMI) housed in the Solar Dynamics Ob-
servatory. Near-continuous-time images captured by the
instruments of HMI contain spatiotemporal magnetic
field data of the active regions. The prediction of solar
flares, which will identify active regions that will poten-
tially flare after a period of time, requires time series
modeling of the magnetic field data. For that, spatiotem-
poral magnetic field data of active regions are mapped
into multiple MVTS instances [3]. The variables of the
MVTS instances represent solar magnetic field parame-
ters (e.g., flux, current, helicity, Lorentz force). The time
series corresponding to the magnetic field parameters
are extracted based on two time windows: observation
window (the time window of data collection), and predic-
tion window (the time window after the data collection
and before the flare occurrence). Each MVTS instance
is labeled as one of six classes - Q, A, B, C, M, and X,
where Q represents flare quiet active regions, and other
labels represent flaring events with increasing intensity.
Among these classes, X and M-class flares are considered
as most intense flaring events.

In comparison to the earlier single timestamp-based
magnetic field vector classification models, recent MVTS-
based models are more effective for predicting flaring
activities [3]. MVTS classification models targeting flare
prediction are divided in two categories: (1) statisti-
cal feature-based method [4], and (2) end-to-end deep
learning-based method [5]. The models of the first cate-
gory work in two steps. Firstly, low-dimensional repre-
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sentations of MVTS instances are calculated from con-
catenation/aggregation of summarization statistics (e.g.,
mean, standard deviation, skewness, kurtosis, etc) of the
univariate time series components. Lastly, traditional
classifiers (e.g., kNN, SVM, etc) are trained with labeled
MVTS representations. The two-step process of MVTS
classification relies heavily on hand-engineered statis-
tical features and the choice of downstream classifiers,
which eventually complicates the application of these
models in datasets with varying properties. In the sec-
ond category, RNN/LSTM-based deep sequence models
are trained by sequentially feeding vectors representing
magnetic field parameters into sequence model cells, and
optimizing the cell weights through gradient descent-
based backpropagation. While the deep learning models
ensure end-to-end learning bypassing the dependency
on hand-engineered features, they can utilize only the
time dimension of the MVTS instances, and this limited
usage of underlying patterns results in poor classification
performance.

In this work, we propose a deep learning-based MVTS
classification approach for solar flare prediction lever-
aging the the fact that MVTS data is rich not only in
temporal dimension, but also in spatial dimension which
encodes inter-variable relationships [6]. For learning
higher-order relationships of the MVTS variables, we
used functional networks, where nodes represent vari-
ables, and edges represent positive correlation of the time
series of corresponding variables. The MVTS instance
is divided into equal-length temporal windows, and an
edge-weighted functional network is constructed for each
window. We trained Graph Convolution Network (GCN)
to learn representation of each functional network. In
addition, we used two LSTM networks for learning rep-
resentations based on temporal dimension within and
between the windows. Our model significantly outper-
forms existing MVTS-based flare prediction models on
a dataset containing MVTS instances of solar events of
different flare classes.

The contributions made by this paper are listed below.

1. Leveraging higher-order inter-variable relation-
ships of the MVTS instances by GCN-based dy-
namic functional network embedding.

2. Utilizing local and global patterns of the temporal
dimension of the MVTS instances through LSTM-
based within-window and between-window se-
quence learning.

3. Experimentally demonstrating the better perfor-
mance of our model in comparison with the state-
of-the-art baselines on a benchmark solar flare
prediction dataset.

2. Related Work
While the current approaches of flare prediction are
mostly based on data science, the earliest flare prediction
system was an expert system named THEO that required
human inputs [7]. The Space Environment Center (SEC)
of the National Oceanic and Atmospheric Administration
(NOAA) adopted the system THEO in 1987. To distin-
guish flare classes, THEO was provided input data of
sunspots and magnetic field properties.

Due to the abundance of magnetic field data collected
by NASA’s recent missions, research efforts of flare pre-
diction of the last two decades are based on data science
rather than on purely theoretical modeling. Data science-
based approaches stemmed from both linear and nonlin-
ear statistics. Based on the type of dataset used, these
approaches are subdivided into two classes: line-of-sight
magnetogram-based models and vector magnetogram-
based models. Solar active regions are represented by the
parameters of either photospheric magnetic field data
that contain only the line-of-sight component of the
magnetic field or by the full-disk photospheric vector
magnetic field. Followed by NASA’s launch of SDO in
2010, the HMI instrument has been mapping the full-
disk vector magnetic field every 12 minutes [8]. Most
of the recent models use the near-continuous stream of
vector magnetogram data found from SDO, while the ear-
lier models (dated before 2010) mostly used line-of-sight
magnetic data.

