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Abstract
We present a real-time multivariate anomaly detection algorithm for data streams based on the Probabilistic Exponentially
Weighted Moving Average (PEWMA). Our formulation is resilient to (abrupt transient, abrupt distributional, and gradual
distributional) shifts in the data. This novel anomaly detection routines utilize an incremental online algorithm to handle
streams. Furthermore, our proposed anomaly detection algorithm works in an unsupervised manner, eliminating the need for
labelled examples. Our algorithm performs well and is resilient to concept drift.
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1. Introduction
Anomaly detection is the task of classifying patterns that
depict abnormal behaviour. Outliers can arise due to
(human/equipment) errors, faulty systems, and others.
Anomaly detection is well-suited to unbalanced data sce-
narios, where the ideal scenario is to predict minority
class behaviour. There are numerous applications for
detecting loan default, fraud detection, and network in-
trusion detection. An anomaly detection algorithm can
work in Unsupervised, Supervised, or hybrid modes.

There are different types of anomalies described as
follows.

• Point Anomaly: the algorithm identifies a single
instance as an anomaly concerning the entire data
set.

• Contextual Anomaly: a data instance can be anoma-
lous based on the context (attributes and posi-
tion in the stream) and proximity of the chosen
anomaly. This anomaly type is ideal for multivari-
ate data, e.g. in the snapshot reading of amachine,
an attribute of a single data point may seem ab-
normal but can be normal behaviour based on
consideration of the entire data.

• Collective Anomaly: the algorithm decides a set
of data points that are anomalies as a group, but
individually these data points exhibit normal be-
haviours.

Anomaly detection algorithms can operate in the fol-
lowing settings:
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• Static: These algorithms work with static data.
Every item is loaded into memory at the same
time in order to perform computations.

• Online: These algorithms work in real-time data
streams. Items are incrementally loaded intomem-
ory and processed in chunks.

• Static + Online: The model may operate in two
stages, as initial parameters get estimated in the
static setting. The parameters are incrementally
updated as more data arrives. Our work is of this
type.

PEWMA was introduced in the work [1] for online
anomaly detection on univariate time series. Drawing
inspiration from their work, we have provided extensions
to support real-time anomaly detection of a multivariate
data stream.

1

2. Background
An anomaly detection algorithm can identify outliers in
a variety of signal changes in time-dependent data. Sig-
nal changes are common in time-dependent data. They
include abrupt transient shift, abrupt distributional shift,
and gradual distributional shift [1] labelled as ”A”, ”B”,
and ”C” in Figure 1 respectively.

Online algorithms are useful for real-time applications,
as they operate incrementally on data streams. These
algorithms incrementally receive input and decide based
on an updated parameter that captures the current state
of the data stream. This philosophy contrasts with of-
fline algorithms that assume the entire data is available
in memory. Offline algorithms require data must fit in

1Source code: https://github.com/kenluck2001/anomalyMulti,
Blog: https://kenluck2001.github.io/blog_post/real-time_anomaly_
detection_for_multivariate_data_stream.html
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Figure 1: Different types of signal changes: abrupt transient,
abrupt distributional shift, and gradual distributional shift [1]
(from left to right).

memory. The online algorithm should be time and space
efficient.
An anomaly detection algorithm can work in modes

such as diagnosis and accommodation [2]. Firstly, the di-
agnosis method finds the outlier in the data and removes
it from the data sample to avoid skewing the distribution.
This method is applicable when the distribution of ex-
pected behaviours is known. The outliers get excluded
when the estimation of the parameters of the distribu-
tion [2]. Secondly, the accommodation method finds
outliers in the data and estimates the statistical model
parameters. The accommodation method is suitable for
data streams that account for concept drift [3].
Muth [4] laid the foundation for exponential smooth-

ing by showing that it provides optimal estimates using
random walks with some noise. Further works were
done to provide a statistical framework for exponential
smoothing, leading to the development of linear mod-
els [5, 6]. Unfortunately, this applies to nonlinear models.
Yule postulated a formulation of time series as a realiza-
tion of a stochastic process [7]. Exponential Weighted
Moving Average (EWMA) is ideal for keeping running
moments in the data stream. EWMA is a smoothing
technique that adds a forgetting parameter to modify
the influence of a recent item in the data stream. This is
shown in Equation 1. This smoothing causes volatility
in abrupt transient changes and is unfit for distribution
shifts.