The objective of the linear statistical models was to find
the active region magnetic field features that are highly
correlated with the flare occurrences. Cui et al. [9] and
Jing et al. [10] used line-of-sight magnetogram data to
find correlation-based statistical relationships between
magnetic field parameters and flare occurrences. Even
before the launch of SDO, Leka and Barnes [11] collected
and curated vector magnetogram data from Mees Solar
Observatory on the summit of Mount Haleakala, and
used linear discriminant analysis (LDA) for classifying
flaring events.

Nonlinear statistical models are mostly machine learn-
ing classifiers based on tree induction, kernel method,
neural network, and so on. On the line-of-sight
magnetogram-based active region datasets, Song et al.
[12] used logistic regression, Yu et al. [13] used C4.5
decision tree, Ahmed et al. [14] used the fully connected
neural network, and Al-Ghraibah et al. [15] used rele-
vance vector machine as classification models. Bobra et al.
[16] used Support Vector Machine (SVM) on SDO-based
vector magnetogram data for classifying flaring and non-
flaring active regions. Nishizuka et al. [17] used both
line-of-sight and vector magnetograms and compared
the performance of three classifiers - kNN, SVM, and Ex-
tremely Randomized Tree (ERT). Other examples of solar
flare prediction on non-sequential data include various
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Figure 1: Multivariate time series instance with predefined
observation and prediction window, and corresponding flare
class label [5]

applications of convolutional neural network (ConvNet)
on SDO AIA/HMI images [18, 19, 20, 21].

Angryk et al. [3] introduced temporal window-
based flare prediction, which extends the earlier sin-
gle timestamp-based models. The authors published an
MVTS-based active region dataset, where each MVTS
instance records magnetic field data for a preset observa-
tion time and uniform sampling rate, and is labeled by
flare classes that occurred after a given prediction time.
Among the MVTS classification approaches, Hamdi et
al. [4] used statistical summarization of component uni-
variate time series for training kNN classifier, Ma et. al.
[22] applied MVTS decision trees that approached the
problem using clustering as a preprocessing step, and
Muzaheed et. al. [5] used LSTM-based deep sequence
modeling for end-to-end flare classification that auto-
mated feature learning process avoiding hand-engineered
statistical features.

Unlike previous models based on traditional ML and
deep sequence learning, in this work, we present a model
that leverages temporal as well as spatial relationships
of the MVTS instances. Our model learns MVTS repre-
sentations through an end-to-end fashion, and utilizes
higher-order inter-variable relationships and local and
global temporal changes.

3. MVTS representation learning
by functional network and
sequence embedding

3.1. Notations and Preliminaries
3.1.1. MVTS and Sub-MVTS

Each solar active region resulting in different flare classes
(or staying as a flare quiet region) after a given prediction
window represents a solar event. The solar event 𝑖 is
represented by a MVTS instance 𝑆(𝑖), and associated by
a class label 𝑦(𝑖). The class label 𝑦(𝑖) represents the flare
quiet state, or flare classes of different intensities. The

MVTS instance𝑆(𝑖) ∈ R𝑇×𝑁 is a collection of univariate
time series of 𝑁 magnetic field parameters, where each
time series contains periodic observation values of the
corresponding parameter for an observation period 𝑇 .
We denote the vector of 𝑡-th timestamp as 𝑥<𝑡> ∈ R𝑁 ,
and the time series represented by 𝑘-th parameter as
𝑃𝑘 ∈ R𝑇 . After the observation period 𝑇 and prediction
period ∆, the event is labeled by the active region state
(flare quiet or different flare classes). The active region
state of a particular timestamp is found from the NOAA
records of flaring events. Fig. 1 shows the MVTS-based
data model of a solar event. Each MVTS instance is di-
vided into 𝜂 equal-length windows such that 𝑇 = 𝜂𝜏 ,
where 𝜏 denotes window length. The sub-MVTS is de-
noted by 𝑠 ∈ R𝜏×𝑁 , and 𝑠 is a subsequence of 𝑆.

3.1.2. Node-attributed functional network

Functional network is a undirected and edge-weighted
graph, and defined as 𝐺 = (𝑉,𝐸,𝑊,𝑋), where the
set of nodes 𝑉 = {𝑃1, ..., 𝑃𝑁} denotes magnetic field
parameters, 𝑊 : 𝐸 −→ R is a function of mapping edges
to their weights, and node attribute matrix 𝑋 ∈ R𝑁×𝜏

contains the time series of each node in the sub-MVTS,
i.e., 𝑋 = 𝑠𝑇 . The functional network is defined on the
sub-MVTS, and the weight 𝑤𝑖𝑗 of edge 𝑒𝑖𝑗 (between node
pair 𝑃𝑖 and 𝑃𝑗 ) represents the statistical similarity of 𝜏 -
length time series of 𝑃𝑖 and 𝑃𝑗 . Each functional network
derived from a MVTS dataset has the same node set 𝑉 .

3.1.3. Graph Convolution

For learning the representations of node-attributed func-
tional networks, we use Graph Convolution Network
(GCN). GCN is a widely used graph neural network [23]
that learns node representations from a graph through
layer-wise neighborhood aggregation. Graph convolu-
tion of layer 𝑙 aggregates the representations of 𝑙-hop
neighbors. GCN updates representation of node 𝑣 in a
graph 𝐺 = (𝑉,𝐸,𝑊,𝑋) by following equations.

ℎ[0]
𝑣 = 𝑥𝑣 (1)

ℎ[𝑙+1]
𝑣 = 𝑅𝑒𝐿𝑈

⎛⎝𝑊 [𝑙]
𝑔

∑︁
𝑢∈𝑁(𝑣)

𝑤𝑢𝑣ℎ
[𝑙]
𝑢

|𝑁(𝑣)| +𝐵[𝑙]
𝑔 ℎ[𝑙]

𝑣

⎞⎠ ,

∀𝑙 ∈ {0, 1, ..., 𝐿− 1} (2)

𝑧𝑣 = ℎ[𝐿]
𝑣 (3)

𝑧𝐺 =
1

|𝑉 |
∑︁
𝑣∈𝑉

𝑧𝑣 (4)

Here, 𝐿 is the number of GCN layers, 𝑥𝑣 ∈ R𝜏 is the
vector of node 𝑣, ℎ[𝑙]

𝑣 ∈ R𝑑𝑔 is the representation of node
𝑣 in layer 𝑙, 𝑊 [𝑙]

𝑔 ∈ R𝑑𝑔×𝑑𝑔 is the weight matrix of layer
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Figure 2: GCN-based node-attributed functional network embedding and LSTM-based local and global sequence embedding.
For showing the functional network construction process, parameter set {𝑃1, 𝑃2, .., 𝑃𝑁} of the MVTS instance has been
shown as {𝐴,𝐵,𝐶,𝐷,𝐸, 𝐹}.

𝑙, 𝐵[𝑙]
𝑔 ∈ R𝑑𝑔 is the bias vector of layer 𝑙, 𝑁(𝑣) is the set

of neighbor nodes of node 𝑣, 𝑤𝑢𝑣 is the weight associated
in the edge between node 𝑣 and its neighbor 𝑢, 𝑧𝑣 is the
final representation of node 𝑣 after 𝐿 iterations of neigh-
borhood aggregation, and 𝑧𝐺 is graph representation
found by averaging the node representations.

3.1.4. Sequence embedding through LSTM

Long-short term memory (LSTM) networks [24] are
frequently used for sequence representation learn-
ing which facilitates various tasks such as sequence
classification, sequence-to-sequence translation, and
so on. We use LSTM networks for learning low-
dimensional representations of MVTS instances. The
MVTS (and sub-MVTS) instances are sequences of 𝑁 -
dimensional timestamp vectors. The timestamp vec-
tor 𝑥<𝑡> ∈ R𝑁 represents the magnetic filed state of
the active region (𝑁 parameter values) in the times-
tamp 𝑡. We denote the inputs to the LSTM cells
as [𝑥<1>, 𝑥<2>, 𝑥<3>, ..., 𝑥<𝛾>], cell state represen-
tations as [𝑐<0>, 𝑐<1>, 𝑐<2>, ..., 𝑐<𝛾−1>], and hidden
state representations as [ℎ<0>, ℎ<1>, ℎ<2>, ..., ℎ<𝛾>],
where 𝛾 is the last timestamp of the sequence. After ran-
domly initializing 𝑐<0> and ℎ<0>, we update the cell
state and hidden state of the timestamp 𝑡 by following
LSTM equations [24].

�̃�<𝑡> = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ
<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑐) (5)

Γ𝑢 = 𝜎(𝑊𝑢[ℎ
<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑢) (6)

Γ𝑓 = 𝜎(𝑊𝑓 [ℎ
<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑓 ) (7)

Γ𝑜 = 𝜎(𝑊𝑜[ℎ
<𝑡−1>, 𝑥<𝑡>] + 𝑏𝑜) (8)

𝑐<𝑡> = Γ𝑢 ⊙ �̃�<𝑡> + Γ𝑓 ⊙ 𝑐<𝑡−1> (9)

ℎ<𝑡> = Γ𝑜 ⊙ 𝑡𝑎𝑛ℎ(𝑐<𝑡>) (10)

We denote the number of dimensions of the cell state
representation 𝑐<𝑡> and hidden state representation
ℎ<𝑡> of the LSTM cell as 𝑑𝑠. The concatenation of hid-
den state of previous timestamp and the input of current
timestamp is [ℎ<𝑡−1>, 𝑥<𝑡>] ∈ R𝑑𝑠+𝑁 . The candidate
cell state representation is �̃�<𝑡> ∈ R𝑑𝑠 . The weight
matrices are 𝑊𝑐,𝑊𝑢,𝑊𝑓 ,𝑊𝑜 ∈ R𝑑𝑠×(𝑑𝑠+𝑁), and bias
terms are 𝑏𝑐, 𝑏𝑢, 𝑏𝑓 , 𝑏𝑜 ∈ R. The subscripts 𝑢, 𝑓 , and 𝑜
represents the activations of update gate, forget gate, and
output gate respectively, while ⊙ refers to elementwise
multiplication, and 𝜎 represents sigmoid activation. Fi-
nally, we consider ℎ<𝛾> as the final representation of
the input MVTS.