𝜇𝑡+1 = 𝛼𝜇𝑡−1 + (1 − 𝛼)𝑋𝑡 (1)

EWMA limitations motivated the discovery of the
Probabilistic Exponentially Weighted Moving Average
(PEWMA). PEWMA [1] improves on EMWA by adding a
parameter that includes the probability of the data in the
model, as shown in Equation 2. PEWMA works for every
shift including abrupt transient shift, abrupt distribu-
tional shift, and gradual distributional shift respectively.
PEWMA and EWMA use a damped window [8].

𝜇𝑡+1 = 𝛼(1 − 𝛽𝑃𝑡)𝜇𝑡−1 + (1 − 𝛼(1 − 𝛽𝑃𝑡))𝑋𝑡 (2)

3. Method
Our formulation provides an implementation of the on-
line covariance matrix in Subsection 3.2, alongside an on-

line inverse covariance matrix based on Sherman−Mor-
rison formula in Subsection 3.3, and PEWMA in Subsec-
tion 3.1.
Our implementation of the online covariance matrix

builds on work [9]. We simplify the algorithm by ignor-
ing evolutionary computation details in the paper. Our
work adapts evolution as described in the paper [9] as a
transition from one generation to the next; it is equiva-
lent to moving from one state to another state. This is
analogous to how online algorithms work with dynamic
changes as new data enters the stream.

3.1. Probabilistic Exponentially
Weighted Moving Average (PEWMA)

PEWMA [1] algorithm works in accommodation mode.
The routine shown in Algorithm [1] allows for concept
drift [3], which occurs in data streams, by updating the
set of parameters that convey the stream state.

Algorithm 1 Probabilistic Exponential Weighted Mov-
ing Average [1]

Require: 𝑋𝑡, �̂�𝑡, ̂𝛼𝑡, 𝑇 , 𝑡
Ensure: 𝑃𝑡, ̂𝑋𝑡+1, ̂𝛼𝑡+1

//incremental Z score

𝑍𝑡 ←
𝑋𝑡−�̂�𝑡

̂𝛼𝑡
//probability density function

𝑃𝑡 ←
𝑍𝑡
√2𝜋

𝑒
𝑍𝑡
2

if 𝑡 < 𝑇 then
//increment standard deviation (training phase)

𝛼𝑡 ← 1 − 1/𝑡
else
//increment standard deviation

𝛼𝑡 ← (1 − 𝛽𝑃𝑡)𝛼
end if
//moving average

𝑠1 ← 𝛼𝑡𝑠1 + (1 − 𝛼𝑡)𝑋𝑡
𝑠2 ← 𝛼𝑡𝑠2 + (1 − 𝛼𝑡)𝑋 2

𝑡
//incremental mean

̂𝑋𝑡+1 ← 𝑠1
//incremental standard deviation

̂𝛼𝑡+1 ← √𝑠2 − 𝑠21

The parameters of the anomaly detection algorithm
consist of 𝑋𝑡 the current data, 𝜇𝑡 the mean of the data, �̂�𝑡
is the mean of the data, ̂𝛼𝑡 the current standard deviation,
𝑃𝑡 the probability density function, ̂𝑋𝑡+1 the mean of the
next data (incremental aggregate), ̂𝛼𝑡+1 the next standard
deviation (incremental aggregates), 𝑇 the data size, and 𝑡
a point in 𝑇. Initialize the process by setting the initial



data for training the model 𝑠1 = 𝑋1 and 𝑠2 = 𝑋 2
1 .

Our work used the following parameters 𝛼, 𝛽, and 𝜏
as seen in Subsection 3.2. These anomaly thresholds are
chosen based on the criteria that outliers are ≥ 3 times
the standard deviation in normally distributed data.

3.2. Online Covariance matrix
1. Estimate covariance matrix for initial data, 𝑋 ∈

𝑅𝑛×𝑚.
Initial covariance matrix, 𝐶 where 𝐶 ∈ 𝑅𝑛×𝑚, 𝑛
is the number of samples, 𝑚 is the number of
dimensions as shown in Equation 3.

𝐶 = 𝑋 ∗ 𝑋 𝑇 (3)

2. Perform Cholesky factorization on the initial co-
variance matrix (positive-definite), 𝐶 as shown in
Equation 4.

𝐶𝑡 = 𝐴𝑡 ∗ 𝐴𝑡
𝑇 (4)

3. The updated covariance in the presence of new
data is equivalent to the weighted average of the
past covariance without the updated data and the
covariance matrix of the transformed input, as
shown in Equation 5.