3.2. Data Preprocessing
3.2.1. Node-level normalization

Since the magnetic field parameter values are recorded in
different scales, we perform z-score normalization. Sup-
pose that 𝑀 number of MVTS instances each with 𝑁
parameters and 𝑇 time points are represented by a third-
order tensor 𝒳 ∈ R𝑀×𝑁×𝑇 , where three modes repre-
sent events, parameters/nodes, and timestamps. For the
better performance of the GCN-based graph embedding,
we perform node-level z-normalization as a preprocessing
step in the following three steps.

1. We perform mode-2 matricization, i.e., reshaping
the tensor so that mode-2 (parameter/node) fibers
become the columns of the matrix. The matrix
is denoted by 𝑋(2) ∈ R𝑀𝑇×𝑁 . The columns are
denoted by 𝑃1, 𝑃2, . . . , 𝑃𝑁 .

2. For each column 𝑃𝑗 , we perform z-normalization
as follows.

𝑥
(𝑗)
𝑘 =

𝑥
(𝑗)
𝑘 − 𝜇(𝑗)

𝜎(𝑗)

Here, 𝑥(𝑗)
𝑘 is the 𝑘-th value of the column 𝑃𝑗 ,

where 1 ≤ 𝑘 ≤ 𝑀𝑇 , 𝜇(𝑗) is the mean of the
column 𝑃𝑗 , and 𝜎(𝑗) is the standard deviation of
the column 𝑃𝑗 .

3. We reshape the matrix 𝑋(2) ∈ R𝑀𝑇×𝑁 back to
third-order tensor, 𝒳 ∈ R𝑀×𝑁×𝑇 .

3.2.2. Functional network construction

We calculate the Pearson correlation matrix 𝐶 ∈ R𝑁×𝑁

for the sub-MVTS 𝑠 ∈ R𝜏×𝑁 . In the correlation ma-
trix, 𝐶𝑖𝑗 represents the Pearson correlation coefficient
(in the range of [-1, 1]) between 𝜏 -length time series
𝑃𝑖 and 𝑃𝑗 . The symmetric matrix 𝐶 can be considered
as an adjacency matrix of a graph of 𝑁 nodes. We ap-
ply a sparsity threshold of 0 so that only edges with
positive weight (node pairs with positive correlation)
are considered for functional network construction. We
denote the sparse correlation matrix as the adjacency
matrix 𝐴 ∈ R𝑁×𝑁 . Although the functional network
defined over a sub-MVTS encodes inter-variable inter-
actions within a small temporal window, the adjacency
matrix is not enough for the completeness of data, since
negative correlation coefficients are discarded. To avoid
the data missing, in addition to the adjacency matrix
(graph structure), we extract the node attribute matrix
𝑋 = 𝑠𝑇 . In 𝑋 ∈ R𝑁×𝜏 , each row represents node at-
tributes in the form of 𝜏 -length time series (normalized
in the previous step).

3.3. MVTS representation learning
In Fig. 2, we show the components of MVTS representa-
tion learning. Firstly, the window embedding learns the
local spatiotemporal changes of the sub-MVTS instances
through the models denoted as 𝐺𝐶𝑁 and 𝐿𝑆𝑇𝑀𝑠, and
finally, the whole MVTS embedding learns global tempo-
ral changes of the local (window) representations through
the model denoted as 𝐿𝑆𝑇𝑀𝑓 .

3.3.1. Window embedding

Our model learns the representation of the window
𝑠 (sub-MVTS) of the MVTS instance 𝑆 through GCN-
based node-attributed functional network embedding
and LSTM-based local sequence modeling.

• GCN-based functional network embedding:
We input the node-attributed functional network
𝐺(𝑉,𝐸,𝑊,𝑋) to a two-layer GCN. The initial
node attributes are set as 𝑋 = 𝑠𝑇 (Eq. 1). In
the first layer, each node is embedded into a 𝑑′𝑔-
dimensional space through 1-hop neighborhood
aggregation, and after the second layer, each node
is embedded into a 𝑑𝑔-dimensional space through
2-hop neighborhood aggregation (Eq. 2,3). Fi-
nally, the whole graph representation 𝑧𝐺 ∈ R𝑑𝑔

is computed through mean pooling (Eq. 4).
• LSTM-based sub-MVTS embedding: The sub-

MVTS 𝑠 = [𝑥<1>, ..., 𝑥<𝜏>], where 𝑥<𝑡> ∈
R𝑁 , is sequentially input to the 𝐿𝑆𝑇𝑀𝑠 (Eq. 5-
10), and we extract the last hidden representation
𝑧𝑠 = ℎ<𝜏>

𝑠 , where 𝑧𝑠 ∈ R𝑑𝑠 .

For the window embedding, we concatenate 𝑧𝐺 ∈ R𝑑𝑔

and 𝑧𝑠 ∈ R𝑑𝑠 . Therefore, the window representation is
𝑧𝑤 ∈ R𝑑𝑔+𝑑𝑠 .

3.3.2. Whole MVTS embedding

After each of 𝜂 windows is represented as (𝑑𝑔 +
𝑑𝑠)-dimensional vector, we feed the sequential data
[𝑧<1>

𝑤 , ..., 𝑧<𝜂>
𝑤 ] into 𝐿𝑆𝑇𝑀𝑓 for global temporal

change modeling. Note that 𝐿𝑆𝑇𝑀𝑓 and 𝐿𝑆𝑇𝑀𝑠 have
different learnable parameter sets (e.g., 𝑊𝑢𝑠 ,𝑊𝑢𝑓 , etc),
although in this work the number of dimensions (𝑑𝑠) in
the cell state and hidden state are kept the same. We
extract the final hidden state representation 𝑧𝑓 = ℎ<𝜂>

𝑓 ,
where 𝑧𝑓 ∈ R𝑑𝑠 . We input 𝑧𝑓 into a linear (fully con-
nected) layer. In this layer, the parameters are 𝑊𝐹 ∈
R𝑛𝑐×𝑑𝑠 , and 𝑏𝐹 ∈ R, where 𝑛𝑐 is the number of classes.
After this layer, we have a 𝑛𝑐-dimensional representation
of the whole MVTS instance of event 𝑖.

𝑧(𝑖) = 𝑅𝑒𝐿𝑈(𝑊𝐹 𝑧𝑓 + 𝑏𝐹 ) (11)



Finally, we input 𝑧(𝑖) ∈ R𝑛𝑐 into a softmax layer,
whose number of units is equal to the number of classes.
The softmax layer gives us the normalized class probabil-
ities, and we finally get 𝑦(𝑖) ∈ R𝑛𝑐 .

𝑦(𝑖) =
𝑒𝑧

(𝑖)∑︀𝑛𝑐
𝑗=1 𝑒

𝑧
(𝑖)
𝑗

(12)

The predicted labels of training MVTS instances are
matched against true labels, and the Adam optimizer
[25] updates the weight and bias parameter values of the
𝐺𝐶𝑁 , 𝐿𝑆𝑇𝑀𝑠, 𝐿𝑆𝑇𝑀𝑓 and the fully connected layer
through backpropagation algorithm. Algorithm 1 shows
the training procedure of the proposed GCN-LSTM-based
MVTS representation learning.

Algorithm 1 Training of GCN-LSTM-based MVTS rep-
resentation learning
Input: Training set 𝒟 consisted of functional network
adjacency matrices 𝑋𝑎𝑑𝑗 ∈ R𝑛𝑡𝑟𝑎𝑖𝑛×𝜂×𝑁×𝑁 and node
attribute matrices 𝑋𝑛𝑎𝑡 ∈ R𝑛𝑡𝑟𝑎𝑖𝑛×𝜂×𝑁×𝜏 , one-hot
training labels 𝑦𝑡𝑟𝑎𝑖𝑛 ∈ R𝑛𝑡𝑟𝑎𝑖𝑛×𝑛𝑐 , number of epochs
𝑛𝑒𝑝𝑜𝑐ℎ𝑠, learning rate 𝛼, and weight decay factor of the
Adam optimizer 𝜆.
Output: Learned parameters of 𝐺𝐶𝑁 , 𝐿𝑆𝑇𝑀𝑠, and
𝐿𝑆𝑇𝑀𝑓 .

1: Randomly initialize parameter set𝒲 , which
contains 𝐺𝐶𝑁 , 𝐿𝑆𝑇𝑀𝑠, and 𝐿𝑆𝑇𝑀𝑓 parameters

2: for number of training epochs 𝑛𝑒𝑝𝑜𝑐ℎ𝑠 do
3: for MVTS instance 𝑖 = 1, 2, ..., 𝑛𝑡𝑟𝑎𝑖𝑛 do
4: Window matrix, 𝑍𝑤 = [0]𝜂×(𝑑𝑔+𝑑𝑠)