𝐶𝑡+1 = 𝛼𝐶𝑡 + 𝛽𝑣𝑡 ∗ 𝑣𝑡𝑇 (5)

Where 𝑣𝑡 = 𝐴𝑡 ∗ 𝑧𝑡 and 𝑧𝑡 ∈ 𝑅𝑚 is understood in
our implementation as the current data. 𝛼 and 𝛽
are positive scalar values.

4. Increment the Cholesky factor of the covariance
matrix as shown in Equation 6.

𝐴𝑡+1 = √𝛼𝐴𝑡+
√𝛼

‖𝑧𝑡‖
2

⎛
⎜
⎜
⎝
√
1 +

𝛽‖𝑧𝑡‖
2

𝛼
− 1

⎞
⎟
⎟
⎠

𝑣𝑡∗𝑧𝑡 (6)

5. There are difficulties with setting /𝑎𝑙𝑝ℎ𝑎 and 𝛽
respectively. 𝛼 + 𝛽 = 1 as an explicit form of
exponential moving average coefficients. The
author chose to set the values of 𝛼, 𝛽 using the
data stream statistics, as shown in Equation 7.
The parameters are set as 𝛼 = 𝐶𝑎2, 𝛽 = 1 − 𝐶𝑎2

and 𝑛 is the size of the original data in the static
settings.
Where 𝐶𝑎 = √1 − 𝐶𝑐𝑜𝑣 and 𝐶𝑐𝑜𝑣 =

2
𝑛2+6 .

𝐴𝑡+1 = 𝐶𝑎𝐴𝑡+
𝐶𝑎

‖𝑧𝑡‖
2

⎛
⎜
⎜
⎝
√
1 +

(1 − 𝐶𝑎2)‖𝑧𝑡‖
2

𝐶𝑎2
− 1

⎞
⎟
⎟
⎠

𝑣𝑡∗𝑧𝑡

(7)

3.3. Online Inverse Covariance matrix
1. Estimate covariance matrix for initial data, 𝑋 ∈

𝑅𝑛×𝑚.
The initial covariance matrix, 𝐶 where 𝐶 ∈ 𝑅𝑛×𝑚,
𝑛 is the number of samples, 𝑚 is the number of
dimensions as shown in Equation 8.

𝐶 = 𝑋 ∗ 𝑋 𝑇 (8)

Inverse the covariance matrix, 𝐶−1 as shown in
Equation 9.

𝐶−1 = (𝑋 ∗ 𝑋 𝑇)
−1

(9)

2. Perform Cholesky factorization on the initial co-
variance matrix, 𝐶 as shown in Equation 10.

𝐶𝑡 = 𝐴𝑡 ∗ 𝐴𝑡
𝑇 (10)

3. Increment the Cholesky factor of the covariance
matrix

𝐶−1𝑡+1 = (𝛼𝐶𝑡 + 𝛽𝑣𝑡 ∗ 𝑣𝑡𝑇)−1 (11)

𝐶−1𝑡+1 = 𝛼−1(𝐶𝑡 +
𝛽𝑣𝑡 ∗ 𝑣𝑡𝑇

𝛼
)−1 (12)

Let us fix, ̂𝑣𝑡 =
𝛽∗𝑣𝑡
𝛼 . The resulting simplification

using Sherman−Morrison Formula reduces the
expression to

𝐶−1𝑡+1 =
1
𝛼
(𝐶𝑡−1 −

𝐶𝑡−1 ̂𝑣𝑡𝑣𝑡𝑇𝐶𝑡−1

1 + ( ̂𝑣𝑡𝐶𝑡−1𝑣𝑡𝑇)
) (13)

3.4. Online Multivariate Anomaly
Detection

The probability density function utilizes ideas from hy-
pothesis testing for deciding on a threshold to set the
confidence level. This threshold is used for determin-
ing the acceptance and rejection regions of the Gaussian
distribution curve.

1. Use the covariance matrix, 𝐶𝑡+1 and inverse co-
variance matrix, 𝐶𝑡+1−1.

2. We increment the mean vector, 𝜇 as new data
arrives. It is possible to simplify the Covariance
matrix, 𝐶, which captures a number of system
dynamics. Let 𝑛 represent the current data count
before updated data arrives. Also, �̂�: is the most
recent data, 𝜇𝑡+1: moving average as shown in
Equation 14.

𝜇𝑡+1 =
(𝑛 ∗ 𝜇𝑡) + �̂�

𝑛 + 1
(14)



Figure 2: Compare the threshold of static vs incremental
impact performance of anomaly detection (Version 1)

3. Set a threshold to determine the acceptance and
rejection regions. Items in the acceptance region
are considered normal behaviour as shown in
Equation 15.