5: for window 𝑗 = 1, 2, ..., 𝜂 do
6: 𝐴← 𝑋𝑎𝑑𝑗 [𝑖, 𝑗, :, :]
7: 𝑋 ← 𝑋𝑛𝑎𝑡[𝑖, 𝑗, :, :]
8: 𝑧𝐺 ← 𝐺𝐶𝑁(𝐴,𝑋) //Eq. 1-4 (𝐿 = 2)
9: 𝑧𝑠 ← 𝐿𝑆𝑇𝑀𝑠(𝑋

𝑇 ) //Eq. 5-10
10: 𝑍𝑤[𝑗, :]← 𝐶𝑜𝑛𝑐𝑎𝑡(𝑧𝐺, 𝑧𝑠)
11: end for
12: 𝑧𝑓 ← 𝐿𝑆𝑇𝑀𝑓 (𝑍𝑤) //Eq. 5-10
13: 𝑧𝑓 ← 𝐿𝑖𝑛𝑒𝑎𝑟(𝑧𝑓 ) //Eq. 11
14: 𝑧(𝑖) ← 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑓 ) //Eq. 12
15: //negative log likelihood loss calculation
16: ℒ ← 𝑁𝐿𝐿𝐿𝑜𝑠𝑠(𝑧(𝑖), 𝑦

(𝑖)
𝑡𝑟𝑎𝑖𝑛)

17: Update𝒲 minimizing ℒ by Adam(𝛼, 𝜆)
18: end for
19: end for
20: return𝒲

4. Experiments
In this section, we demonstrate our experimental find-
ings. We compared the performance of our model with
six other MVTS-based flare prediction baselines on a

benchmark dataset. We used PyTorch 1.10.0 with CUDA
11.1 for implementing our GCN-LSTM-based MVTS clas-
sifier. The source code of our model and the experimental
dataset are available at our GitHub repository. 1

4.1. Dataset
As the benchmark dataset of our experiments, we used
the solar flare prediction dataset published by Angryk et.
al. [3]. Each MVTS instance in the dataset is made up
of 25 time series of active region magnetic field param-
eters (for the full list of parameters, see [16]). The time
series instances are recorded at 12 minutes intervals for
a total duration of 12 hours (60 time steps). The MVTS
instances are labeled according to the flaring event that
occurred after 12 hours. Therefore, the dataset has the
number of the observation points 𝑇 = 60, and the num-
ber of dimensions in timestamp vectors 𝑁 = 25, while
the prediction window is ∆ = 12 hours. Our experi-
mental dataset consists of 1,540 MVTS instances evenly
distributed across four classes (X, M, BC, and Q), where
BC represents events from both B and C classes (less in-
tense flares). We split the dataset into train and test using
the stratified holdout method (two-thirds for training and
one-third for the test).

4.2. Baseline methods
We evaluated our GCN-LSTM-based MVTS classification
model with six other baselines.

• Flattened vector method (FLT): This is a naive
method, where each 60 × 25 MVTS instance is
flattened into a 1, 500-dimensional vector.

• Vector of last timestamp (LTV): This method
was introduced by Bobra et al [16], where vec-
tor magnetogram data (feature space of all mag-
netic field parameters) were used for classifica-
tion. Since the last timestamp of the MVTS is tem-
porally nearest to the flaring event, we sampled
the vector of the last timestamp (25-dimensional)
to train the classifier.

• Time series summarization-based MVTS rep-
resentation (TS-SUM): This method, proposed
by Hamdi et al [4] summarizes each individual
time series of length 𝑇 by eight statistical fea-
tures: mean, standard deviation, skewness, and
kurtosis of the original time series, and the first-
order derivative of the time series. As a result, we
get an 8× 25-dimensional vector space, which is
used for training the downstream classifier.

• Long-short termmemory (LSTM): This LSTM-
based approach was proposed by Muzaheed et.

1https://github.com/FuadAhmad/GCN-LSTM

https://github.com/FuadAhmad/GCN-LSTM


Table 1
Multiclass classification performance of the proposed method with the baselines

Measures FLT LTV TS-SUM RNN LSTM ROCKET GCN-LSTM
Accuracy 0.259± 0.012 0.323± 0.02 0.609± 0.091 0.427± 0.025 0.628± 0.03 0.742± 0.021 0.817± 0.014
Precision (X) 0.232± 0.024 0.342± 0.041 0.712± 0.054 0.534± 0.031 0.757± 0.028 0.92± 0.034 0.932± 0.022
Recall (X) 0.264± 0.053 0.392± 0.043 0.772± 0.024 0.631± 0.028 0.947± 0.023 0.981± 0.016 0.99± 0.023
F1 (X) 0.244± 0.032 0.362± 0.04 0.741± 0.034 0.582± 0.019 0.841± 0.014 0.952± 0.028 0.961± 0.013
Precision (M) 0.254± 0.012 0.324± 0.033 0.522± 0.031 0.411± 0.014 0.594± 0.018 0.661± 0.042 0.803± 0.054
Recall (M) 0.26± 0.023 0.331± 0.061 0.552± 0.022 0.402± 0.03 0.544± 0.014 0.704± 0.038 0.824± 0.063
F1 (M) 0.257± 0.026 0.327± 0.042 0.537± 0.023 0.406± 0.029 0.568± 0.02 0.687± 0.028 0.811± 0.033
Precision (BC) 0.232± 0.044 0.263± 0.024 0.453± 0.033 0.282± 0.031 0.495± 0.013 0.58± 0.026 0.682± 0.03
Recall (BC) 0.241± 0.053 0.212± 0.02 0.472± 0.014 0.261± 0.021 0.409± 0.023 0.573± 0.052 0.664± 0.05
F1 (BC) 0.236± 0.041 0.234± 0.024 0.462± 0.041 0.271± 0.031 0.448± 0.031 0.577± 0.031 0.673± 0.032
Precision (Q) 0.324± 0.034 0.343± 0.044 0.583± 0.045 0.483± 0.024 0.603± 0.024 0.81± 0.046 0.831± 0.018
Recall (Q) 0.251± 0.042 0.362± 0.071 0.663± 0.034 0.413± 0.042 0.683± 0.023 0.724± 0.034 0.772± 0.021
F1 (Q) 0.282± 0.014 0.352± 0.013 0.62± 0.043 0.445± 0.032 0.64± 0.024 0.771± 0.036 0.798± 0.017

al. [5]. Each MVTS instance was considered as a
𝑇 -length sequence of𝑥<𝑡> ∈ R𝑁 timestamp vec-
tors. After sequentially feeding the LSTM model
with each timestamp vector, the last hidden repre-
sentation was considered as the MVTS represen-
tation. Following the same experimental setting,
we use the number of both cell state and hidden
state dimensions as 128, the number of training
epochs as 500, and the learning rate in stochastic
gradient descent as 0.01.

• Recurrent Neural Network (RNN): As the fifth
baseline, we replace LSTM cells of the model of
[5] with standard RNN cells. Similar to the ex-
perimental setting of [5], we use the number of
RNN hidden dimensions as 128, the number of
training epochs as 1,000, and the learning rate in
stochastic gradient descent as 0.01.

• Random Convolutional Kernel Transform
(ROCKET): We use ROCKET [26] as the sixth
baseline for MVTS-based solar event classifica-
tion. ROCKET was shown as the best performing
algorithm in the MVTS classification benchmark-
ing study by Ruiz et al [27], which included 26
MVTS datasets of the UEA archive [28]. ROCKET
uses a large number of random convolution ker-
nels in conjunction with a linear classifier (ridge
regression or logistic regression), where each ker-
nel is applied to each univariate time series in-
stance. Similar to the experimental setting of
[27], we used the number of kernels in ROCKET
as 10,000.

The first three baselines are embedding followed by
classification methods. After performing the embedding
of MVTS instances using those methods, we use logistic
regression classifier with L2 regularization. In all the
experiments, we split the dataset into train and test using
the stratified holdout method (two-thirds for training

and one-third for the test). In the experiments of the
proposed GCN-LSTM model, we have following hyper-
parameters: # windows, 𝜂 : 4, window length, 𝜏 : 15,
# hidden dimensions 𝑑′𝑔 in first GCN layer: 64, # node
embedding dimensions 𝑑𝑔 in second GCN layer: 4, # di-
mensions in cell state and hidden state representations
𝑑𝑠 of both 𝐿𝑆𝑇𝑀𝑠 and 𝐿𝑆𝑇𝑀𝑓 : 128, # training epochs:
100, Adam learning rate 𝛼: 10−4, and weight decay (reg-
ularization factor) 𝜆: 10−3.

4.3. Multiclass classification performance
In Table 1, we show the classification performances of
our GCN-LSTM-based MVTS classifier along with that of
the baseline methods. For a comprehensive classification
report, we show accuracy along with precision, recall,
and F1 of each class. We performed five experiments
with different train/test sets sampled by stratified hold-
out (two-thirds for training and one-third for the test) and
reported the mean and standard deviation of the experi-
ments. From the results, it is visible that the GCN-LSTM-
based MVTS classification model outperforms all other
baselines in all the performance measures. In overall
evaluation, ROCKET achieves second-bast performance,
while the LSTM model becomes third. GCN-LSTM model
achieves around 20% more accuracy in comparison with
the LSTM model, which proves the importance of learn-
ing MVTS representations in both spatial and temporal
domains rather than learning only from the temporal
domain. Among shallow ML models, TS-SUM performs
better than FLT and LTV models. In general, the high
performances of TS-SUM, RNN, LSTM, ROCKET, and
GCN-LSTM prove the importance of time series repre-
sentations of solar events.
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Figure 3: Multiclass classification with varying train set size