𝑝(𝑥) = 1

√(2𝜋)𝑚|𝐶|
exp (−1

2
(𝑥 − 𝜇)𝑇𝐶−1(𝑥 − 𝜇))

(15)
Where 𝜇 is mean vector, 𝐶 is the covariance ma-
trix, |𝐶| is the determinant of 𝐶 matrix, 𝑥 ∈ 𝑅𝑚 is
data vector, and 𝑚 is the dimension of 𝑥 respec-
tively.

4. Experiment
Furthermore, we have provided detailed experiments on
the proposed algorithms in different realistic scenarios.
However, wemaintain the statistical framework provided
by the work [1] with theoretical guarantees.

We have experimented to determine the usefulness of
our algorithm by creating a simulation with 10000000
random vectors with dimensions of 15. The repeated
trial shows that our algorithm is not sensitive to initial-
ization seeds and matrix dimensions. This requirement
was a deciding factor in the choice of the evaluation met-
ric, as shown in Equation 16. We have provided more
information on the metric in Section 5.

Our experiment will check the effect of varying the size
of the initial static window versus the update window.
This is shown in Subsection 4.1 and Subsection 4.2.

4.1. Experiment 1
We evaluated the trade-off between the static window and
the update window. The experiment setup is as follows:

Figure 3: Compare the threshold of static vs incremental
impact performance of anomaly detection (Version 2)

• Split the data into 5 segments train on 1st seg-
ment(static), update covariance on 2nd (online),
compare with static covariance, and calculate the
error.

• Train on 1, 2 segments (static), update covariance
on 3rd (online), compare with static covariance
and calculate the error.

• Train on 1, 2, 3 segments (static), update covari-
ance on 4th (online), compare with static covari-
ance and calculate the error.

• Train on 1, 2, 3, 4 segments (static), update covari-
ance on 5th (online), compare with static covari-
ance and calculate the error.

Figure 2 contains the experimental results.

4.2. Experiment 2
The experiment setup is as follows:

• Split the data into 5 segments.
• Train on 1st segment(static), update covariance
on remaining segments (2,3,4,5) (online), compare
with static covariance and calculate error on seg-
ments (2,3,4,5)

• Train on 1, 2 segments (static), update covariance
on remaining segments (3,4,5) (online), compare
with static covariance and calculate error on seg-
ments (3,4,5)

• Train on 1, 2, 3 segments (static), update covari-
ance on remaining segments (4,5) (online), com-
pare with static covariance and calculate error on
segments (4,5)

• Train on 1, 2, 3, 4 segment(static), update covari-
ance on remaining segments (5) (online), compare



with static covariance and calculate error on seg-
ments (5)

Figure 3 contains the experimental results.

5. Result Analysis
Our random matrices get flattened into vectors and used
as input. The length of the flattened vector is applied as
a normalization factor to make the loss metric agnostic
of the matrix dimension. The loss function used in the
evaluation is Absolute Average Deviation (AAD) because
it gives a tighter bound on the error than mean squared
error (MSE) or mean absolute deviation (MAD) as shown
in Equation 16. We take the average of the residuals
divided by the ground truth for every sample in our eval-
uation set. If the residual is close to zero, we contribute
almost nothing to the measure. On the contrary, if the
residual is high, we want to know the difference from
the ground truth.

𝐴𝐴𝐷 =
𝑛
∑
𝑖=1

|
̂𝑌𝑖 − 𝑌𝑖
𝑌𝑖

| (16)

Where ̂𝑌𝑖 is the predicted value, 𝑌𝑖 is the ground truth,
and 𝑛 is the length of the flattened matrix.
We can observe that building your model with more

data in the init (static) phase leads to lower errors than
having fewer data in the init phase and using more data
for an update. The observation matches our intuition
because when you operate online, you tend to use smaller
storage space. However, there is still a performance trade-
off compared to batch mode.
The error at the beginning of our training is signifi-

cant in both charts. This insight shows that rather than
performing the expensive operation of converting a co-
variance matrix to have positive definiteness, it is better
to use random matrices that are positive definite. More
data would help us achieve convergence as more data
arrives.
The success of the experiments has given us confi-

dence that our multivariate anomaly detection algorithm
would have similar characteristics to the univariate case
described in the work [1].

6. Conclusion
There is no generic anomaly detection that works for ev-
ery task. The underlying assumption in this work is that
the features in use capture relevant information about
the underlying dynamics of the system. Our proposed
implementation is an anomaly detection algorithm for
handling multivariate streams, even with challenging
shifts. In future work, we will extend support for non-
stationary distributions in multivariate data streams.
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