4.4. Classification varying train set size
To verify the adaptability of our model with bigger train-
ing datasets, we experimented by varying the training
set size. We varied the training set size from 10% to 90%
of the dataset size, while testing the models with the
rest of the instances (Fig. 3). We performed stratified
train/test sampling with a given training set size, and
evaluated the classification performance of the classifiers
five times with five distinct samples of training and test
sets. In Fig. 3a and 3b, we plotted the mean accuracy
values and mean F1 (X class) values found in all runs of
different train/test samples with different training data
sizes. GCN-LSTM consistently outperforms other base-
lines in all settings of training set sizes. ROCKET is the
second-best performing classifier in this experiment, and
especially in F1 measure ROCKET exhibits similar ro-
bust performance to GCN-LSTM. With only 10% training
data, GCN-LSTM achieved 70% classification accuracy,
while the third-best performing LSTM model achieve that
level of high performance by using 90% training data. Al-
though all models gain more accuracy with a gradual
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Figure 4: Binary classification performance of all baselines

increase of training set size, we observe more consistent
increasing patterns in deep learning and kernel-based
methods, e.g., GCN-LSTM, ROCKET, LSTM, and RNN. It
proves that with sufficiently large datasets, deep learn-
ing models can outperform the traditional classifiers or
embedding methods in a larger margin. The time series
summarization-based method TS-SUM shows promising
performance throughout the experiments, but the gener-
alization capability of this model can be limited in a more
complex dataset due to its less flexible learning methodol-
ogy consisting of hand-engineered features. Compared to
the deep learning-based and time series-based methods,
the LTV and FLT models perform poorly, which proves
the importance of time series in avoiding underfitting.

4.5. Binary classification performance
In addition to classifying the solar active regions in dif-
ferent flare classes, a major use case in data-driven flare
prediction is the binary classification, i.e., distinguish-
ing major flaring events from minor flaring events or
flare quiet events. In this experiment, we considered X
and M class MVTS instances as flaring events, while we
considered all other instances (Q and BC) as non-flaring
events. In Fig. 4, we show the mean binary classification
performances of all models over five different train/test
samples in terms of accuracy, precision, recall, and F1
of flaring and non-flaring classes. It is clearly visible
that the GCN-LSTM model outperforms all other base-
lines. We reported the performances of the two best-
performing models in numbers along with their bars. In
all performance metrics, GCN-LSTM achieves an aver-
age of ∼ 8% better performance than the second-best
performing ROCKET algorithm. In general, we observe
the similar performance of the models as that of multi-
class classification. Although one deep learning model,
i.e., the RNN-based model performed poorer than the
TS-SUM method, the RNN-based model is an end-to-end
classification model, which might outperform TS-SUM
with more training data, more complex model, and more
efficient hyperparameter tuning.
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4.6. Embedding performance
Visualization of high-dimensional data in 2D/3D space is
a well-known method of demonstrating the effectiveness
of learned representations. To investigate the quality
of learned MVTS representations, we provide a visual-
ization of t-SNE [29] transformed MVTS representations
extracted by the final layer of the GCN-LSTM model. Sim-
ilar to section 4.3, the stratified holdout strategy is taken
to pre-train the model, and all instances are projected to
t-SNE-reduced 2D space (Fig. 5). The 2D projection ex-
hibits discernible clustering of the MVTS instances. Some
meaningful insights are observed by the t-SNE scatter
plot such as (1) patterns of four classes are easily recog-
nizable, (2) flare-quiet events (Q) and minor flaring events
(B and C) are comparatively similar, (3) X and M class
flares exhibit significant dissimilarity from other classes,
(4) some flare-quiet events are similar to the minor flaring
events, (5) few minor flares show similar characteristics
to M-class flares, and (6) the characteristics of the X-class
flares are exclusive, and other class instances do not show
any similarity with X-class instances.

5. Conclusion
In this work, we presented an end-to-end deep learning-
based flare prediction model from multivariate time se-
ries (MVTS) represented datasets that leverages inter-
variable relationships by graph convolutional network-
based functional network embedding, and local and
global temporal change modeling through LSTM-based

sequence embedding. In contrary to other MVTS classi-
fication models applied for flare prediction, our model
utilizes spatial and temporal features of the MVTS in-
stances, and does not depend on predefined statistical
features. Our experiments on a real-life solar flare pre-
diction dataset demonstrate the superior performance of
our model in performing multiclass and binary MVTS
classification.

In the future, we look forward to designing more effi-
cient models by techniques such as (1) learning attention
coefficients in spatial and temporal feature spaces, (2) cus-
tomizing transformer models for MVTS representations,
and (3) analyzing the effects of univariate sequence em-
bedding towards MVTS representation learning. We will
also apply our models in other MVTS-based solar event
datasets (e.g., solar energetic particles) [30], and MVTS
datasets generated from other sources such as functional
MRI (fMRI)-based time series of brain regions [31].
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